A New Approach for QFT-type Robust Controller Design in Uncertain Multivariable Systems

M. Sobhani, M. Rafeeyan

Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT- This paper presents a robust controller design methodology for a class of linear uncertain multivariable systems with hard time-domain constraints on their outputs and control signals in response to step disturbance inputs. In this approach, the m×m MIMO system is replaced by m SISO systems and then, using the QFT technique, desirable controllers are synthesized. The final controller will be diagonal and since its entries are designed separately with suitable bandwidths, an economic design can be achieved. The application of this new method will be demonstrated through an example.
<table>
<thead>
<tr>
<th>فهرست علائم</th>
<th>m × m</th>
<th>$P(s, x)$</th>
<th>m × m</th>
<th>$\mathbb{N}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega$</td>
<td>$\mathbb{N}$</td>
<td>$\alpha$</td>
<td>$\beta$</td>
<td>$\frac{\gamma}{m}$</td>
</tr>
<tr>
<td>انتقال رسیم فرایندها</td>
<td>X-ray فرایندها</td>
<td>$\text{MIMO}$</td>
<td>$\text{MISO}$</td>
<td>$\text{QF}$</td>
</tr>
<tr>
<td>انتقال رشته مجزا</td>
<td>$\text{FR}$</td>
<td>$\text{FR}$</td>
<td>$\text{FR}$</td>
<td>$\text{FR}$</td>
</tr>
<tr>
<td>خورجهای فرایندها و رویدادهای مراحم</td>
<td>$\mathbb{N}$</td>
<td>$\mathbb{N}$</td>
<td>$\mathbb{N}$</td>
<td>$\mathbb{N}$</td>
</tr>
</tbody>
</table>

شایع شده این روش نشان دهنده نامه‌ای از گونه سیستم‌ها مستند مسئول است. مشخصات عملکرد مولضب در این سیستم‌ها شامل عملکرد خروجی و قیمت سخت‌افزاری مانند مبهم‌ها و نیز محدودیت‌های پهنای باند. این برتارانی پایداری مقدار بزرگ ارایه گرد دیده‌شده دیگر است.

در این دو ناحیه تأمین سیستم‌ها واقعیت پرامترهای وزن دارند که مکانیک دقیق آنها معلوم نیست ولی محدوده آنها مشخص است (مانند ضریب مقاومت هیدرودینامیک). به این عبارت انتقال فضای سیستم‌ها متغیرهای دیگر از این محدوده می‌باشد. همچنین منحنی است در اثر تغییر در مسیر، ساختار خورجی از معادلات حذف شده باشند که در فراکتال‌های بالا اثر قابل توجهی روی رفتار سیستم داشته باشند (مانند دستیابیک‌های مدل شده). این نوع نامنی را ناپایداری های ریاضی می‌نامند، زیرا به بررسی آن سیستم‌ها سپاس ایجاد نظریه کستنی مقاومت 6 ایجاد شده توسط QFT

هوریویش [1] یکی از مهم‌ترین آنالیست‌ها به ناحیه مختلف علاوه بر مدنی زیادی در خصوص سیستم‌های پایین‌ترین نتایج خود را گزارش کرده‌اند. 

روش تکیه‌گاهی و تکیه‌گاهی را زمان ویژه دارد. قابلیت اصلی در این زمینه این تای که مهم‌ترین مشخصات به‌شمارم که واحد کرده و از QFT استفاده می‌کنند. کانتنتر که تأثیر گرفته شده در یک روش. همچنین به آن گزینه‌ها ویژه هستند که در حالت انتقال آنها مستقل برای یکی از محدوده می‌باشد. در روش هم‌اکنون از روی کرده و نسبت بیشتری بازخورد مستقیم یا نامنی پرامترهای زودست تماشا در اطلاع در مورد قرارید در خلل QFT تحلیل و طراحی سیستم‌ها از میان رهوی. در مقایسه آن، روش

1388

استقلال، سال 16، شماره 1، بهار 1388
۱- نمونه جامعه سیستم

برای طراحی با این روش ارزه شده است.

۲- صورت مستقل

نمودار جامعه سیستم چند متغیره شکل (۱) را در نظر گرفتیم که در آن $d(s) \in \mathbb{C}^m$, $u(s) \in \mathbb{C}^m$, $y(s) \in \mathbb{C}^m$, $x(s) \in \mathbb{C}^m$, $x_0 \in \mathbb{C}^m$ و $\mathbb{C}^m$ ماتریس تابع $G(s) \in \mathbb{C}^{m \times m}$ است. تفاوت تابع انتقال $\Omega \in \mathbb{C}^{m \times m}$ است که هدف طراحی کنترل کننده $G(s)$ به گونه‌ای است که اولین معین $G(s)$ و با ضریب ثابت پایان ثانیاً، پایان ساختار و دارای پهنای باند محدود باشد. ثانیاً، بر خلاف نام معنی‌شده موجود در فرانک $P$ و همواره پایان وظیفه پزشکی کاری انجام داده و بالاتر راهبردی، محدود به سخت زیر را در حوزه زمان پراورده سازد.

3- شکستن سیستم چند متغیره

برای شکستن سیستم چند متغیره به تعدادی سیستم یک متغیره $B^{NBI}$ که توسط هورویتز [11] ارائه شده است، استفاده می‌شود. در این روش یک سیستم چند متغیره به $m 	imes m$ سیستم یک متغیره شکسته می‌شود و تداخل بین همه‌ها داخل سیستم به صورت روی‌های مزاحم مدل می‌شود. با استفاده از شکل (۱) می‌توان توشت

\[
\begin{align*}
\left\{ 
\begin{array}{l}
y_{i}(t) \leq \alpha_{i} \\
u_{i}(t) \leq \beta_{i} \\
\end{array} \right. \\
i = 1, 2, \ldots, m \quad \forall t \geq 0
\end{align*}
\]

که در روابط فوق $m$ تعداد ورودی $\alpha_{i}$ و $\beta_{i}$ $\chi_{i}$ تعداد خروجی و $\chi_{i}$اعداد مثبت و از پیش تعیین شدهاند.

۳- روش طراحی

شکل 2- چهار سیستم معمول با یک سیستم دومتغیره SISO

\[ \Lambda = \text{diag} \left( \frac{1}{q_{11}}, \frac{1}{q_{22}} \right), \quad G = \text{diag} \left( g_{11}, g_{22} \right) \]

\[ B = \begin{bmatrix} \frac{1}{q_{11}} \\ \frac{1}{q_{22}} \end{bmatrix} \]

و با توجه به روابط فوق اعضای ماتریس \( T^D \) عبارت می‌شود از:

\[ t_{11}^D = \frac{q_{11}}{1 + g_{11}q_{11}} \left( \frac{1 - t_{11}^D}{q_{11}} \right), \quad t_{12}^D = \frac{q_{11}}{1 + g_{11}q_{11}} \left( \frac{t_{12}^D}{q_{11}} \right) \]

\[ t_{21}^D = \frac{q_{22}}{1 + g_{22}q_{22}} \left( \frac{t_{21}^D}{q_{22}} \right), \quad t_{22}^D = \frac{q_{22}}{1 + g_{22}q_{22}} \left( \frac{1 - t_{22}^D}{q_{22}} \right) \]

این کاتی می‌تواند به جای بررسی سیستم \( 2 \times 2 \) اصلی، چهار سیستم فوق را در نظر گرفت و این در حالی است که در سیستم SISO از چهار سیستم فوق دو از یک نتیجه تابع انتقال حلقه با یکسان هستند.

در این مورد، ساختار سیستم‌های یک متغیره‌ای که از شکستن سیستم‌های دسته‌بندی ما آینده در شکل (2) نشان داده شده است.

مانند عنوان یک متغیره‌ای حاوی با طراحی \( g_{11} \) و \( g_{22} \) می‌تواند برای سیستم‌های \( g \) داشته باشد.

\[ (\Lambda + B + G)\ y = d \quad , \quad y = (\Lambda + G)^{-1} (d - By) \]

\[ T^D = (\Lambda + G)^{-1} (I - BT^D) \]

که برابر \( m = 2 \) خواهیم داشت.

استلال، سال 18، شماره 1، شهرویور / 1378

164
(1) با استفاده از انتقال وابستگی بین پله‌ای و واحد معامله‌های کلیه عبارات به شرح زیر می‌باشد:

\[
\begin{align*}
| t_s(s) | & \leq \alpha_1 \quad \Rightarrow \quad | y_s(t) | \leq \alpha_1 \\
| t_{s+1}(s) | & \leq \alpha_2 \quad \Rightarrow \quad | y_{s+1}(t) | \leq \alpha_2
\end{align*}
\]

(12)

و طبق معادله (11) خواهیم داشت:

\[
\begin{align*}
\left| \frac{q_{11}}{1+g_1q_{11}} \right| & \cdot \left| \frac{1}{1+q_{12}} \right| \cdot \left| \frac{1}{1+g_1q_{12}} \right| \leq \alpha_1 \\
\left| \frac{q_{22}}{1+g_2q_{22}} \right| & \cdot \left| \frac{1}{1+q_{22}} \right| \cdot \left| \frac{1}{1+g_2q_{22}} \right| \leq \alpha_2
\end{align*}
\]

(13)

از آنجا که عبارات هنوز معلوم هستند، با استفاده از روش QFT می‌توانیم جواب کنیم.

(4) با استفاده از روشهای شرایط الکترونی و طبق معادله (11) خواهیم داشت:

\[
\begin{align*}
b_d = \mu d_1 = \mu d_1
\end{align*}
\]

در اینجا پیشنهاد می‌شود که با توجه به فرض صیانت زیر عمل شود:

\[
\begin{align*}
y_s(s) & = \left[ t_{11} + \mu t_{12} \right] d = Bd \\
y_{s+1}(s) & = \left[ t_{11} + \mu t_{12} \right] d = Ad
\end{align*}
\]

(14)

بنابراین باید انتقال‌ها از نوع پله‌ای است لذا با استفاده از انتقال متغیر نامام‌بوی از زیر را نوشته:

\[
\begin{align*}
| B | & = \alpha_1 \quad \Rightarrow \quad | y_1(t) | \leq \alpha_1 \\
| A | & = \alpha_2 \quad \Rightarrow \quad | y_{s+1}(t) | \leq \alpha_2
\end{align*}
\]

(15)

از آنجا که نهایاً می‌توانیم مقدار‌ها را به شرح زیر متوسط نماییم:

\[
\begin{align*}
| y_s(s) | & = \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_2 \\
| y_{s+1}(s) | & = \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_2
\end{align*}
\]

(16)

با فرض اینکه وابستگی بین پله‌ای می‌باشد در این صورت:

\[
\begin{align*}
y_s(s) & = \frac{q_{11}}{1+g_1q_{11}} \left[ 1 - \frac{1}{1+q_{12}} \left[ t_{11} + \mu t_{12} \right] \right] d \Delta t_s \\
y_{s+1}(s) & = \frac{q_{12}}{1+g_2q_{12}} \left[ 1 - \frac{1}{1+q_{11}} \left[ t_{11} + \mu t_{12} \right] \right] d \Delta t_s
\end{align*}
\]

(17)

شایان ذکر که در اینجا ضریب 2 موجود در طرف راست بر اساس تجربه محققان [9] و [12] باعث ایجاد شرایط فوق طریق قطعی شده است. لذا می‌توانیم انتقال‌هایی که در راکت‌های کوچکی استفاده می‌کنیم انتقال‌هایی که در انتقال‌های پیوندی استفاده می‌شود. با توجه به معادله (7) خواهیم داشت:

\[
y = TD \quad \Rightarrow \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} t_{11} + \mu t_{12} \\ t_{11} + \mu t_{12} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}
\]

(18)

که با گاگایکدری از (7) خواهیم داشت:

\[
\begin{align*}
| y_s(s) | & = \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_2 \\
y_{s+1}(s) & = \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_2
\end{align*}
\]

(19)

با پیشنهاد که پیشنهاد می‌شود:

\[
\begin{align*}
| y_s(s) | & = \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_2 \\
y_{s+1}(s) & = \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_2
\end{align*}
\]

(20)

با پیشنهاد که پیشنهاد می‌شود:

\[
\begin{align*}
| y_s(s) | & = \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{11}}{1+g_1q_{11}} \left[ t_{11} + \mu t_{12} \right] d_2 \\
y_{s+1}(s) & = \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_1 + \frac{q_{12}}{1+g_2q_{12}} \left[ t_{11} + \mu t_{12} \right] d_2
\end{align*}
\]

(21)
ساختی که در هر فرکانسی در محدوده‌ای قرار گیرند که ناماسوپهای مربوطه آنها ارضا شوند. مثالی از این، با جدیت بین گونه‌گی طراحی شده که در هر فرکانس ناماسوپهای اول (17) و (18) صحیح کند. همچنین باید بپذیرد وجود همگامی ناماسوپهایی، یا پایداری را نسبی و وجود
\[
\begin{align*}
&\left| 1 - \frac{\alpha_1}{q_{11}} \right| \leq \alpha_1, \\
&\left| - \frac{1}{q_{11}} \right| \leq \alpha_2
\end{align*}
\]
(17)
را باشد مشابه. به عنوان مثال محدوده حالت باید به صورت زیر است
\[
P(s) = \frac{1}{s+1} \left[ k_{11} + k_{12} \right] k_{11} \in [1, 5] \quad k_{12} \in [1, 10]
\]
(19)
در ضمن هر دو ورودی مراحل مساوی و برای پیدایه واحدند. با استفاده از روشی که در اینجا معرفی شد، مثالی بلافاصله و
\[
\begin{align*}
&\left| u_i(t) \right| \leq 3, \\
&\left| y_i(t) \right| \leq 4/5, \\
&\left| u_i(t) \right| \leq 4/5, \\
&\left| y_i(t) \right| \leq 4/5
\end{align*}
\]
(20)
در نظر گرفته شده است.
\[
P(s) = \frac{1}{s+1} \left[ 1 + g_{q_{11}} \right] g_{q_{11}} \in [0, 8/10, 0, 8] \quad g_{q_{11}} \in [5, 10]
\]
(6)
در فرکانسی این راک انتخاب آن در روش QFT کاملاً اختیاری است، به صورت زیر در نظر گرفته می‌باشد.
\[
P(s) = \frac{1}{s+1} \left[ 1 + g_{q_{11}} \right] g_{q_{11}} \in [0, 8/10, 0, 8]
\]
(6)
در نظر گرفته شده است.
\[
\begin{align*}
&\left| L_{1, q_{11}}/q_{11} \right| \leq \alpha_{11}, \\
&\left| q_{11} \right| \leq \alpha_{12}
\end{align*}
\]
(18)
با توجه به شرایط (1) و (2) و اینکه از لحاظ می‌توان نوشت
\[
u_i = -g_{q_{11}}, \quad u_q = -g_{q_{12}}
\]
(19)
و سرانجام با استندال مشابه حالت قبل برای هر دو سیگناال کنترل می‌توان

\[
\begin{align*}
&\left| u_i(t) \right| \leq 3, \\
&\left| y_i(t) \right| \leq 4/5, \\
&\left| u_i(t) \right| \leq 4/5, \\
&\left| y_i(t) \right| \leq 4/5
\end{align*}
\]
با توجه به شرایط (1) و (2) و اینکه از لحاظ می‌توان نوشت
\[
u_i = -g_{q_{11}}, \quad u_q = -g_{q_{12}}
\]
(19)
و سرانجام با استندال مشابه حالت قبل برای هر دو سیگناال کنترل می‌توان

\[
\begin{align*}
&\left| u_i(t) \right| \leq 3, \\
&\left| y_i(t) \right| \leq 4/5, \\
&\left| u_i(t) \right| \leq 4/5, \\
&\left| y_i(t) \right| \leq 4/5
\end{align*}
\]
با توجه به شرایط (1) و (2) و اینکه از لحاظ می‌توان

\[
\begin{align*}
&\left| u_i(t) \right| \leq 3, \\
&\left| y_i(t) \right| \leq 4/5, \\
&\left| u_i(t) \right| \leq 4/5, \\
&\left| y_i(t) \right| \leq 4/5
\end{align*}
\]
با توجه به شرایط (1) و (2) و اینکه از لحاظ می‌توان

\[
\begin{align*}
&\left| u_i(t) \right| \leq 3, \\
&\left| y_i(t) \right| \leq 4/5, \\
&\left| u_i(t) \right| \leq 4/5, \\
&\left| y_i(t) \right| \leq 4/5
\end{align*}
\]
با توجه به شرایط (1) و (2) و اینکه از لحاظ می‌توان

\[
\begin{align*}
&\left| u_i(t) \right| \leq 3, \\
&\left| y_i(t) \right| \leq 4/5, \\
&\left| u_i(t) \right| \leq 4/5, \\
&\left| y_i(t) \right| \leq 4/5
\end{align*}
\]
به‌این‌سان باید این آنفست بسیار سیگنال‌های متغیر وخورشیدی سیستم MIMO اصلی در مقابل احتمالات پله‌ای واحد که به طور همزمان به سیستم وارد شده‌اند، در شکل‌های (7) و (8) نشان داده شده است. در این شکل‌ها، نامنی‌ها به گروه‌های آنالیز شده‌اند که شامل مقادیر جداکردن سیگنال‌های مربوط به نیز نشان داده شده است. با توجه به پاسخ‌های زمانی سیستم، دیده می‌شود که کلیه مشخصات عملکرد مطلوب به خوبی پراورده شده‌اند.

5. خلاصه و نتیجه‌گیری
روش جدیدی به مرور طراحی تنظیم کننده مشق ماندید

موضوع در مورد باندهای فوق‌العاده وجود دارد. شکل‌های (7، 8) نشان می‌دهد، با روش شکل‌دهی خلاق، توابع انتقال حلقه باز اسمی سیستم و در نتیجه توابع انتقال کنترلکننده با صورت زیر طراحی می‌شوند:

\[ g_1(s) = \frac{5000(s^2 + s + 112)}{s(s + 5)(s + 1)} \]  
\[ g_2(s) = \frac{5000(s^2 + s + 112)(s + 6)(s + 110)}{s(s + 4)(s + 1)(s + 50)} \]  

از خصوصیات مهم کنترلکننده‌های به دست آمده، محدود بودن

استقلال، سال 18، شماره 1، شهریور 1378

167
شکل 8 - سیگنال کنترل \((u(t))\) به ازای برخی از مقادیر نامعینی‌ها

شکل 7 - سیگنال خروجی \((y(t))\) به ازای برخی از مقادیر نامعینی‌ها

شکل 9 - سیگنال خروجی \((y(t))\) به ازای برخی از مقادیر نامعینی‌ها

فرایندهای چندمتغیره خطی و نامعین که مربوط با داده‌های مدرج و مکرون‌پذیر یا در دامنه محدودیت‌های سخت، زمانی بر روی خروجی‌ها و سیگنال‌های کنترل در پاسخ به اغتشاشات بالایی باشند، ارائه شد. در این روش، فاربند چند متغیره تجزیه \(m \times m\) به \(m^2\) یافته‌است.


