بررسی روشهای کاهش مصرف انرژی در یخچال - فریزرهای خانگی

علي حیدری منفرد**، سعید هانفی پور*** و عباسعلی آهنگر***

دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف

(این مقاله در ۱۳۸۷/۲/۲۳، در نهمان: ص ۸۲/۱۳۷۵/۱۱/۲۰۰۰، صفحه نخستی: ص ۸۲/۱۳۷۵/۱۱/۲۰۰۰)

چکیده - در این مقاله به ارزیابی کنترل تولیدی یخچال در رابطه با کاهش مصرف انرژی در سیستم‌های برودی و پلاسک در خصوص طراحی و ساخت مناسب، پیوندهایی بین یخچال - فریزرهای خانگی انجام شده است. اهمیت موضوع به دلیل استفاده از مهندسی انرژی و پلاسک در یخچال بوده است. فرآیند تولید انرژی و کاهش مصرف انرژی توسط این وسایل بهره‌مند است. طرح فواید بین الیکتریکی دارای اتصال با یک چرخه‌بندی مبهم‌داهنده آن‌ها بوده است، که باید مصرف انرژی را تا حد این سطح کاهش داده و پیچیده‌ترین مراحل تولید انرژی را تجربه کند. در این مقاله به ارزیابی انرژی برای کاهش مصرف انرژی در بخش‌های مختلف، پیوندهایی بین یخچال و فریزرهای خانگی انجام شده است. این اثرات بر انجام اجرای پروژه‌های مختلفی در زمینه کاهش مصرف انرژی در بخش‌های مختلف انجام می‌گیرد. در این مقاله به ارزیابی انرژی به‌منظور کاهش انرژی در بخش‌های مختلف، انجام اجرای پروژه‌های مختلفی در زمینه کاهش مصرف انرژی در بخش‌های مختلف انجام می‌گیرد. در این مقاله به ارزیابی انرژی به‌منظور کاهش انرژی در بخش‌های مختلف، انجام اجرای پروژه‌های مختلفی در زمینه کاهش مصرف انرژی در بخش‌های مختلف انجام می‌گیرد. در این مقاله به ارزیابی انرژی به‌منظور کاهش انرژی در بخش‌های مختلف، انجام اجرای پروژه‌های مختلفی در زمینه کاهش مصرف انرژی در بخش‌های مختلف انجام می‌گیرد. در این مقاله به ارزیابی انرژی به‌منظور کاهش انرژی در بخش‌های مختلف، انجام اجرای پروژه‌های مختلفی در زمینه کاهش مصرف انرژی در بخش‌های مختلف انجام می‌گیرد.

_study on reduction of energy consumption of household refrigerator-freezers in iran_

A. Heydari, S. Hatifi-Pour and A.A. Ahangar

Department of Mechanical Engineering, Sharif University of Technology

Abstract - In the last quarter of the century, a substantial amount of research work has been conducted on optimization of energy consumption by refrigeration systems and on proper design and construction of

** استاد
*** دانشجوی کارشناسی ارشد
**** دانشجوی کارشناسی ارشد

استقلال، سال ۱۶، شماره ۲، اسفند ۱۳۷۶

۲۹
The importance of such energy optimization schemes stems from the environmental impacts of Freon (R-12) used as the working refrigerant in household refrigerator-freezers as well as the enormous energy consumed by such appliances. International regulations for the replacement of Ozone-depleting refrigerants, such as the Montreal Protocol, as well as the Iranian regulations regarding reduced energy consumption of energy consuming products have motivated research on the optimum design of household refrigerator-freezers. In this paper, research works aimed at analytical modelling and also the experimental works conducted to determine design methods of energy efficient refrigerator-freezers in Iran will be presented. Using the numerical method developed for this purpose, a parametric analysis of the components of a refrigerator-freezer manufactured in Iran will be presented and the reduced energy consumption by the selected appliance and its increased efficiency will be discussed. The influence of replacing R-12 with its substitute refrigerant (R-134a) on the energy consumption and efficiency of the typical refrigerator is also presented.
کلیه آزمایشها در آزمایشگاه تحت‌پوشی سیستم‌های حرارتی و
بروته دانشکده مهندسی مکاتب انجام شد. این آزمایشگاه مجهز به اتاق و سکوی آزمون برای استاندارد
ISO-8187 و سیستم داده‌برداری و دیگر امکانات آزمایشگاهی
است. شکل (۲) آثار آزمون استاندارد به همراه سکوی آزمون را
نشان می‌دهد. اتاق آزمون به‌ایکاژ و کنترل شرایط محیطی آزمون
یکجاک-فریزر از جمله دما محور، رطوبت نیز، نهو و میزان
گردش هوا ساخته شد. به لحاظ اینکه در زمان انگش آزمون
استاندارد بی‌خیال-فریزر با بد‌حالا گردش هوا در اطراف بدن
کنار بود نیروی بی‌خیال و جریان دما نسبتاً باشد، اتاق به صورت
تو در تو ساخته شد. به گونه‌ای که اتاقی از جنس نوروس و به عداد
۲/۴۲ در داخل اتاق بزرگ‌تری که دارای دیواره از نوع
اموست و دارای ابعاد شده
است، سیستم گرمایشی و سرمایشی که کنترل کننده دمای داخل
اتاق، آزمون است به گونه‌ای قرار گرفته که هوا در یک‌سوز
در محض خالی و همزمان با دماهای چنین داشته و لذا انتقال گرمای
درباره خارج وارد باید باشد. اتاق آزمون منطقی می‌باشد.
در این تاریخی یک زمینه برای انجام آزمون قرار از لحاظ
همچنین به کمک چهار عدد فن واقع در سقف اتاق آزمون که به
دیگری که در خارج این اتاق نصب شده مختص است. در صورت نور
می‌توان هوا را برد نیز با سرد بودن اتاق داخلی انجام کرد.
سقف بودن یک رطوبت به گونه‌ای که اتاق به
که رطوبت نسبی مورد نیاز برای ایجاد شرایط محیطی مختلف در
داخل اتاق انجام داد.

۱-۲ اندیشگری دما

۲-۲-۲ یک چرخه ترموموکی

سیستم داده برداری

در داده برداری منظم شدند. سیستم داده برداری شامل یک دستگاه
تعداد انتخاب (مالیت پلکس) و امپلی قابر به همراه کارت تبدیل
دیجیتال است که در دامنه یک کمپیوتر PC-4876 نصب شده است.
جدول ۱ - مقایسه نتایج آزمون استاندارد و مدل هدفی بروی پیچ و گردان نمونه (مورد ۱۲-R)

<table>
<thead>
<tr>
<th>دمای محیط°C و رطوبت نسبی٪/۷۵</th>
<th>نتایج تحلیلی</th>
<th>نتایج تحلیلی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>تناهج ترجیحی</td>
<td>تناهج ترجیحی</td>
</tr>
<tr>
<td></td>
<td>دمای داخل پیچجال</td>
<td>دمای داخل پیچجال</td>
</tr>
<tr>
<td>۵۰/۵٪</td>
<td>۵۰/۵٪</td>
<td>۵۰/۵٪</td>
</tr>
<tr>
<td>۵۵/۳۵٪</td>
<td>۵۵/۳۵٪</td>
<td>۵۵/۳۵٪</td>
</tr>
<tr>
<td>-۲۱/۹٪</td>
<td>-۲۱/۹٪</td>
<td>-۲۱/۹٪</td>
</tr>
<tr>
<td>/۱۲/۱۳kWh/day</td>
<td>/۱۲/۱۳kWh/day</td>
<td>/۱۲/۱۳kWh/day</td>
</tr>
</tbody>
</table>

سیمراه ترموکولری از نوع T از طریق سهمه‌های ارتباطی مسیر به سیستم انگاشتن و انفیزش دهنده‌های داده‌ها وارد شده، سیستم از طریق یک کابل مخصوص ۲۵ سوزن به پورت دیجیتال که بروی یکی از نشان‌گاه‌های داخل کامپیوتر قرار می‌گرفته متصال می‌شود. عملیات تبادل سیگنال به‌طور معمول نماشی از طریق پک‌های مادر داده‌برداری به پورت کامپیوتر PC-486 نصب شده است. انتخاب می‌شود (۳).

۲-۳- اندازه‌گیری مصرف برق
میزان برق مصرف شده توسط پیچجال به صورت وات و همچنین کیلووات ساعت به‌صورت استفاده از تأمین ورودی و کنترل اندازه‌گیری شده. بر اساس این ابزار، سود وانت و رادیوی ویود را به‌طور کامل می‌تواند به‌طور مناسب از طریق ترمیمان خروجی به پیچجال در حال اندازه‌گیری باشد. به این صورت، هر یک از سهمه‌های انگاشت شده پیچ مصرف‌های به صورت وات و ولت، آمپر و کیلووات ساعت ثبت شده.

۴-۲- سکوی تست استاندارد براساس استاندارد
کلیه آزمون‌های پیچجال-فرزیر باز در حال که پیچجال بر روی یک سکوی آزمون ترک گرفتن سکوی آزمون و پیچجال-فرزیر سیستم متفاوت را در انتهای آزمون به روش و مدتی مشخص نتایج را نشان می‌دهند. سکوی آزمون از چوب نوری به‌کار می‌رود. نتایج داده شده سخته می‌شود انتخاب آزمون‌ها بر روی سکوی آزمون. شیب سازی شرایط پایانی پیچجال-فرزیر در مدل ساخته شده در هر موردی با مناسب‌تر.
ورود گرما به داخل کاپیت است. نرخ انتقال گرما از محیط اطراف و از طریق وارد پردازش با داخل کاپیت بیشتر از مقدار های مصرف شده در سرت تروت ورودی به برنامه داده می‌شود.

3-۲-۱ ورودهای مربوط به سیستم
7-۲-۱-۱ سیستم تبیدن: نرمامزار مدیدسازی قادیر است انواع سیگنال و تبیدن اهمیت از سیستم استاندارد با یک کمپیوتر و یک اپراتور و سیستم لوله‌زنی. سیستم با دو دهله تبیدن و سیستم با دو اپراتور را مورد ارزیابی قرار دهد.
در خصوص یک یا دو اپراتور استفاده می‌شود.

3-۲-۲ نوع مورد: این برنامه قادر به مدیدسازی استفاده از ۳۲ نوع مورد خالص و همچنین مخلوط مورد است. سیستم تبیدن یک یا دو اپراتور است. برنامه گزارش و تبیدن و رول باند از نوع جایگیری آزاد است.

3-۲-۳ نوع اپراتور: اطلاعات دقیق اپراتور از قبل نوع و ابعاد فیزیکی مورد نیاز نرم افزار است. در این برنامه نمودارهای بزرگ و اپراتور رول باند از نوع جایگیری آزاد است.

3-۳ نوع کنترل: اطلاعات کنترل از قبل نوع و ابعاد نیز برای مدیدسازی مورد نیاز است. این برنامه از اطلاعات نوع لو متقابل که از طریق جایگیری آزاد با محیط انتقال گرما دارد استفاده می‌کند.

3-۳-۱ نوع کمپیوتر: مدیدسازی کمپیوتر از سه طرف:
1 استفاده از روش بازده گرمایی و طرفی در تبیدن و
2 استفاده از روش بازده گرمایی انجام پذیر است.
3 استفاده از روش بازده گرمایی انجام پذیر است.
مدیدسازی یکی از نقطه اصلی است. کنترل که از طریق جایگیری آزاد با محیط انتقال گرما دارد استفاده می‌کند.

3-۳-۲ دوماهه: انتقال دمای موجود بین کاپیت و هوای اطراف با استفاده از محرک یا داخل یک یا دو اپراتور است. کنترل محیط اطراف و هوای اطراف کمپیوتر برای تعیین میزان نفوذ گرما به داخل کاپیت به صورت ورودی به برنامه داده می‌شود.

3-۳-۳ اطلاعات داده شده در جدول زیر نشان مصرف برق (بررسی وقت) و حجم تبیدن (بررسی در متریسی) از (Kcal/hr)
جدول ۲- عملکرد کالیبراتریک کمبیسپورهای نوع R-12 و R-134a

<table>
<thead>
<tr>
<th>ورودی درجه سانتی‌گراد</th>
<th>R-134a</th>
<th>R-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>-۳۲/۴°C - -۲۳/۳°C</td>
<td>540</td>
<td>98</td>
</tr>
<tr>
<td>-۱۲/۴°C</td>
<td>2۶۰</td>
<td>1۲۶</td>
</tr>
<tr>
<td>۱۵°C</td>
<td>2۱۹</td>
<td>15۱</td>
</tr>
<tr>
<td>۱۰۴/۰°C</td>
<td>9۱</td>
<td>1۱۵</td>
</tr>
<tr>
<td>۱۵۸/۰°C</td>
<td>۱۱۷</td>
<td>1۸۱</td>
</tr>
<tr>
<td>۱۶۸/۰°C</td>
<td>۱۲۴</td>
<td>1۸۱</td>
</tr>
<tr>
<td>۱۷۱/۰°C</td>
<td>۱۲۹</td>
<td>1۸۱</td>
</tr>
<tr>
<td>۱۷۵/۰°C</td>
<td>۱۳۴</td>
<td>1۸۱</td>
</tr>
<tr>
<td>۱۸۱/۰°C</td>
<td>۱۳۹</td>
<td>1۸۱</td>
</tr>
<tr>
<td>۱۸۱/۰°C</td>
<td>۱۴۵</td>
<td>1۸۱</td>
</tr>
<tr>
<td>۱۹۱/۰°C</td>
<td>۱۵۱</td>
<td>2۲۹</td>
</tr>
<tr>
<td>۱۹۷/۰°C</td>
<td>۱۵۹</td>
<td>3۵۰</td>
</tr>
<tr>
<td>۱۹۱/۰°C</td>
<td>۱۶۷</td>
<td>3۸۴</td>
</tr>
<tr>
<td>۲۰۹/۰°C</td>
<td>۱۶۸</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۲۰۹/۰°C</td>
<td>۱۷۱</td>
<td>۱۱۷</td>
</tr>
<tr>
<td>۲۱۹/۰°C</td>
<td>۱۷۴</td>
<td>۱۲۶</td>
</tr>
<tr>
<td>۲۲۹</td>
<td>۱۲۹</td>
<td></td>
</tr>
<tr>
<td>۲۳۹</td>
<td>۱۳۴</td>
<td></td>
</tr>
<tr>
<td>۲۴۹</td>
<td>۱۳۹</td>
<td></td>
</tr>
<tr>
<td>۲۵۹</td>
<td>۱۴۵</td>
<td></td>
</tr>
<tr>
<td>۲۶۹</td>
<td>۱۵۱</td>
<td></td>
</tr>
<tr>
<td>۲۷۹</td>
<td>۱۵۹</td>
<td></td>
</tr>
<tr>
<td>۲۸۹</td>
<td>۱۶۷</td>
<td></td>
</tr>
<tr>
<td>۲۹۹</td>
<td>۱۷۱</td>
<td></td>
</tr>
<tr>
<td>۳۰۹</td>
<td>۱۷۴</td>
<td></td>
</tr>
<tr>
<td>۳۱۹</td>
<td>۱۷۹</td>
<td></td>
</tr>
<tr>
<td>۳۲۹</td>
<td>۱۷۹</td>
<td></td>
</tr>
<tr>
<td>۳۳۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۳۴۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۳۵۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۳۶۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۳۷۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۳۸۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۳۹۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۰۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۱۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۲۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۳۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۴۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۵۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۶۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۷۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۸۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۴۹۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۰۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۱۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۲۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۳۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۴۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۵۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۶۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۷۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۸۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۵۹۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۰۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۱۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۲۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۳۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۴۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۵۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۶۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۷۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۸۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۶۹۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۰۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۱۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۲۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۳۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۴۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۵۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۶۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۷۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۸۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۷۹۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۰۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۱۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۲۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۳۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۴۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۵۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۶۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۷۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۸۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۸۹۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۰۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۱۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۲۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۳۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۴۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۵۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۶۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۷۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۸۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
<tr>
<td>۹۹۹</td>
<td>۱۸۱</td>
<td></td>
</tr>
</tbody>
</table>

* توان مصرفی (وات) ** حجم بودنی (کیلو کالری/ساعت)
تجربه‌های بازده پالایش در عملکرد سیستم و کاهش مصرف انرژی آن را نشان می‌دهد. ضریب پایه انتزاعی کامپرسور استفاده شده برای گزارش EER استفاده شده‌است. نسبت پایه کامپرسور با مصرف این گزارش 600 W به 500 W کاهش مصرف برق برای نخجوان با مصرف کم‌تر R-134a می‌شود.

3-2-2 افزایش سطح گرمایی اواپراتور

تحلیلات انتقال شده نشان می‌دهد که افزایش سطح سیستم و اواپراتور باعث افزایش پایه گرمایی انرژی پزشک بوده. از این حالت 40 W افزایش سطح گرمایی اواپراتور تا 50 W همکاری می‌شود. شکل 2 نشان می‌دهد که افزایش سطح گرمایی اواپراتور باعث افزایش سطح گرمایی اواپراتور تا 50 W می‌شود. این افزایش سطح پزشک انتزاعی ایجاد می‌شود. شکل 3 نشان می‌دهد که افزایش سطح گرمایی اواپراتور به‌روز مصرف انرژی پزشک نمایش می‌دهد. 50 W

35

استقلال، سال 16، شماره 2، اسفند 1376
شکل 5- تأثیر استفاده از سیرمرغ نیمات از بازده بالاتر روی پخش نمونه مصرف برق

شکل 5- تأثیر استفاده از کمپرسورهای بازده بالاتر روی پخش نمونه مصرف برق

شکل 4- تأثیر افزایش ضخامت عایق بنده و درب روی مصرف برق ارزی پخش جال نمونه

شکل 7- تأثیر افزایش سطح گرمایی کنترل‌سوز روی مصرف برق پخش جال نمونه

شکل 6- تأثیر افزایش سطح گرمایی ابزار‌های ازبین روی مصرف برق پخش جال نمونه

شکل 8- تأثیر کاهش اندازه گرمایی بارها در دور درب روی مصرف برق پخش جال نمونه

می‌شود. عایق‌نگین بهتر پخش جال-فیلتر با بهبود کیفیت واشر به کار برده شده باعث افزایش بازدهی کاهش مصرف برق می‌شود. شکل تا بزرگتر 225/5% کاهش اندازه گرمایی بارها در دور درب با استفاده از واشرهای دارای قابلیت آب پندی بهتر از نیمات می‌دهد. بر اساس محاسبات انجام شده کاهش 50% اندازه گرمایی در طریق گاسکت، تا 8/8 کاهش مصرف برق پخش جال به مدت 12 و 7ا/134 را نسبت به حالت میتا به همراه دارد.

تأثیر تعداد اجزای بازو و بسته گردن به همراه مدت زمان بازو و بسته بودن با استفاده از پنجره و مدل‌سازی بازدهی-فیلتر با بهبود کیفیت واشر و بسته گردن در دور درب 3-7 در مورد درب و واشر (گاسکت) نصب شده بود. در بیشتر و بازده بالاتر، اثر انگیزه در بدن درب روی پخش جال نمونه
شکل 9- تأثیر تعداد دفعات بز و بست کردن درب روی مصرف انرژی بخچال نمونه

این ایجاد شده، آزمون استاندارد مصرف انرژی در شرایط درب بسته انجام می‌شود. لیکن در عمل، استفاده از بخچالها به همراه بز و بسته شدن درب و در همان مدت زمان ممکن است. شکل (9) افزایش مصرف برق به دلیل بز و بسته شدن درب در شرایط محیطی دما و رطوبت نسبی 25°C و 2/5 و همچنین 3/1 و 2/75 را نشان می‌دهد. همان گونه که در شکل مشاهده می‌شود، بز و بسته کردن درب باعث افزایش در دما و رطوبت بالا تأثیر قابل توجهی را در مصرف برق به خچال بررسی نموده است.

شکل 11- تأثیر اجرای طرح‌های انتخابی روی مصرف برق خچال

نمونه (دبای محيط 20°C و رطوبت نسبی 65%)

مصرف انرژی از دهه 70 میلیارد تاکتون را تا 80% نشان می‌دهد.

توجه شده است.

شکل 10- تأثیر اجرای طرح‌های انتخابی روی مصرف برق خچال

نمونه (دبای محيط 35°C و رطوبت نسبی 75%)

مصرف انرژی از دهه 70 میلیارد تاکتون را تا 80% نشان می‌دهد.

شکل 4- اجرای طرح‌های انتخابی

نتایج تجربی حاصل از انجام آزمایش‌ها در شرایط استاندارد برای یک خچال برای خانگی ایرانی ارائه شد. تأثیر انجام تغییرات طراحی به صورت نظری توسط یک نرم افزار کامپیوتری انجام شده است. مقایسه نتایج حاصل از انجام آزمایش‌ها، شامل مقایسه دما و میزان مصرف بر میان نتایج حاصل از اجرای نرم افزار، دقت این برنامه در شبیه سازی عهدید خانگی، و تخریب انتخاب شده را نشان می‌دهد. با توجه به دقت بالایی که از مقایسه مدل می‌باشد با مدل طراحی حاصل شده، می‌توان چنین نتیجه گیری کرد که اعمال انتخابی حاصل از نرم افزار را رتبه‌بندی نباید. این نتایج نشان می‌دهند که تأثیر اجرای چنین انتخابی روی میزان تغییر مصرف برخی شده است. با توجه به اینکه توان مدیران بز برای تأمین برخی از مصرف‌های خانگی مسئولیت در ارائه یک خندق مصرف برای خانگی نداشته‌اند، نتایج این یک مسئله کاملاً مربوط به ارائه خدمات مصرف برای خانگی بز است.
سهم بخجالها از کل مصرف سالانه کشور حدود ۵/۵ درصد و
سهم آن از مصرف سالانه یخچال خانگی در حدود ۱۷ درصد
می‌باشد. با توجه به قیمت تمام شده هر کیلو وات سرمایه اولیه
برق میادین از ۳/۵ تا ۵/۵ میلیون دلار و جزء هزینه‌های تعمیرات
و سرمایه‌گذاری اولیه می‌باشد. از سوی دیگر همان‌گونه که ملاحظه می‌شود این
انتقال‌های طراحی مصرف بخجال انرژی منجر به افزایش حدود
۵۰% کاهش هزньه بخجال در کشور در سال‌های آینده. به طوری که در دورون مصرفی قادیر به کاهش مقدار ذکر
شده که کاهش هزینه‌های مسیران برای تأمین برق این تعداد بخجال فریزر
در کشور، از ۵۰۰ میلیون دلار به ۱۲۵ میلیون دلار در سال می‌باشد.

نزهه بخجالها در ایران با توجه به تعداد و متوسط مصرف انرژی سالانه
[۲] در حدود ۶۵/۸۵۶۰ MW همی‌باشد، ملاحظه می‌شود که
۷۵ درصد از کل مصرف انرژی بخجال کشور می‌باشد.


۳. حیدری، ع. "انرژی کنترل‌دهنده مصرف انرژی در بخجال بخجال فریزر
خانگی: پیش‌بینی اثرات مصرفی ارتباط داشته باشد. همان‌گونه
۴. این نامه از ارزیابی انرژی یک بند و "تیر" ۱۹۹۳ قانون برنامه دوم
توسعه اقتصادی اجتماعی فرهنگی جمهوری اسلامی ایران.