Kinematics and Dynamics of two Cooperating Robots in Spatial Moving of an Object

A. Fattah and B. Tahmasebi
Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT- The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the crushing force and moment on the moving object as well as minimizing the joint torques of the two robots are the two methods which are used to determine the joint torques. As an example, the joint angles and their time derivatives as well as the time history of joint torques of two cooperating Puma 560 robots are determined.
فارغ قرار گرفتند. نتایج حاصل بیانگر این مطلب است که الگوریتم‌های فوق نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

روش دیگر بهینه‌سازی بر اساس الگوریتم است که تکریک از

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.

قشر انویژ و تعادل نیرو را با عنوان معمایان نظیر محاسباتی پیچیده‌تر و مناسب کاربردهای زمانی تیزه تیزه‌تر و نهایتاً الگوریتم بینی بر توزیع‌بندی ها و اعداد اولیه به کار رفته نتیجه بهتری داشته است.
جدول ۱- پارامترهای دناوتی- هارنتزرگ مربوط به ربات پوما

<table>
<thead>
<tr>
<th>θ_1 (درجه)</th>
<th>d_1 (متر)</th>
<th>a_{11} (متر)</th>
<th>a_{12} (متر)</th>
<th>ϕ (درجه)</th>
<th>مقضی α</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۲</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۳</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۴</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۵</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۶</td>
</tr>
</tbody>
</table>

پیادهکننده با استفاده از آنها نرخ تغییرات دوران مفصل و همچنین
دیانیکي و اعمال روش های بهینه سازی تاریخچه زمانی کول
فصلی مفصل با استفاده از روش موسم به [11 و 12] به دست
در این روش وابستگی معامله به نیروهای محدودیت
یافته شده و معاملهای مستقل استخراج خواهند شد. کوبل
فصل بر اساس در روش یک حداکثر کردن تبریز وارد بر جسم
محاسبه خواهد شد. روش دیگر بررسی رابطه همکاری به
گونه ای است که تعداد مفصل تغییر شوند، با تعداد درجات
آزادی سیستم یکسان باشد در نتیجه نیازی به بهینه سازی
نقشه دهیم. [۵]

 فقط حول یک محور عمود به صفحه صورت می گیرد. در حالت
فضای مجازی طریقه مسیر سیمیناتک مکروس و به دست
آوردن یک نقشه با کمک یک چگی در حال صفحه آن
است. تعداد درجات آزادی در حال فضا یا بیشتر از حالت
صحیح است و به کار بردن روش های بهینه در این حالت پیچیده
از حالات صحیح است. علاوه بر مطالعه فوق در مقاله حاضر
خلاصه از مطالعات انجام شده توسط محققان در این زمینه نیز
آورده شد است. در ربات صنعتی یکسان از نوع پوما ۵۵
جوشه را در فضا یک چگی که در این مقاله به آن جسم متحرک گفته می شود.
ان یک چگی یک جای خاص جسم متحرک و سیستم دوران
آن در فضا مورد استفاده قرار می گیرد، شکل (۱) در
حالا کلی دارای شکل درجه آزادی ان و تمامی معامله آنها از نوع
دورانی (یک درجه آزادی) است. پارامترهای دناوتی- هارنتزرگ?

مربوط به ربات پوما در جدول (۱) آورده شده است.

۱- چگی مسیر

منظور از طریقه مسیر یافتن مسیر در فضایی زمانی موقت
سرعت و شتاب را در فضایی مفاهیمیا یافتنی کارتنین
می کنند. در مورد رابطه همکاری جسم متحرک
همواره مورد نظر است از این رو طراحی مسیر در فضایی
کارتنین صورت می گیرد. در طراحی مسیر در فضایی کارتنین
محورهای مدر و ضعیت اولیه به وضعیت دلخواه نهایی مورد نظر است.
اگر حکم مستلزم تغییر در دوران موقتی جسم متحرک
ثبت به دستگاه هر جسم. به همین علت در فضایی
متغییرهایی که در طراحی مسیر برای مشخص کردن دوران و
موقتی جسم متحرک مورد استفاده قرار می گیرد به ترتیب
عبارتند از زاویه دوران θ و مولفه های برداریکه محور دو حاصل کردن و
محاسبه مختصات جسم متحرک نسبت به مختصات مرجع. برای این منظور، بر حسب زمان باید مسیر را در نظر بگیریم که علایه بر پر روده کردن شرایط مرزی، هموار نیز باشد. از بین توابع که این خصوصیات را دارا باشند در این مقاله از تابع سیلوپیدی به شکل زیر استفاده می‌شود.

\[
\dot{t} = \left[\dot{\omega}_1, \dot{\omega}_2, \ldots, \dot{\omega}_T \right]^T
\]

که در معادله (11) و 12 بردار نیروی ترمینی باعث بهبود اعضا است و شامل \(b^W \) بردار نیرو و کوپل خارجی و مختصات \(b^C \) بردار نیروی جاذبه است. \(d^W \) فعلی شکل داده د و \(d^C \) همچنین \(b^C \) بردار نیرو و کوپل محدودیت‌های سیستمیک است که به خاطر اتصال سیستمیکی بین اعضا رابط ایجاد می‌شود. با معرفی روش (13) بردار نیرو و کوپل محدودیت‌های سیستمیکی از معادله‌ها حذف خواهد شد.

\[
\text{NOC} = d^C \times d^C
\]

در معادله (11) و 12 بردار نیروی ترمینی باعث بهبود اعضا است و شامل \(b^W \) بردار نیرو و کوپل خارجی و \(b^C \) بردار نیروی جاذبه است. \(d^W \) فعلی شکل داده د و \(d^C \) همچنین \(b^C \) بردار نیرو و کوپل محدودیت‌های سیستمیک است که به خاطر اتصال سیستمیکی بین اعضا رابط ایجاد می‌شود. با معرفی روش (13) بردار نیرو و کوپل محدودیت‌های سیستمیکی از معادله‌ها حذف خواهد شد.

\[
\dot{t} = \left[\dot{\theta}_1, \dot{\theta}_2, \ldots, \dot{\theta}_T \right]^T
\]

به همراه معادلات \(\theta \) و \(\omega \) که مختصات مرکر جسم متحرک نسبت به مختصات مرجع داده‌اند، برای این منظور، بر حسب زمان باید مسیر را در نظر بگیریم که علایه بر پر روده کردن شرایط مرزی، هموار نیز باشد. از بین توابع که این خصوصیات را دارا باشند در این مقاله از تابع سیلوپیدی به شکل زیر استفاده می‌شود.

\[
\dot{t} = \left[\dot{\omega}_1, \dot{\omega}_2, \ldots, \dot{\omega}_T \right]^T
\]

که در معادله (11) و 12 بردار نیروی ترمینی باعث بهبود اعضا است و شامل \(b^W \) بردار نیرو و کوپل خارجی و مختصات \(b^C \) بردار نیروی جاذبه است. \(d^W \) فعلی شکل داده د و \(d^C \) همچنین \(b^C \) بردار نیرو و کوپل محدودیت‌های سیستمیک است که به خاطر اتصال سیستمیکی بین اعضا رابط ایجاد می‌شود. با معرفی روش (13) بردار نیرو و کوپل محدودیت‌های سیستمیکی از معادله‌ها حذف خواهد شد.

\[
\dot{t} = \left[\dot{\theta}_1, \dot{\theta}_2, \ldots, \dot{\theta}_T \right]^T
\]

به همراه معادلات \(\theta \) و \(\omega \) که مختصات مرکر جسم متحرک نسبت به مختصات مرجع داده‌اند، برای این منظور، بر حسب زمان باید مسیر را در نظر بگیریم که علایه بر پر روده کردن شرایط مرزی، هموار نیز باشد. از بین توابع که این خصوصیات را دارا باشند در این مقاله از تابع سیلوپیدی به شکل زیر استفاده می‌شود.

\[
\dot{t} = \left[\dot{\omega}_1, \dot{\omega}_2, \ldots, \dot{\omega}_T \right]^T
\]

که در معادله (11) و 12 بردار نیروی ترمینی باعث بهبود اعضا است و شامل \(b^W \) بردار نیرو و کوپل خارجی و مختصات \(b^C \) بردار نیروی جاذبه است. \(d^W \) فعلی شکل داده د و \(d^C \) همچنین \(b^C \) بردار نیرو و کوپل محدودیت‌های سیستمیک است که به خاطر اتصال سیستمیکی بین اعضا رابط ایجاد می‌شود. با معرفی روش (13) بردار نیرو و کوپل محدودیت‌های سیستمیکی از معادله‌ها حذف خواهد شد.

\[
\dot{t} = \left[\dot{\theta}_1, \dot{\theta}_2, \ldots, \dot{\theta}_T \right]^T
\]

به همراه معادلات \(\theta \) و \(\omega \) که مختصات مرکر جسم متحرک نسبت به مختصات مرجع داده‌اند، برای این منظور، بر حسب زمان باید مسیر را در نظر بگیریم که علایه بر پر روده کردن شرایط مرزی، هموار نیز باشد. از بین توابع که این خصوصیات را دارا باشند در این مقاله از تابع سیلوپیدی به شکل زیر استفاده می‌شود.

\[
\dot{t} = \left[\dot{\omega}_1, \dot{\omega}_2, \ldots, \dot{\omega}_T \right]^T
\]

به همراه معادلات \(\theta \) و \(\omega \) که مختصات مرکر جسم متحرک نسبت به مختصات مرجع داده‌اند، برای این منظور، بر حسب زمان باید مسیر را در نظر بگیریم که علایه بر پر روده کردن شرایط مرزی، هموار نیز باشد. از بین توابع که این خصوصیات را دارا باشند در این مقاله از تابع سیلوپیدی به شکل زیر استفاده می‌شود.

\[
\dot{t} = \left[\dot{\omega}_1, \dot{\omega}_2, \ldots, \dot{\omega}_T \right]^T
\]

به همراه معادلات \(\theta \) و \(\omega \) که مختصات مرکر جسم متحرک نسبت به مختصات مرجع داده‌اند، برای این منظور، بر حسب زمان باید مسیر را در نظر بگیریم که علایه بر پر روده کردن شرایط مرزی، هموار نیز باشد. از بین توابع که این خصوصیات را دارا باشند در این مقاله از تابع سیلوپیدی به شکل زیر استفاده می‌شود.

\[
\dot{t} = \left[\dot{\omega}_1, \dot{\omega}_2, \ldots, \dot{\omega}_T \right]^T
\]
5- محاسبه تاریخچه زمانی کویل مفاصل
در این قسمت کویل مفاصل به دو روش محاسبه می‌شود.
همانطور که قبل گفته شد سیستمی به روابط همکاری پاسخ‌های مقداری می‌تواند باشد، اینها با یک محدودیتی اعمال کرد.
تا پاسخ‌های متحارکه فرده باشند. در ادامه بر اساس دو روش زیر کویل مفاصل محاسبه خواهد شد.
الف - محاسبه کویل مفاصل بر اساس حداقل کردن نیروی وارد بر جسم متحرک.
ب - محاسبه کویل مفاصل بر اساس حداقل کردن مقدار کویل به کار رفته در مفاصل.

5-1- محاسبه کویل مفاصل بر اساس حداقل کردن

تیروهای وارد بر جسم متحرک

یک روش اینکه جسم متحرک شکنده باشد نیروهای وارد بر جسم را حداقل می‌کنند. ابتدا معاوضه‌های دینامیکی حکم را برای دو رابط نوشته و سپس آن را با هم کوپی می‌کنند. با استفاده از معادله (10) و استفاده از اندیس A برای روابط راهبردی و اندیس B برای روابط پردازی معاوضه‌ای حکم برای هر کدام از روابط با شکل زیر نوشته خواهد شد.

(I (\Theta_A) \dot{\Theta}_A + C (\Theta_A, \dot{\Theta}_A) \dot{\Theta}_A = \gamma_A + \tau_A + \tau_C^A

(I (\Theta_B) \dot{\Theta}_B + C (\Theta_B, \dot{\Theta}_B) \dot{\Theta}_B = \gamma_B + \tau_B + \tau_C^B

در معادله‌های بالا از جمله حاوی نیروهای میوایا صرف‌نظر شده‌است. در معادله‌های بالا

\tau_C^A = J_A w_A^E, \quad \tau_C^B = J_B w_B^E, \quad w_A^E = -w_B^E

است که به ترتیب بردار نیرو و کوپی امکانی بر روابط A و B به طرف روابط A و B به طرف بردار نیرو و کوپی امکانی بر روابط

\delta \equiv N^T w_D, \quad \gamma \equiv N^T w_G

در معادله‌های بالا با توجه به اینکه دو روابط مورد استفاده دو روابط همکار از نوع یوکاری ماتریسی، یک ضریب و C و J از M×6 و N×6 هستند.

107
بایان این مسئله این است که به پایه یقی نمایه‌ای (س) استفاده (این (س) را با ماتریس Θ انتقال L به صورت زیر تعیین می‌کنیم:

$$\Theta = L(\Theta)T_E$$

که در آن L یک ماتریس 2×2 و T_E بردار سرویس زاویه‌ای و سرعت خطا جسم متحرک است که مشخصات از سرویس زاویه‌ای جسم متحرک و سرعت خطا مرکز جرم آن نستی به دستگاه مرجع است. با جایگذاری معادله (16) در معادله (14) و ضرب معادله به دست آمده از سمت چپ در L^T معادله زیر به دست می‌آید:

$$L^TIL_E + L^TIL_E + L^TCL_T = L^\gamma + L^\tau + L^\tau_C$$

که در آن L^T به شکل زیر تعیین شد عبارت صفر خواهد شد:

$$L^T = \begin{bmatrix} J_A^T & J_B^T \end{bmatrix}$$

و معادله (17) به صورت زیر نوشته خواهد شد:

$$L^T \gamma = LHS$$

که در آن LHS معادله بالا یک دستگاه معموله‌ای قرار می‌گیرد. با حل آن برای γ در اساس روش حل حداقل مربعات به دست می‌آید. در نتیجه معادله نهایی برای محاسبه کولیک با معکوس پذیر است که مربوط به 11 ماتریس L^T حداقل γ باشد که با γ مقداری کولیک است.

$$\tau = L[LT^L]^{-1}(LI_L + L^TIL_E) + L^TCL_T - L[LT^L]^{-1}L^T\gamma$$

در محاسبه γ از سمت راست در L^T و با بقاء L و w_E^A معادله (17) می‌باشد.

$$\tau = \begin{bmatrix} \Theta_A & \Theta_B \end{bmatrix}$$

که در آن

$$\Theta = \begin{bmatrix} \Theta_A & \Theta_B \end{bmatrix}, \quad \gamma = \begin{bmatrix} \gamma_A \gamma_B \end{bmatrix}, \quad \tau = \begin{bmatrix} \tau_A \\ \tau_B \end{bmatrix}$$

و در معادله (14) به سمت راست در L^T Θ, γ و τ باعث شده به تعیین یک Θ, یک γ و یک τ می‌شود.

و سپس با استفاده از روش حل حداقل مربعات f را حداقل کرده و از آن جریان کولیک مشخص می‌شود. به این ترتیب حداقل کردن آن نسبت به معکوسی مشتق جزئی گرفته و به یک سری معادله‌های خطا که می‌تواند تابع باشد، در جریان می‌پردازد. لازم به ذکر است که در اینجا روش محاسبه γ محدودیت کولیک آنها را مشخص می‌کند، لذا می‌توان این روش به زمانی برای γ نیاز به نظر می‌گیرد که در محاسبه γ مشخص از طرف کارخانه باشد.

5- محاسبه کولیک با اساس حداقل کردن مقداری کولیک

با فرض اینکه جسم به هدف کافی ساخت ناشد γ مقداری کولیک به استفاده می‌شود و در حداقل γ به کار می‌رود.
تویجه به تعریف آن، مربوط به برای ۶ خواهد بود یا به عباراتی
ماتریس [LT] معکوس پذیر است.

۵- نتایج

دو ریت صنعتی از نوع یکسان پوما ۵۵۰ برای بلند کردن جسم متحرک همگن به جرم ۵ کیلوگرم و طول ۱۰۰ میلی‌متر استفاده می‌شود. ریت‌های متحرک جسم را از مبدأ مختصات به نقطه‌ای با مختصات X = ۴۰۰ و Y = ۱۰۰ و Z = ۴۰۰ در میلی‌متر برده و دستگاه مختصات انتهای ریت A به دستگاه مختصات مرکز اینان به اندازه ۶۰ درجه حول محور Z و سپس به اندازه ۹۰ درجه حول محور Y به‌طور جداگانه می‌کنند، شکل (1)، ارتفاع پایه ریت‌ها ۶۵ میلی‌متر بوده و فاصله پای‌هایشان ۱۹۶ میلی‌متر است.

با حل معادله‌های سیستمیک معکوس برای ریت‌ها، زوايا مفاصل
شکل 3- زواياي مفاصل و نرخ تغييرات آنها برای ربات A

شکل 4- زواياي مفاصل و نرخ تغييرات آنها برای ربات B

شکل 5- کوله‌هاي مفاصل برای ربات A و B در حالت حداکثر نریوهای وارد برجم متحرک

استقلال، سال 1378، شماره 18
شکل ۶- کوپل چهار مفصل برای ربات A و B در حالت حداقل کوپل مورد نیاز

۷- نتیجه‌گیری
در این مقاله سینماتیک و دینامیک مربوط به حکم یک جسم متحرک توسط دو ربات مورد بررسی و تحلیل قرار گرفت. بر اساس مسیر مورد نظر و طراحی آن و با استفاده از سینماتیک مکوس تاریخچه زمانی حکم مفاصل رتبه بالابینایی شدند. سپس با استفاده از معادله‌های دینامیکی بدست آمده در این مقاله و همچنین استفاده از نرم افزار میل ۱۱ تاریخچه زمانی کوپل مفصل در دو حالت مورد بحث یکی بهینه سازی بر اساس حداقل کوپل نیروهای وارد بر جسم متحرک و دیگری بر اساس حداقل کوپل مورد استفاده مفاصل به دست آمده. نمودارهای به دست آمده برای تاریخچه کوپل مفصل برای ربات‌های A و B در دو حالت بهینه سازی یکسان گر این مطلب است که روند تغییرات مفاصل در دو روش شیبی به یکدیگر است. همچنین مقدایر کوپل مفصل ۱، ۲ و ۳ در حالت حداقل نیروهای وارد بر جسم متحرک بزرگتر از مقدایر مشابه و مقدایر کوپل مفصل ۴، ۵ و ۶ کوچکتر از مقدایر مشابه در حالت

واژه نامه

1. natural orthogonal complement
2. Puma 560
3. Denavit - Hartenberg
4. actuator
5. leader
6. follower
7. NOC
8. joint space
9. minimum norm solution
10. underdetermined
11. rank
12. Maple V

استقلال، سال ۱۸، شماره ۱، شهریور ۱۳۷۸

۱۱۱

9. فتاح، ع. و طهماسبی، ب.، "سینماتیک و دینامیک دو ربات در حرکت صفحه‌ای یک جسم،" پنجمین کنفرانس سالانه مهندسی مکانیک، دانشگاه تبریز، ص 123-127، 1376.

13. طهماسبی، ب.، "سینماتیک و دینامیک دو ربات در حرکت فضایی یک جسم،" پنجمین نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان، 1376.