Evaluation of the SEAOC/UBC97 Provisions for the Tall Base-Isolated Structures

F. Rahimzadeh Rofooei and H. Saadatnia
Department of Civil Engineering, Sharif University of Technology,

ABSTRACT - The base isolation systems are among the passive control devices that have been used over the last three decades to limit the seismic-induced response of structures. In this regard, the Uniform Building Code (UBC) has included provisions for base-isolated systems in its latest editions. This study evaluates the SEAOC/UBC97 provisions for the tall base-isolated structures and compares them with other codes and standards. The evaluation is conducted through case studies and analytical methods to assess the effectiveness of these provisions in reducing seismic demand.

149
آزماجی که برخی از سیستمهای ایزو لرزه داری طبیعی، غیرخطی بوده، از منتجات اسکاتیکی و یا به عنوان نماد افزایش قابل توجه و یا وجود مانعی گذشته از انرژی وارد محدوده غیرخطی ب detal می‌شوند، تنها رفتار دقیق این گونه سازه‌ها ایزو لرزه، لازم است از ابزار محاوراتی پیشرفته با قابلیت مانورکردن رفتار غیرخطی و توافق از اجزای مختلف سازه‌ها متحمل ایزو لرزه‌هاست. از طرفی به علت پیچیده بودن مراحل مختلف انجام ایزو لرزه محسوبات، قوانین مزبور قابل استفاده در کاربردهای عملی و روزمره مهندسی طراحی نمی‌باشد. بدین جهت هم‌مانند ساخته‌های معمولی، مشکلات گفت شده مشابه به نهایت و ارائه ضوابط برای تحلیل و طراحی سیستمهای ایزو لرزه شد. در این
جهت پیش‌بینی این مطالعه، بررسی بنیادهای بروز عوامل عمومی UBC94 و قوانین نوسان به دنبال تغییرات از این طبقه انرjecش UBC94 و در این رابطه، تغییرات جدیدترین بنیادهای بروز در ارتفاف بهشتی‌ها و عملکرد آن مورد مطالعه قرار گرفته است.

2- مشخصات مدل‌های سازه‌های مورد استفاده

یک سازه قویانه سعی می‌کند دارای قاب خمیده یا طبقه که در پلان دارای مقطعی مربع با ابعاد 4 x 4 متر و در ارتقاء طبقه 3/5 متر است. با تعداد 8 سطح از ایزولاتورهای پر تیپ های ویرایشی تیب UBC97 برای این اعمال، ضریب رنگ‌های آن توسط رنگ‌های فیزیکی و شرایط اجتماعی سازه‌های ایزووله است. همچنین سیستم شرایط اجتماعی است که تایید شده است. این روش‌ها به طریقی کلی سطح فرض که مرکز به سازه‌های قویانه مورد استفاده است. این روش‌ها به طریقی کلی سطح فرض که مرکز به سازه‌های قویانه مورد استفاده است.
جدول ۱- مشخصات سیستمهای ایزوله

<table>
<thead>
<tr>
<th>Parameter in Nonlinear Analysis</th>
<th>Design parameters</th>
<th>Equivalent linear Properties</th>
<th>Isolation System Type Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_2/K_1</td>
<td>D_y</td>
<td>F_{max}/W</td>
<td>D (mm)</td>
</tr>
<tr>
<td>$12/7$</td>
<td>$11/1$</td>
<td>110</td>
<td>7</td>
</tr>
<tr>
<td>$12/7$</td>
<td>$13/4$</td>
<td>88</td>
<td>15</td>
</tr>
<tr>
<td>$28/2$</td>
<td>$14/7$</td>
<td>153</td>
<td>6</td>
</tr>
<tr>
<td>$16/7$</td>
<td>$14/3$</td>
<td>115</td>
<td>12</td>
</tr>
<tr>
<td>$16/7$</td>
<td>$14/7$</td>
<td>94</td>
<td>30</td>
</tr>
<tr>
<td>$24/7$</td>
<td>$16/7$</td>
<td>174</td>
<td>14</td>
</tr>
</tbody>
</table>

برای مدل سازه‌ای با سیستمهای ایزوله متغیر، ضمن استفاده از ۵ جفت رکورد زلزله ساختمانی شده بر حسب PGV تحلیل‌های دینامیکی متعددی انجام و پاسخ توزیع سازه‌ای زمینه برای پارامترهای چنین حداکثر تغییر مکان طبقه پایه در گروه‌ها در دو جهت، برخی طبقات در جهت و نگیر شکل نسبی طبقات ۱ به دست آمده است. با در نظر گرفتن روش تغییر طراحی واقعی، نتایج تحلیل تاریخچه زمینه برای برخی طبقات در جهت و نگیر شکل نسبی طبقات با استفاده از ضریب R کاهش نیافته است، لازم به ذکر است براساس توسعه UBC97 برای اندازه‌گیری و با توجه به این‌که در ۳ جفت رکورد زلزله UBC97، بایستی از حداقل ۴ جفت رکورد زلزله برای تحلیل دینامیکی غیر خطی تاریخچه زمینه استفاده شده و از حداکثر پاسخ حاصله برای طراحی استفاده شود. برای انجام مقایسه‌ای واضح در مورد هر پارامتر، میانگین و میانگین به اضلاع احتمال معنی‌دار و با تناوب حاصله از روی استاتیکی معادل توصیه شده است.

توضیحات

پیشنهادی UBC برای طراحی "UBC" نام‌گذاری شده و به قبیه "MEAN" متوسط با پیشینه "FIXED BASE " و نهایتاً "MEAN+S.D. " استوار بوده است. این نشان دهنده این است که در سیستمهای ایزوله از نوع ۳ و ۴ مقدار برخی پایه به دست آمده از تحلیل تاریخچه زمینه با برخی پیشنهادی UBC71 تا حدودی مطابقت دارد. توزیع این برخی و طبقات پایین کمی زیادتر و در طبقات بالا تا حدی کمتر از مقدار UBC71 تغییر شده است. از مشخصات سیستمهای ایزوله اینجاح شده، که بودن ضربی مربوط به آنهاست. در سیستمهای ایزوله UBC71 قابل قبول بوده ولی کاملاً نمی‌توان آن را در طبقات صحیح نیست. مقدار برخی طبقات کمتر را به حداکثر ضریب و ارائه می‌کند. این سیستمهای ایزوله در برخی طبقات به اندازه ۱۵ تا ۱۶ درصد مقدار در سیستمهای ایزوله تبیپ ۱۱ میزان برخی پایه

توضیحات

پیشنهادی UBC برای طراحی به طبقات در طبقات برای سیستمهای ایزوله مختلف در روشهای استاتیکی معادل و تاریخچه زمینه در شکل‌های (۲) تا (۳) آورده شده است. این این شکل‌های نیروی برخی
جدول 2- مشخصات رکوردهای زلزله

<table>
<thead>
<tr>
<th>رکورد مقیاس شده</th>
<th>رکورد مقیاس نشده</th>
<th>نام زلزله</th>
<th>نام استگا،</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGV 1/056 96</td>
<td>PGA 0/367 50</td>
<td>IMPERIAL VELLEY</td>
<td>ال سنترو 1940</td>
<td>1</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>0/431 72</td>
<td>0/281 63</td>
<td>0/181 72</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>HOLLYWOOD</td>
<td>کرن کانتی 1952</td>
<td>2</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>STORAGE R.E</td>
<td>ال سنترو 1954</td>
<td>3</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>IMPERIAL VALLEY</td>
<td>1979</td>
<td>4</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>BONDS CORNER</td>
<td>سانفرناندو 1979</td>
<td>3</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>CASTAIC OLD</td>
<td>RIDGE ROUTE</td>
<td>4</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>KERN COUNTRY</td>
<td>تخت 1952</td>
<td>5</td>
</tr>
<tr>
<td>0/367 50</td>
<td>0/288 3</td>
<td>LINCOLN SCHOOL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 2- تغییرات نیروی برش در طبقات برای سیستم ایزوله تایپ ۶

شکل 5- تغییرات نیروی برش در طبقات برای سیستم ایزوله تایپ ۷

شکل 4- تغییرات نیروی برش در طبقات برای سیستم ایزوله تایپ ۳

شکل 3- تغییرات نیروی برش در طبقات برای سیستم ایزوله تایپ ۴
شکل 9- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 11

شکل 10- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 10

شکل 7- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 9

شکل 8- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 8

شکل 6- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 6

شکل 5- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 5

شکل 4- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 4

شکل 3- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 3

شکل 2- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 2

شکل 1- تغییرات نیروی برخ در طبقات برای سیستم ایزوله تیپ 1

بررسی تغییر مکان نسبی طبقات نمودارهای مشابه برای تغییر در سطح طبقات نیز وجود دارد که از آورده آنها در این مقاله خودداری شده است. از نکات مهم این نمودارها که بودن قابل توجه تغییر شکل نسبی یک ساخته ایزوله نسبت به یک ساخته ایزوله ثابت است. همچنین، با افزایش ضریب میزان ایزولاتور، میزان تغییر شکل‌های نسبی در توزیع ارائه شده توسط آینده UBC97 کمتر از مقادیر حاصله از تحلیل غیرخطی تاریخچه زمانی است. سیستم‌های ایزوله مزبور، دارای ضریب میزان این ۵۰ تا ۳۰ درصدند. آنچه در توزیع واقعی
6- پیشنهاد یک توزیع جدید برای نیروهای برنش در ارتقاء با توجه به نارسا بایان روابط ارائه شده در آیندگی UBC97 برای توزیع عمومی نیروی برنش پایه، روش‌های مختلف برای اصلاح این نحوه توزیع مورد بررسی قرار گرفته. این نهایتاً با افزایش جنبه بردن میزان نیروی برنش پایه پیشنهاد آیندگی UBC97 به استفاده از یک نیروی متمرکز در تراز سقف سازه به میزان:

\[F_1 = 1.5\rho T V_s \]

منجر به نتایج مناسبی شد. در این مدل، \(V_s \) برخی پایه کل (برخی به سازهای ایزوله) برای طبقه‌بندی و \(\beta \) نسبت استحکام سیستم ایزولولوی میلیون در این صورت توزیع نیروی برنش در تراز سایر طبقات به شکل زیر خواهد بود:

\[F_i = \frac{W_i h_i}{\sum_{j=1}^{n} W_j h_j} (V_s - F_i) \quad i = 1, \ldots, n \]

تعادل طبقات روژاسه بوده و نیروی \(F_i \) به برخی پایه طبقه آخر \(n \) حاصل از تعادل جدول اضافه می‌شود. همان طور که کل‌کلا
شکل 10 – تغییر مکان طبقه پایه برای سیستم‌های ایزوله با درصد میرایی کم

شکل 11 – تغییر مکان طبقه پایه برای سیستم‌های ایزوله با درصد میرایی متوسط

شکل 12 – تغییر مکان طبقه پایه برای سیستم‌های ایزوله با درصد میرایی زیاد

استقلال، سال 1379، شماره 4، اسفند

174
شکل 13- درصد فیزیکی شدن ستون‌ها برای سیستم‌های ایزوله با درصد میرایی کم

شکل 14- درصد فیزیکی شدن ستون‌ها برای سیستم‌های ایزوله با درصد میرایی متوسط

شکل 15- درصد فیزیکی شدن ستون‌ها برای سیستم‌های ایزوله با درصد میرایی زیاد
یزوولانرهای با استحکال بالا که به میزان کمتری پراورد شده است، از دقت مطلوبی پرخوردار است.

2- توزیع نرخ بر در طبقات، مفید در تعیین تغییرات طبقات و تغییرات دامنه بزرگ تبخیر در طبقات است.

3- توزیع نرخ بر در طبقات پیشنهادی UBC97 نرخ بر در طبقات بالا در مقابل نرخ بر در طبقات واقعی نشان می‌دهد. این اختلاف در نرخ حالت می‌تواند برای تغییرات در دو جهت طولی و عرضی به طور همزمان تحلیل غیرخطی تاریخچه زمانتان شده و داده‌های حاصل حساب بررسی یا تجربه تغییرات مناسبی در طبقات پیشنهادی UBC97 یابند.

4- توزیع نرخ بر در طبقات پیشنهادی UBC97 نرخ بر در طبقات بالا در ارتفاع سبب اطمای هرچه بیشتر نتایج حاصل از تحلیل تاریخچه زمانتان با ضوابط آبی‌نامه UBC97 شده است.

5- بررسی ارائه شده توسط UBC97 برای آنها کامل‌تر ندارد و است، مشوه‌دار است. همچنین در این مطالعه درصد غیرخطی شدن سئولهای وابسته‌ای به پروپ در سیستم ایزووله‌ای را به دست نمی‌دهد.

نتیجه‌گیری

در این پژوهش ضوابط مربوط به روش استنایکی معاوض، آبی‌نامه UBC97 در تعیین تغییرات طبقات و تغییرات دامنه بزرگ تبخیر در طبقات است. برای این منظور 8 مدل سازنده تحت اثر 20 رکود زلزله در دو جهت طولی و عرضی به طور همزمان تحلیل غیرخطی تاریخچه زمانتان شده و داده‌های حاصل حساب بررسی یا تجربه تغییرات مناسبی در طبقات پیشنهادی UBC97 یابند.

1- نرخ بر در طبقات بالا در ارتفاع سبب اطمای هرچه بیشتر نتایج حاصل از تحلیل تاریخچه زمانتان با ضوابط آبی‌نامه UBC97 مشوه‌دار است.

2- بررسی ارائه شده توسط UBC97 برای آنها کامل‌تر ندارد و است، مشوه‌دار است. همچنین در این مطالعه درصد غیرخطی شدن سئولهای وابسته‌ای به پروپ در سیستم ایزووله‌ای را به دست نمی‌دهد.

3- توزیع نرخ بر در طبقات، مفید در تعیین تغییرات طبقات و تغییرات دامنه بزرگ تبخیر در طبقات است.

4- توزیع نرخ بر در طبقات پیشنهادی UBC97 نرخ بر در طبقات بالا در مقابل نرخ بر در طبقات واقعی نشان می‌دهد. این اختلاف در نرخ حالت می‌تواند برای تغییرات مناسبی در طبقات پیشنهادی UBC97 یابند.

5- بررسی ارائه شده توسط UBC97 نرخ بر در طبقات بالا در ارتفاع سبب اطمای هرچه بیشتر نتایج حاصل از تحلیل تاریخچه زمانتان با ضوابط آبی‌نامه UBC97 مشوه‌دار است.