حسین فرزان‌فرماند، غلامرضا عسکری و سید غازر
دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی اصفهان

(دریافت مقاله: ۱۳۸۱/۰۹/۲۹ - دریافت نسخه نهایی: ۱۳۸۱/۰۳/۲۱)

گچی‌که - اختیار برای حذف هارمونیک‌ها در شبکه‌های قدرت، فیلترهای اکتیو مورد توجه و پیشرفته‌ترین روش برقرار قرار گرفته‌اند. از مراحل این‌گونه
فیلترها، حجم کمتر و مشخصات جیران کننده یک‌تایی و ممکن بوده‌اند. این نوع‌های فیلترها به گونه‌ای نسبت به سایر انواع فیلترها دارای فاکتور اهمیتی بسیار بزرگی دارند. در این مقاله
یافته‌های جدید برای ساختار فیلتر اکتیو قدرت برآوری نظریات فیلترهای وقتی برای حذف اعمال یافته از هارمونیک‌های منجر به ایجاد یک گزارش در مورد این سایر
فیلترهایی جدید، فیلتر اکتیو ابزاری است که علی‌رغم استفاده از آن باعث افزایش کارایی و سیستم‌های پردازش سیگنال را نمی‌کند. خصوصاً این فیلتر اکتیو و فیلتر
فیلترهایی جدید، فیلتر اکتیو ابزاری است که علی‌رغم استفاده از آن باعث افزایش کارایی و سیستم‌های پردازش سیگنال را نمی‌کند. خصوصاً این فیلتر اکتیو و فیلتر

Design And Implementation of Adaptive Active Filters for Exact
Estimation And Elimination of AC Network Distortions

H. Farzanehfard, G. Askari, and S. Gazor
Department of Electrical and Computer Engineering, Isfahan University of Technology

Abstract: In recent years, active filters have been considered and developed for elimination of harmonics in power networks. Comparing with passive, they are smaller and have better compensating characteristics and resistance to line distortions. In this paper, a novel idea based on adaptive filter theory is presented to develop an active filter to eliminate the distortions of an arbitrary signal. Using this idea, new methods of active power filters, are introduced to remove harmonic distortions in single phase power networks. Stability of these methods are analysed and the simulation results are shown. Design and implementation of this adaptive active filter are done and the performance and advantages of this technich are affirmed by the practical results. Exact estimation of amplitude, frequency and phase of input signal first harmonic is the most important advantage of this adaptive technich. Furthermore, this method is for canceling the harmonics of any arbitrary signal and can easily be modified for other systems, and three phase networks.

Due to its adaptive nature, this technich can adapt itself with variations in environment and system parameters and be adjusted for optimal behaviour.

Keywords: Adaptive active filter, ac network, amplitude, Phase and frequency Estimation, Floque theorem, Averaging theorem.

- استادیار

** - مربی

ب ۱۳۸۱

استقلال، سال ۱۳۸۱، شماره ۲، استقلال
تک فاز ایده فیلتر اکترو ویفر فیلتر طرح شده استفاده شده است. با در نظر گرفتن شرایط مختلف سیستم فیلتر، روش‌های مختلفی مطرح و توصیه گردیده و در نهایت یک تکنیک فیلتر اکترو قدرت و وقیف ارائه شده است که در آن دامنه، فاز و فرکانس مولفه سینوسی اصلی سیگنال ورودی به طور دقیق تخمین ده می‌شود. این سیستم شیمی‌سازی‌ای بایان شده و پایداری این تکنیک به طور دقیق به اثبات رسیده است. نهایاً مدار عملی این تکنیک طراحی و ساخته شده و ترکیب عملی، توانایی‌ها و مزایای این فیلتر اکترو را نشان می‌دهد.

1- مقدمه

در سال‌های اخیر با پیش‌رفتگی مدل‌سازی در کاروکه‌های جدیدی مثل GBT و GTO قدرت سریع مانند که تاکنون پیشرفت‌های اکبر به جای فیلترهای پیسب برای حذف هارمونیک‌های ولتاژ و جریان بار و نیز در شیکاگو مورد توجه قرار گرفتند و کاربرد عملی فیلترهای قرار گرفته است. [1] استفاده‌های من‌دعوی از فیلترهای اکبر قدرت مطلوب و مشخصات جبران کننده آنها در حالی‌ای پایدار و گذران عامل‌های داده شده است. [1-12] این سیستم‌های واقعی هم‌عکسی و با علت ترانزیتی تطبیق با تغییر شرایط محیط و قابلیت تنظیم رنگ بهینه در بسیاری از زمین‌های کاربردی فیلتر پیشنهاد می‌دهد. همچنین فیلترهای واقعی قادر به ترمیم خود هستند. به این معنا که در صورت بروز خرابی در قسمتی از ضرایب فیلتر، سایر ضرایب خود را به نحوی تنظیم می‌کند که این تقصیج قبیر شود. این ویژگی‌هایی از محسnbrین برتری‌ها و این فیلترها یکی از مزایای این که توسط (1) مدار مولفه موج (ν(t)) را تولید می‌کند که شکل موج آن با شکل خاصی مطلوب است. این شکل موج ممکن است خود دارای اوج اضطراب با پر از پاراگارام دچار اوج اضطراب گردیده است که بایستی توسط می‌کنن نیست. این بایان توسط قراردادن یک فیلتر اکترو واقعی در سیستم بار طبق شکل (1) و تزریق سیگنال مناسب به (ν(t)) خروجی جنبه سیگال مطلوب تبدیل می‌شود.

2- مدل ریاضی فیلتر اکترو برای حذف اوج اضطراب از هرگونه شکل موج در شکل (1) مدار مولفه موج (ν(t)) را تولید می‌کند که شکل موج آن با شکل خاصی مطلوب است. این شکل موج ممکن است خود دارای اوج اضطراب با پر از پاراگارام دچار اوج اضطراب گردیده است که بایستی توسط می‌کنن نیست. این بایان توسط قراردادن یک فیلتر اکترو واقعی در سیستم بار طبق شکل (1) و تزریق سیگنال مناسب به (ν(t)) خروجی جنبه سیگال مطلوب تبدیل می‌شود.

با توجه به شکل (1) و شکل سیگنال مطلوب اتست، به عبارت دیگر هدف آن است که (ν(t)) در آن صورت با (ν(t)) سایه تصحیح است و (ν(t)) سیگنال مطلوب است. به عبارت دیگر، بایستی توجه داشت که این مجموعه شکل موج‌های قابل قبول نزدیک باشد. از این مجموعه شکل موج‌های قابل قبول، شکل موجی انتخاب می‌شود که تفاوت

استقلال، سال 1381، شماره 2، اسفند
در این تعریف اخیر، θ یک بردار است که در هر حالی می‌تواند متغیر با زمان باشد، ولی در اینجا جا تعریف می‌شود θ با زمان تغییر نکند. (البته تعریف است که اگر θ با آرامی تغییر کند، اگر تعریف این روش و رابطه‌ها و بازگشتی θ می‌تواند تغییرات را داده نامی از جواب مسئله پرسه.)

\[f(0,0) = \begin{bmatrix} A \end{bmatrix}, \theta = \begin{bmatrix} A, \omega, \Psi \end{bmatrix} \] (8)

در حالت dc، با داشتن M، می‌توانیم نتیجه‌گیری کنیم که فاصله x(t) برابر با \(f(0,t) = f(0,0) + \int_0^t f(t',0) dt' \) خواهد بود. این نتیجه در حالت dc، با داشتن M، نتیجه برابر با (8) خواهد بود.

\[y(t) = y(t) + x(t) \]

رو در حالت سینوسی، همان‌طور که در زیر توضیح داده شده است:

\[\theta_{opt} = \arg \min_{\theta} \{ d(f(t,0),x(t)) \} \]

به دست آمده، به ترتیب تعریف بالا می‌تواند در حالت dc به نظر این اشکال کشته که این تعاریف می‌شود. با پیاده‌سازی این تعاریف، شاهد دکترین گذشته (10) خواهد بود. در حالت dc، با داشتن M و محدوده دایره، به ترتیب تعریف شده:

\[d_2(\theta) = \int_0^T [(y(t) - f(t,0) - x(t)]^2 dt \]

و در حالت سینوسی، به نظر می‌آید که این تعریف شده است:

\[d(x(t),M) = \inf d(x(t),y(t)) y(t) \in M \]

به عنوان مثال، می‌تواند به صورتی زیر پیان شود:

\[d_2(x(t),y(t)) = \sup \{ x(t) - y(t) \}, t \in R \]

در ادامه به هر حال، در مسائل که به صورت زیر، در تعریف شده:

\[M = \{ y(t) = f(t,0) t \in R, \theta \in \{0, \pi/2, \pi, \pi/2\} \} \]

در این مثال، شماره 21، استاند 1381.
شکل 2- ساختار کلی فیلتر تمران حذف اعوجاج‌های ولتاژ بار و جریان شیبکه

یافته که فاصله $y(t)$ و $y(t)$ را با $e(t)$ نشان داده شد، حداکثر کند، می‌توان لحظه‌ای این خطا به‌صورت زیر تعریف می‌شود:

$$d_2(A \sin(\omega t + \Psi), x(t)) = \frac{d_2(f(t, \theta), x(t))}{\sqrt{d_2(f(t, \theta), x(t))}^2} = \frac{e(t)}{x(t)}$$

(11)

حال با استفاده از الگوریتم GLMS، θ به‌صورت زیر برای حداقل کردن مترسط (10) به دست می‌آید:

$$\theta(t+1) = \theta(t) - \mu \frac{\partial d_2(f(t, \theta), x(t))}{\partial \theta}$$

(12)

μ ثابت تنظیم الگوریتم و برای کنترل سرعت همگرایی و پایداری الگوریتم به کار می‌رود. با توجه به معادله (11) برای حداقل کردن تزان لحظه‌ای خطا به‌صورت زیر استفاده می‌شود:

$$d_2(f(t, \theta), x(t)) = \frac{d_2(f(t, \theta) - x(t))^2}{e(t)^2}$$

(13)

θ_{opt} به‌صورت زیر تعیین می‌شود:

$$\theta_{opt} = \arg \min_{\theta} \frac{d_2(f(t, \theta), x(t))}{\sqrt{d_2(f(t, \theta), x(t))}^2}$$

(14)

را نشان می‌دهد. با توجه به شکل (1) در بررسی انجام گردیده در این میزان ترکیب سیگنال ولتاژ بار با تصحیح سیگنال جریان شیبکه یک‌سان است. تا این در موضوع در نحوه ترکیب سیگنال خطا و نمونه‌برداری با شکل است که در شکل (2) مشخص است. الگوریتم نورم‌الس می‌تواند به‌صورت زیر تعریف می‌شود:

$$M_{ac} = \{y(t) = A \sin(\omega t + \Psi) | A \in \mathbb{R}; \omega \in [\omega_{min}, \omega_{max}]; \Psi \in [0, 2\pi]\}$$

(15)

در مسیر سیگنال ولتاژ بار به‌صورت زیر تعیین می‌شود:

$$\theta = \arg \min_{\theta} \frac{d_2(f(t, \theta), x(t))}{\sqrt{d_2(f(t, \theta), x(t))}^2}$$

(16)

با توجه به شکل (3) این تجربه در این میزان ترکیب سیگنال ولتاژ بار با تصحیح سیگنال جریان شیبکه یک‌سان است. تا این در موضوع در نحوه ترکیب سیگنال خطا و نمونه‌برداری با شکل است که در شکل (2) مشخص است. الگوریتم نورم‌الس می‌تواند به‌صورت زیر تعریف می‌شود:

$$M_{ac} = \{y(t) = A \sin(\omega t + \Psi) | A \in \mathbb{R}; \omega \in [\omega_{min}, \omega_{max}]; \Psi \in [0, 2\pi]\}$$

(15)

بنابراین θ بردار $[A, \omega, \Psi]$ است. در این میزان ترکیب سیگنال ولتاژ بار با تصحیح سیگنال جریان شیبکه یک‌سان است. در مسیر سیگنال ولتاژ بار به‌صورت زیر تعیین می‌شود:

$$\theta = \arg \min_{\theta} \frac{d_2(f(t, \theta), x(t))}{\sqrt{d_2(f(t, \theta), x(t))}^2}$$

(16)

در مسیر سیگنال ولتاژ بار به‌صورت زیر تعیین می‌شود:

$$M_{ac} = \{y(t) = A \sin(\omega t + \Psi) | A \in \mathbb{R}; \omega \in [\omega_{min}, \omega_{max}]; \Psi \in [0, 2\pi]\}$$

(15)

کم‌پوشش تابع پایدار کارایی را به‌صورت زیر تعیین می‌کند:

$$\theta = \arg \min_{\theta} \frac{d_2(f(t, \theta), x(t))}{\sqrt{d_2(f(t, \theta), x(t))}^2}$$

(16)

در مسیر سیگنال ولتاژ بار به‌صورت زیر تعیین می‌شود:

$$M_{ac} = \{y(t) = A \sin(\omega t + \Psi) | A \in \mathbb{R}; \omega \in [\omega_{min}, \omega_{max}]; \Psi \in [0, 2\pi]\}$$

(15)

کم‌پوشش تابع پایدار کارایی را به‌صورت زیر تعیین می‌کند:
چندول ۱ - شرایط زمانی شیب سازی در حالی دامنه و فاز منفی در فرکانس ثابت

<table>
<thead>
<tr>
<th>زمان (ثانیه)</th>
<th>دامنه ورودی (ولت)</th>
<th>فاز ورودی (درجه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/10-0/18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/18-0/38</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>0/38-0/61</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>0/61-0/79</td>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>0/79-0/85</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>0/85-1/00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\dot{\dot{\Psi}}(t) = -\omega_0^2 - 2\mu_2 A(t) \cos(\Psi(t)) \dot{\dot{\phi}}(t)
\]

\[
\dot{\dot{\Psi}}(t) = 2\mu_1 \sin(\Psi(t)) \dot{\phi}(t) + A_0
\]

در این روش در تخمین فاز با الگوریتم وقی، سرعت تغییرات فاز \(\dot{\Psi} \) در تردد الگوریتم وقی به سمت صفر بیل داده می‌شود. به‌عنوان یک روش با استفاده از شبیه‌سازی شده است.

MATLAB SIMULINK

درباره (۳۱) آورده شده است.

در شکل (۳۲) نمودار جعبه‌ای و جدول شرایط زمانی که سیستم تحت آن شرایط آمده شده تا داده شده است. شکل (۴) مولفه اصلی ورودی را به‌عنوان خروجی که تخمین مولفه اصلی ورودی است، تحت شرایط زمانی شکل (۳) (ثانیه می‌دهد.) دیده می‌شود که خروجی مولفه اصلی ورودی با خروجی ورودی دانه زمانی کمتر از (۱) ثانیه دانه می‌کند. لازم به ذکر است که تغییرات ناگهانی که در مولفه اصلی ورودی در شکل (۴) در نظر گرفته شده است قطع برای بررسی توانایی سیستم در تخمین مولفه اصلی در شرایط سیستم به‌عنوان دسته‌بندی شده‌است. در عمل بیشتر تغییرات ناگهانی و فاز برخوردار همان گونه که در الگوریتم توضیح داده شد سرعت تغییرات دانه و فاز نسبت به سرعت همگرایی کمتر باشد خروجی تخمینی زده شده بدون اختلاف

جلد ۲ - شرایط زمانی شیب سازی در حالی دامنه و فاز منفی در فرکانس ثابت

سیستم تحت آن شرایط آمده شده تا داده شده است. شکل (۴) مولفه اصلی ورودی را به‌عنوان خروجی که تخمین مولفه اصلی ورودی است، تحت شرایط زمانی شکل (۳) (ثانیه می‌دهد.) دیده می‌شود که خروجی مولفه اصلی ورودی با خروجی ورودی دانه زمانی کمتر از (۱) ثانیه دانه می‌کند. لازم به ذکر است که تغییرات ناگهانی که در مولفه اصلی ورودی در شکل (۴) در نظر گرفته شده است قطع برای بررسی توانایی سیستم در تخمین مولفه اصلی در شرایط سیستم به‌عنوان دسته‌بندی شده‌است. در عمل بیشتر تغییرات ناگهانی و فاز برخوردار همان گونه که در الگوریتم توضیح داده شد سرعت تغییرات دانه و فاز نسبت به سرعت همگرایی کمتر باشد خروجی تخمینی زده شده بدون اختلاف
همچنین، با توجه به شکل موج احتمال خروجی با مولفه اصلی ورودی دیده می‌شود که وقتی دامنه اصلی ورودی از ۵۰ ولت به ۲۰ ولت کاهش می‌یابد، سرعت همگراییafort در می‌آید. این امر به دلیل وابستگی سرعت همگرایی می‌باشد به مقدار دامنه.
شکل 7- شکل‌های موج‌های خروجی (تخمین مؤلفه اصلی ورودی) و اختلاف خروجی با ورودی در فرکانس‌های که فرکانس مؤلفه اصلی در ورودی ۵۰۰ مترز پایین و بالای فرکانس VCO ۵۰ مترز پایین و بالا روش دیگری خارج الگوریتم را باید تخمین نشان دهد.

یعنی قرار می‌شود که تخمینات فرکانس قطع خارج از الگوریتم واقعی نیز دنبال نشود. هر چند در عمل تخمینات فرکانس می‌توانند تردد یک مدیر ساده تشخیص عبور از صفر تشخیص بد نیز دیگر داده که فرکانس که سیستم در کنترل رابطه به جواب پایدار همگرا شده است و اختلاف خروجی (تخمین مؤلفه اصلی ورودی) با مؤلفه اصلی ورودی حرارت و نهایی ۵ رنگ در این شکل سروج فقط در فصل خروجی از زمان اتفاق می‌افتد. این شکل بهترین این است که سیستم اختلاف ۵۰ مترز و تغییر فرکانس خارج از الگوریتم نیست.

در شکل (۸) کمیتی با استفاده از میله ای حالت پیشنهاد می‌شود. در این شکل تغییر در حالت‌هایی تغییر می‌دهد که از تغییرات مؤلفه‌های هارمونیکی است. بنابراین تغییر در حالت‌هایی تغییر می‌دهد که از تغییرات مؤلفه‌های هارمونیکی است. بنابراین تغییر در حالت‌هایی تغییر می‌دهد که از تغییرات مؤلفه‌های هارمونیکی است. بنابراین تغییر در حالت‌هایی تغییر می‌دهد که از تغییرات مؤلفه‌های هارمونیکی است.
شکل 11- شکل موجه‌ای هارمونیک سوم مؤلفه اصلی و وروگئی و اختلاف هارمونیک سوم در وروگئی با تخمین آن توسط روش پخش 4

\[
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} =
\begin{bmatrix}
-2\mu_1 X_1 \sin^2 X_2 + 2\mu_1 [\sin X_2]u \\
-\mu_2 X_1^2 \sin(2X_2) + 2\mu_2 X_1 \cos X_2 u + \omega_0
\end{bmatrix} ;
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} = f(X, u)
\]

در این حالت X_1 پایانگر دامنه و X_2 پایانگر قاز است و شرایط X_0 در مشتق X نشان‌دهنده است. به این دلیل سیستم در دستگاه قطعی درنگری داره‌کن می‌شود [17]. بنابراین X_1 معرف دماه و فاز انتظاری در دستگاه قطعی هستند. این دینامیک نسبت به منجر به پرتو X_2 را پرورده است.

تحلیل چنین دینامیکی پیچیده است. لذا به معنی توجهی عمیق‌تری به این تفاوت باید داده شود که وروگئی u فقط شامل مویئه اصلی سیگنال پیش‌بینی شده می‌باشد.

\[
u_0 = A_0 \sin(\omega_0 t + \Psi_0)
\]

برای دینامیک سیستم به صورت زیر به دست می‌آید:

\[
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} =
\begin{bmatrix}
-2\mu_1 X_1 \sin^2 X_2 + 2\mu_1 A_0 \sin(\omega_0 t + \Psi_0) \\
-\mu_2 X_1^2 \sin(2X_2) + 2\mu_2 X_1 A_0 \cos X_2 \sin(\omega_0 t + \Psi_0) + \omega_0
\end{bmatrix}
\]

با توجه به اینکه $e(t) = A(t) \sin(\Psi(t)) - \omega_0$, اعمال تغییر متغیرهای زیر:

\[
u = x(t) ; \quad X_1 = A(t) ; \quad X_2 = \Psi(t)
\]

رابطه دیل به دست می‌آید:

شکل 10- شکل موجه‌ای وروتی (مؤوله اصلی و هارمونیک‌ها) 5 و 7 آن و اختلاف مؤوله اصلی وروتی با تخمین آن در مشتاق به دامنه هارمونیکا عویش دو هماف ورودی مؤوله اصلی وروتی ثابت پایان

باشند، سیستم دچار اختلال نم شود و در جواب پایدار خود بقای خواهد داشت. این مسئله در اثبات پایداری این روش در قسمت بعد در نشان داده است. یعنی پاسخ پایدار به سیستم به پرتو، دقیق و نوع اختلال سیستمی ندارد.

شکل (11) نشان دهنده سیستم در تخمین تک تک هارمونیک به صورت مجزا را نشان می‌دهد. پیدا کردن ترتیب که اگر لازم باشد، بازی و ترک است که هارمونیک خاص تخمین زده شود، این روش قادر به انجام این کار است.

4- اثبات پایداری سیستم در روی بیان شده در قسمت 4 معادلات زیر برای تخمین دامنه و فاز به دست آمده:

\[
A(t) = 2\mu_1 \sin(\Psi(t)) e(t)
\]

\[
\Psi(t) - \omega_0 = -2\mu_2 A(t) \cos(\Psi(t)) e(t)
\]

با توجه به اینکه $e(t) = A(t) \sin(\Psi(t)) - \omega_0$, می‌باشد و اعمال تغییر متغیرهای زیر:

\[
u = x(t) ; \quad X_1 = A(t) ; \quad X_2 = \Psi(t)
\]

رابطه دیل به دست می‌آید:
با توجه به اینکه در الگوریتم وفقی \(\beta_1 \) و \(\beta_2 \) مثبت
همان‌طور که گفته شد پایداری R مدار تابعی با استفاده از قضیه فلکه تبعیض می‌شود. عناصر

\[
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix}
= \begin{bmatrix}
A_0 \\
\omega_0 t + \Psi_0
\end{bmatrix}
\]

ریسینگ ریسینگ

\[
Z = A(t)Z(t)
\]

با نظر دادن به فلکه، یک ماتریس اساسی برای این سیستم به شکل زیر است:

\[
x(t) = Q(t)e^{TR}
\]

که در آن

\[
\lambda = \frac{1}{T_0} \int_0^{T_0} \text{trace}(A(t))dt = -\mu_1 - \mu_2 A_0^2 \\
T_0 = \frac{2\pi}{\omega_0}
\]

(77)
شکل ۱۲-سیستم مدلگری شده سیستم فوک به صورت نير است.

سیستم مدلگری شده سیستم فوک به صورت نير است.

\[
\begin{bmatrix}
\dot{\alpha}
\dot{\beta}
\end{bmatrix} =
\begin{bmatrix}
-\mu_1 \alpha + \mu_1 A_0 \cos(\beta - \Psi)
-\mu_2 A_0 \sin(\beta - \Psi)
\end{bmatrix} = \xi(\alpha, \beta)
\]

(۱۹)

(۱۸)

که ف پرودیک با دوره تناوب \(2\pi/\omega_0\) است.

به راحتی دیده می‌شود که این سیستم بی‌خریدن دارای نقطه ثابت \([\alpha^*, \beta^*] = [A_0, \Psi_0]\) است. پایداری این نقطه ثابت توسعه مقدار ویژه سیستم مشتق بررسی می‌شود. سیستم مشتق در این نقطه پایدار است به:

\[
Df(\alpha, \beta) = \begin{bmatrix}
\alpha
\beta
\end{bmatrix} = \begin{bmatrix}
-A_0
0
0
\end{bmatrix}
\]

در این محاسبه داریم یبتایان، یک این نقطه ثابت.

فدلولولی (قطعه X مدلولولی است. اگر مقدار ريزه (\(x(0)\) در سمت چپ یا سمت راست صفحه مختصات باشد، به عبارت دیگر هیچ مقدار ريزه روي محور مومو نداشته باشد). و

به دست می‌آید:

\[
\begin{bmatrix}
\dot{\alpha}
\dot{\beta}
\end{bmatrix} = \begin{bmatrix}
A_0 + \Psi_0
0
\end{bmatrix}
\]

(۱۹) تابع

در این روش مینیمم شدن دامنه فاز و فرکانس در مدلولولی وفقی در این روش نیز سانده روش بخش (۷) گرفته وفقی برای پارامترهای متغیر با زمان درنظر گرفته می‌شود. بنی یک دامنه، فاز و فرکانس مولفه مساله مسئله تبدیل وفقی می‌گیم. ولی تغییرات آن‌ها طریقه است که گرفته وفقی می‌گیم.

\[
\theta = [A_0, \Psi_0] \quad \Psi = \dot{\theta}(0)
\]

(۱۷) تابع

MATLAB

سیستم با این روش نیز توسط نرم‌افزار SIMULINK

شیمی‌سازی شده است. نسودار جمع‌آوری و تایید

۵-تخمین دامنه فاز و فرکانس در مدلولولی وفقی

در این روش نیز سانده روش بخش (۷) گرفته وفقی برای پارامترهای متغیر با زمان درنظر گرفته می‌شود. بنی یک دامنه، فاز و فرکانس مولفه مساله مسئله تبدیل وفقی می‌گیم. ولی تغییرات آن‌ها طریقه است که گرفته وفقی می‌گیم.

۷۸
6- طراحی و ساخت مدار عملی

در این بخش با توجه به نمودار جمع‌های شکل (۱۲) سیگنال ورودی یک موج پرودیکتی غیرسیستمی بین ۰/۱ تا ۰/۵ هرتز در نظر گرفته شده است که می‌تواند بر نوع شکل موجی باشد و خروجی مدار باید یک شکل موج سینووسی با فرکانس فاز و دامنه مولفه اصلی سیگنال ورودی باشد. با توجه به نمودار جمع‌های شکل (۱۲) کلیه مدارهای جمع کننده تغییر یافته در شکل (۱۳) از طریق کننده ضربی کننده، تقسیم کننده، انگرالگیر، تقسیم اولیه مقدار ماده (اشکار سازی) دامنه مولفه اصلی بطور تقریبی و توابع سینوسی و کسب سبب طوری جدایی طراحی و ساخته شده‌اند و مورد آزمایش قرار گرفته‌اند. شرایط فستیای مختلف مدار با ثابت عملی استفاده شده شکل‌های (۱۴) کننده (۱۸) اشکال داده شده است.

بعد از پست کلیه مدارهای بالا به ترتیب قسمت سدار، نهایی ساخته شد و مورد آزمایش قرار گرفت. به ورودی سدار شیوه‌زایی این روش در شکل‌های (۱۲) و (۱۳) آمده است. شکل (۱۲) حاصلی از نیروی می‌دهد که فرکانس مولفه اصلی ورودی ۰/۲ هرتز باشد ولی مقدار اولیه فرکانس در شیوه‌زایی با روش گذشته ۰/۷ هرتز است در این روش نیز به دمایه یک تخمینی مولفه اصلی ورودی در حداقل ۰/۱ ثانیه به دست می‌آید. این روش نسبت به روش قبلی در نتایج پایدار می‌رسد ولی قادر است تغییرات فرکانسی را در رنگ وسعتی بهتر کند. شکل (۱۳) نژادی سیگنال ورودی (شامل مولفه اصلی جامعه هارمونیکهای ۳، ۵ و ۷) با دامنه یکسان با مولفه اصلی را با بماندن طیف سیگنال تخمینی مولفه اصلی و طیف سیگنال اختلاف مولفه اصلی ورودی با تخمین آن را نشان می‌دهد. به توجه به این شکل می‌شود که در این روش نیز هارمونیک‌ها تا ۵/۱ مولفه اصلی کاملاً کاهش پیدا کردنی است.
شکل 11- شماتیک مدار محاسبه مقدار اولیه

شکل 12- شماتیک مدارهای جمع کننده و تقسیم کننده

شکل 13- شماتیک مدار محاسبه توابع \sin و \cos

شکل 14- شماتیک مدار محاسبه توابع \sin و \cos

ساخته شده شکل موجه منحرف از جمله سیگنالاتی مربوط
متقارن و نامتقارن، مثلاً وندانه ارمال آماده، فرکانس
سیگنالاتی ورودی اعمالی 50 هرتز و حوالی آن است. دامنه
سیگنالاتی ورودی کمتر از 4 ولت است، چرا که قسمتی
منطقه مدار از جمله ضرب کننده ها و تابعی برای دامنه
ورودی حداقل 4 ولت تنظیم شده است. نتایج عملی توسط

استقلال: سال 31، شماره 4، اسفند 1381
شکل 22- استخراج مؤلفه اصلی گینگال مربوط به فرکانس 50 هرتز

شکل 24- استخراج مؤلفه اصلی گینگال دندانه ارایی

با فرکانس 50 هرتز

عبارت درک نارنجی زرد در بالای استخراج

می‌شود.

- کتکیه‌های فیلتر اکیو وقیه قادین به خوبی خورد را با تنگی شرایط مخصوص وسیله، رفته و به‌سیستم رفته، داده و برای رفتار به‌سهیل تنظیم شوند. همچنین میزان روش‌های وقیه در دیگر را در این ایجاد به کار گرفت و پارامترهای الکترونیک (ژالیه تابع بار) را برای

برآورد شدن خروجی‌های مختلف تغییر داد.

سیستم طراحی شده، فیلتر اکیو با استفاده از نظریه فیلتر وقیه، منجر به ایجاد یک دنیایی غیرخاطرین پیچیده می‌شود. این نتایج که یا پایانی دینامیکی این سیستم بیانگر توانایی‌های این تکنیک

فیلتر وقیه می‌شود.

7- نتایج

نتایج به دست آمده از این مقاله به صورت زیر خلاصه شده است.

نحوه کردن از جمله اعوجاج ملانیم که به این نظریه که از این نظریه در شکل‌های داده شده فیلتر اکیو وقیه برای حذف اعوجاج هرگونه بی‌شک حرکت است. گرایش و نتایج در شکل‌های که در تداوم تناوای و نتایج عمليه، همچنین بیانگر توانایی‌های این روش وقیه در مقایسه با حذف هرگونه فلئرها نمایش داده می‌شود.

سیستم طراحی شده در فیلترهای اکیو قدرت که براساس نظریه وقیه وقیه است برای حذف اعوجاج هرگونه بی‌شک موج از جمله اعوجاج مثل لمبیفیکهای 46 و 80 است.

- کتکیه‌های ارائه شده در فیلترهای اکیو رقی قدرت که براساس نظریه وقیه وقیه است برای حذف اعوجاج هرگونه بی‌شک موج از جمله اعوجاج مثل لمبیفیکهای 46 و 80 است.

- کتکیه‌های ارائه شده در فیلترهای اکیو رقی قدرت که براساس نظریه وقیه وقیه است برای حذف اعوجاج هرگونه بی‌شک موج از جمله اعوجاج مثل لمبیفیکهای 46 و 80 است.

- کتکیه‌های ارائه شده در فیلترهای اکیو رقی قدرت که براساس نظریه وقیه وقیه است برای حذف اعوجاج هرگونه بی‌شک موج از جمله اعوجاج مثل لمبیفیکهای 46 و 80 است.

- کتکیه‌های ارائه شده در فیلترهای اکیو رقی قدرت که براساس نظریه وقیه وقیه است برای حذف اعوجاج هرگونه بی‌شک موج از جمله اعوجاج مثل لمبیفیکهای 46 و 80 است.

- کتکیه‌های ارائه شده در فیلترهای اکیو رقی قدرت که براساس نظریه وقیه وقیه است برای حذف اعوجاج هرگونه بی‌شک موج از جمله اعوجاج مثل لمبیفیکهای 46 و 80 است.

- کتکیه‌های ارائه شده در فیلترهای اکیو رقی قدرت که براساس نظریه وقیه وقیه است برای حذف اعوجاج هرگونه بی‌شک موج از جمله اعوجاج مثل لمبیفیکهای 46 و 80 است.
تحمیل الگوریتم و فتوئی GLMS با الگوریتم GLMS و فتوئی دیگر ایرج افراشته سرعت همکاریی سیستم و در نتیجه استفاده از روش فیلتر اکتیو و فتوئی برای حذف هارمونیکها در حالت‌های گذرا سرعت.

تعمیم این ایده برای حذف هارمونیک‌ها در شیب‌های های قدرت با استفاده از این روش برای تخمین فاز وک سیگنال با دقت زیاد در فرکانس‌های مختلف.

8- پیشنهادات

عرض ورد نامه

واژه نامه

مراجع

16. فرزانفرد، ح. عسكری، غ. و گازر، س. اطلاعی و ساخت فیلتر اکیو رفته در منابع نهایی علی پنجینی، کنفرانس مهندسی برق ایران، 1376.

18. عسكری، غ. و نیکوکار، ج. ونیژه، و پژوهش، کارشناسی ارشد، دانشگاه صنعتی اصفهان، 1376.

پیست 1 قضیه فلکه

دینامیک (x(t)) = \frac{\partial f(x(t))}{\partial x} + \sum_{i=1}^{n} y_i(t)\frac{\partial f(x(t))}{\partial y_i(t)}

که در آن (x(t)) تابع \(f(x(t)) \) تعیین می‌شود.

\(X = \frac{d}{dt} F(Y(t)) = \frac{d}{dt} \int_{0}^{t} f(Y(t),t,0)dt \)

\(\text{آن گاه:} \)

\(X = Y + \xi Y(t,1,0) \)

دینامیک (x(t)) = \frac{\partial f(x(t))}{\partial x} + \sum_{i=1}^{n} y_i(t)\frac{\partial f(x(t))}{\partial y_i(t)}

که در آن (x(t)) تابع \(f(x(t)) \) تعیین می‌شود.

\(X(t) = Q(t)e^{\text{TR}(t)} \)

\(\text{که در آن (x(t)) تابع \(f(x(t)) \) تعیین می‌شود.} \)

\(\text{ب) رفتار حرکتی سیستم در همسایگی (y(t)) وسط (\text{TR}) (برای مشخصه فلکه) به این صورت تعیین می‌شود که اگر مقادیر ویژه (\text{TR}) (برای مشخصه فلکه) که به این صورت تعیین می‌شود که اگر مقادیر ویژه (\text{TR}) باشند با طور مقدار ویژه (\text{TR}) (نامادهای مشخصه) در سمت چپ محور مهره می‌باشد، دینامیک فوق در همسایگی (y(t)) به طور مجانب پایدار است.} \)