کنترل اینترتیهای منبع ونلاژ چندسطحی سفارز با استفاده از مدولاسیون بردار فضایی به کمک روش کلاس‌بندی بردارها

علیرضا خشایی، حسینرضا سلیمی‌راد، میر مسعود فر و علی حمیدی
دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان
دانشکده مهندسی برق، دانشگاه شهید چمران

(دریافت مقاله: ۱۳۸۷/۰۸/۰۳ - پذیرش نهایی: ۱۳۸۷/۱۲/۲۴)

چکیده: امر مورد تکنیک‌های مدولاسیون بینایی پایان به طور وسیعی برای کنترل ولتاژ و جریان خروجی مبدل‌های AC/DC است. از این‌رو، مدل‌های SVM و فیلتر بین‌تکنیکی (SVFM) به طور بیشتری به کار می‌روند. SVM یکی از بهترین فیلتر‌های بین‌تکنیکی است که در محدوده‌های بزرگ آزمایش می‌گردد. در این تحقیق به تعمیق و بررسی SVM و فیلتر‌های بین‌تکنیکی در مدل‌های SVM و SVM استفاده شده است.

کلمات کلیدی: اینترترهای منبع ونلاژ چندسطحی، مدل‌های مدولاسیون بینایی، کلاس‌بندی بردارها

Space Vector Modulation Based on Classification Method in Three-Phase Multi-level Voltage Source Inverters

A.R. Bakhshai, H.R. Saligheh Rad, M. Saeedifard
Department of Electrical and Computer Engineering, Isfahan University of Technology

Abstract: Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase Power Converters. The main drawback of this PWM technique is its complexity.

A.R. Bakhshai
H.R. Saligheh Rad
M. Saeedifard
مقدمه

مبدأ های نهایی که برای اولین بار در سال 1981 توسط نابایی و به منظور کاهش دامنه هارمونیکا و فرکانس سوپرچیپها ی اینترنت های فی کی از معرفی شدند [1]. این‌کار برای تغییر وزن و سرعت در سیستم‌های مبدل شده با نوان بالا از قابل درک است. اما در سیستم‌های قدیم و از جمله کنونی، کاهش را راکت یدا کرده‌اند [2-4]. هم‌مان با معرفی این مدل‌ها، تکنیک‌های مدولاسیون پسی بالاتری نیز برای کنترل آن‌ها پیشنهاد شده‌اند [5-6]. از مبانی روش‌های پیشنهادی، مدولاسیون بردار فضایی به‌عنوان یک روش مدولاسیون زمان حقیقی و دیجیتال و به‌دلیل دارا بودن مراحلی خاص نسبت به سایر روشهای مورد توجه تبیین قرار گرفته است [7]. علاوه بر این انعطاف‌پذیری ذاتی مدولاسیون بردار فضایی در مطالعه‌های مختلفی و نتایج خاصی از نظر عملکرد ان DC/DC به‌کار می‌رود. این روش مدولاسیون بر یک سیستمیک در مدل‌های سطحی سیستم‌های انرژی است [8].

1- بهبود اجرای بردارهای میلیمتری بر کلاس‌بندی SVM

بردارهای برای مدل‌های مدولاسیون را بیشتر می‌کند. در مراجع [11-12] منابع داده‌شده است که به کلاس‌بندی SVM بردارهای میلیمتری در اجرای این همه تفاوت در نتایج به‌اختراق از هر گونه تقسیم‌بندی و تأثیرات مختلف در نتایج محقق شده‌است. در این مقاله، مطالعات SVM در کنترل زمان مخصوص آزمایش‌های میلیمتری این روش صحیح و در نتیجه به‌دلیل استفاده از مدل‌های دستیابی و با توجه به قدرت دیگر دنیایی واحدی در این مقاله مزایای گسترده SVM مطرح می‌شود. سفارش روش در اجرایی SVM در مدل‌هایی میلیمتری که اثرات عمده زمان به‌کار می‌رود. این روش از مدل‌های میلیمتری و دیگر فیزیکی برای آزمایش‌های اجرایی SVM که از ساده‌ترین روش‌های تقسیم‌بندی غیرخطی استفاده می‌کند. همکاری این سیستم‌های تسهیلات. در نتیجه، در صورتی که در سیستم‌های یک مدل DSP برا ی بردارهای این‌کار است.
SAM SVM با استفاده از تکنیک

کلاسیفیک بردارها در مرجع [11] نشان داده شده است که روش SVM با کارگری الگوریتمی ساده و دقیق می‌تواند بر تکنیک کلاسیفیک بردارها که در محیط شبکه‌های رقابتی مقرون است قابل اجرا باشد، 7 مدل جمع‌بندی ساختاری این تکنیک را نشان می‌دهد. بردار ورودی مدرج به شبکه‌ای با شش و یک محبوبیت که هر واحد آن یک بردار وزن از قبل تعیین شده در ارتباط است. اعمال می‌شود. با انتخاب بردارهای وزنی مناسب، فاصله با توجه به شکل (2) نشان داده شده است، k این است از 6 ضریب داخلی مدل: (3) می‌شود.

\[n_k = \frac{|V_{ref}||V_k| \cos(\angle V_{ref},V_k)}{ \sum_{k=1}^{6} |V_k| \cos(\angle V_{ref},V_k)} \quad k = 1,2,\ldots,6 \]

با توجه به معادله (3)، نزدیکترین بردار Ŷk به بردار بزرگ‌ترین Nk بذری‌تلقی می‌دهد. برای این منظور، بزرگ‌ترین مشخصه غیر مدرج گرفته خود به میزان اعمال بردار غیر صفر در مدل درون زمان‌های مختلف اعمال بردار صفر در مدل تابع زمانی برداری استفاده می‌شود. مدلینگ: (4)

\[V_{ref} = V_{i_1} + V_{i_{1+1}} + V_{i_{1+2}} + V_{0_0} \]

که در آن T برروی نمونه برداری دو دو زمان اعمال بردار غیر صفر در مدل و یک بردار مدرج به مدت t_{0_1} و t_{i_{1+1}} و t_{i_{1+2}} و t_{0_0} مدت زمان اعمال بردار صفر و (5) می‌باشد. زمان اعمال بردار صفر. نتیجه یک انتخاب کننده برداری ذکر شده از معادلات زیر محاسبه می‌شود.

\[t_i = m \sin(60 \cdot 0) \]

\[t_{i_1} = m \sin(\theta) \]

\[t_{0_0} = T - t_i - t_{i_{1+1}} \]

با انتخاب از تکنیک کلاسیفیک بردارها، در نورن برخی

\[m = \frac{2 |V_{ref}|}{E} \]

معین ولتاژ به صورت زیر محاسبه می‌شود.

\[V_{ref} \]

استناد مالی. 1383 شماره 25. دی 1383
شکل ۱- نمایش بردارهای ولتاژ فضایی (بردارهای سوپرچینگ) و سکتورهای شکنگان در صفحه (αβ) برای یک اینترپتر مربع ولتاژ سه‌فاز.

شکل ۲- نمودار جمع‌آوری اجرای SVM با کلاسیفیکاتور بردارهای اینترپتر مربع ولتاژ

\[
\frac{2}{3} E \begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} n_i \\ n_{i+1} \end{bmatrix} = \frac{V_{\text{ref}}}{E} \begin{bmatrix} \sin(60^\circ - \theta) \\ \sin(\theta) \end{bmatrix}
\]

\[
\begin{bmatrix} n_i \\ n_{i+1} \end{bmatrix} = \begin{bmatrix} \cos(\theta) \\ \cos(60^\circ - \theta) \end{bmatrix}
\]

با توجه به اینکه:

\[
\begin{bmatrix} \cos(\theta) \\ \cos(60^\circ - \theta) \end{bmatrix} = \frac{2}{\sqrt{3}} \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0 \end{bmatrix} \begin{bmatrix} \sin(60^\circ - \theta) \\ \sin(\theta) \end{bmatrix}
\]

با جایگذاری (۵) در (۶) و با نویسی (۵) خواهیم داشت:

استقلال، سال ۱۳۸۱، شماره ۱، شهریور ۱۳۸۳
در مدل‌های جندپرخی برد و لالا مرجع توسط سه تزیکنی برد سوئیچینگ به آن به‌پایه کاراکتر طبقاتی ب و در مثل شماره 3 کوک درفته شده‌اند په اکس ات نیزم مدل‌سازی برد پری‌گرا در هم‌ویک‌سازی می‌باشد.

\[V_{\text{ref}}(t) = V_1 + V_2 + V_3 + V_4 + V_5 = V(\cos \theta + i \sin \theta) \]

\[t_1 + t_2 + t_3 + t_4 + t_5 = T \]

\[V = \left[\begin{array}{c} V_{\text{ref}} \\ V_1 \\ V_2 \\ V_3 \\ V_4 \end{array} \right] \]

\[t_1 = \frac{T}{E} \left(\frac{4}{2} \sqrt{V_1 E} - \frac{4}{2} \sqrt{V_1 E} \right) \]

\[t_2 = \frac{T}{E} \left(\frac{4}{2} \sqrt{V_1 E} + \frac{4}{2} \sqrt{V_1 E} \right) \]

\[t_3 = \frac{T}{E} \left(\frac{4}{2} \sqrt{V_1 E} \right) \]

\[t_4 = \frac{T}{E} \left(\frac{4}{2} \sqrt{V_1 E} \right) \]

\[t_5 = \frac{T}{E} \left(\frac{4}{2} \sqrt{V_1 E} \right) \]

با اعمال این تبدیل به معادلات (1) و (2) معادلات زمانهای اکستراتکنی سه برد و برد مرجع به صورت زیر نتیجه می‌شوند:

\[\begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} = \begin{bmatrix} \frac{T}{E} \frac{4}{2} \sqrt{V_1 E} \\ \frac{T}{E} \frac{4}{2} \sqrt{V_1 E} \\ \frac{T}{E} \frac{4}{2} \sqrt{V_1 E} \\ \frac{T}{E} \frac{4}{2} \sqrt{V_1 E} \end{bmatrix} \]

4- کنترل بی‌اینترس سطح سی سطحی دافع با استفاده از روش پیشنهادی

4-1 ساختار کلی بی‌اینترس سطحی و حالت‌های سوئیچینگ

برای تعیین روش کلاس‌بندی برد‌های برد برابر اجرای روش SVM در مدل‌های سطحی لازم است از یک قابلیت تعمیم پایه‌ای استفاده شود. این حالت بلافاصله هر دوی روش برند این کلاس بندی در برابر‌سازی Vref که گرفته شد و به معادله 1 مشخص است که برای توزیع الکترون مدل‌سازی

\[\sin \theta \cos \theta \]

\[\cos(60° - \theta) \]

\[\begin{bmatrix} 1 & \cos \theta \\ \cos(60° - \theta) & \sin \theta \end{bmatrix} = H \begin{bmatrix} 1 \\ \cos \theta \end{bmatrix} \]

\[H = \begin{bmatrix} 10 & 0 \\ 0 & 1 \sqrt{3} \\ 0 & 2 \sqrt{2} \end{bmatrix} \]

شکل (3) ساختار کلی بی‌اینترس مرجع لالا سطحی را نشان می‌دهد. از آنجا که در این نوع اینترس، سطح متنازان و لالا مرجع هر فاز خرمشی وجود دارد، تعادل حالت‌های همان سوئیچینگ این مدل 77 است. اگر تبدیل پارک به این حالت سوئیچینگ مجاز اعمال شود، نتیجه حاصل در صفحه (4) \(V_k, k = 1,2,3 \) بردار غیرصفر نمایشی (18) \(\alpha \beta \) بردار صفر \((0,0,0) \) خواهد بود، شکل (4).

4-2 بردارهای ولتاژ و طول مدت اعمال آنها

برای برد و لالا مرجع و چرخ عضد می‌ایده که این تمام بردارهای حالت سوئیچینگ، در نتیجه بردار غیرصفر به برد مرجع SVM و بردار صفر انخاب شوند [13] به‌طور مشابه در روش استقلال سال 132 شماره 1 شهریور 1383.
شکل ۳- ساختار عمومی یک اینورتر مانند ولتاژ سطحی سه فاز.

شکل ۴- بردبرای ولتاژ فضایی یک اینورتر مانند ولتاژ سطحی سه فاز به همراه حالات مجاز سویچینگ.

شکل ۵- ساختار کلی یک سکتور (سکتور اول) برای محاسبه زمانهای سویچینگ سه نیزدیکترین بردار به بردار مرجع.

استقلال، سال ۱۳۸۳، شماره ۱، شهريور
جا 5- نحوه تشخیص نواحی مربوط به مطلوبیت چهارگانه
برای تشخیص شماره مثلثی که انتهای بردار و نواحی مرجع در
آن قرار دارد، ساختاری متشکل از چهار منطقه شکل (7) پیشنهاد می‌شود. هر سیم وظیفه تشخیص وجود انتهای بردار
مرجع را در مثلث همسهم شود. با خروجی دارد. به دنبال این، ای
ساختار طراحی شده است که محورهای مثلث حاکی انتهای بردار و نواحی مرجع است. دایره خروجی یک
بوده و بقیه سیم‌های دایره خروجی صفر باشد. شکل (8)
جزییات مربوط به ساختار سیم‌های مرکزی در این سیم‌بان ریاضی عمکرکد شیبکه
متریسی موجود در این سیم‌بان ریاضی عمکرکد شیبکه
عصب مورد استفاده در ساختار پیشنهاد شده است. متریسی
مربوط به سیم‌های مرکزی در معادله (12) آورده شده است. سیم‌بار
دیگر شکل (7) نیز در بین همه طراحی مرسوم می‌شود. قابل
ذکر است که ضرایب این متریس‌ها نسبت به انتهای ولتاژ منبع
تنهایی به داده است.}

با اعمال این تبدیل به معادلات (5) و (10)، زمان‌های اعمال
نیز دیگر تابعی سیم‌بردار به بردار مرجع به صورت زیر تیپی
شود:

\[
\begin{pmatrix}
T_1 \\
T_2 \\
T_3 \\
T_4
\end{pmatrix} = \begin{pmatrix}
\frac{4}{3} & \frac{4}{3} & -\frac{8}{3} \\
-\frac{4}{3} & \frac{4}{3} & \frac{8}{3} \\
\frac{4}{3} & \frac{4}{3} & \frac{8}{3}
\end{pmatrix} \begin{pmatrix}
1 \\
n_1 \\
n_{n+1}
\end{pmatrix}
\]

(12)

2- بردارهای ولتاژ و طول مدت اعمال آنها
در پایداری بردار ولتاژ مرجع، ابتدا با استفاده مثلثی که انتهای
بردار مرجع در آن قرار می‌گیرد، مشخص شود. در یک مدل
سطحی، تعادل کل مثلث‌های ایجاد شده در یک سیم‌بردار
(1) تعداد کل مثلث‌های ایجاد شده در یک سیم‌بردار
(2) تعداد کل مثلث‌های ایجاد شده در یک سیم‌بردار
(3) هزاران طور که از شکل (8) پیش‌اند،
(4) هزاران طور که از شکل (8) پیش‌اند،
(5) هزاران طور که از شکل (8) پیش‌اند،
(6) هزاران طور که از شکل (8) پیش‌اند،
(7) هزاران طور که از شکل (8) پیش‌اند،
(8) هزاران طور که از شکل (8) پیش‌اند،
(9) هزاران طور که از شکل (8) پیش‌اند،
(10) هزاران طور که از شکل (8) پیش‌اند،
(11) هزاران طور که از شکل (8) پیش‌اند،
(12) هزاران طور که از شکل (8) پیش‌اند،
(13) هزاران طور که از شکل (8) پیش‌اند،
(14) هزاران طور که از شکل (8) پیش‌اند،
(15) هزاران طور که از شکل (8) پیش‌اند،
(16) هزاران طور که از شکل (8) پیش‌اند،
(17) هزاران طور که از شکل (8) پیش‌اند،
(18) هزاران طور که از شکل (8) پیش‌اند،
(19) هزاران طور که از شکل (8) پیش‌اند،
(20) هزاران طور که از شکل (8) پیش‌اند،
(21) هزاران طور که از شکل (8) پیش‌اند،
(22) هزاران طور که از شکل (8) پیش‌اند،
(23) هزاران طور که از شکل (8) پیش‌اند،
(24) هزاران طور که از شکل (8) پیش‌اند،
(25) هزاران طور که از شکل (8) پیش‌اند،
(26) هزاران طور که از شکل (8) پیش‌اند،
(27) هزاران طور که از شکل (8) پیش‌اند،
(28) هزاران طور که از شکل (8) پیش‌اند،
(29) هزاران طور که از شکل (8) پیش‌اند،
(30) هزاران طور که از شکل (8) پیش‌اند،
(31) هزاران طور که از شکل (8) پیش‌اند،
(32) هزاران طور که از شکل (8) پیش‌اند،
(33) هزاران طور که از شکل (8) پیش‌اند،
(34) هزاران طور که از شکل (8) پیش‌اند،
(35) هزاران طور که از شکل (8) پیش‌اند،
(36) هزاران طور که از شکل (8) پیش‌اند،
(37) هزاران طور که از شکل (8) پیش‌اند،
(38) هزاران طور که از شکل (8) پیش‌اند،
(39) هزاران طور که از شکل (8) پیش‌اند،
(40) هزاران طور که از شکل (8) پیش‌اند،
(41) هزاران طور که از شکل (8) پیش‌اند،
(42) هزاران طور که از شکل (8) پیش‌اند،
(43) هزاران طور که از شکل (8) پیش‌اند،
(44) هزاران طور که از شکل (8) پیش‌اند،
(45) هزاران طور که از شکل (8) پیش‌اند،
(46) هزاران طور که از شکل (8) پیش‌اند،
(47) هزاران طور که از شکل (8) پیش‌اند،
(48) هزاران طور که از شکل (8) پیش‌اند،
(49) هزاران طور که از شکل (8) پیش‌اند،
(50) هزاران طور که از شکل (8) پیش‌اند.
شکل ۱- ساختار پیشنهادی چهار مسیره برای تشخیص مکان بردار ولتاژ مرجع در سکتور اول

شکل ۷- ساختار دقیق مسیر سوم از مسیرهای چهارگانه در تشخیص مثلثهای چهارگانه

شکل ۸- ساختار چهار مسیره اصلاح شده برای تشخیص مکان بردار ولتاژ مرجع در سکتورهای شش گانه

استقلال، سال ۱۳۸۳، شماره ۱، شهريور
شکل 9- ساختار کلی یک ای‌پورتر معن ونلاز m سطحی

همان‌طور که از شکل (۱۰) مشخص است با شرایط از رأس P۱، P۲ را از هر راس P۱، P۲، ... P۱، P۲，...
در این حالت فقط یک مثلث با شماره فرد ساخته می‌شود.

P_{1-1,m} = P_{1-1} + \frac{V_{DC}}{m-1}

(17)

حال پس از مشخص شدن مختصات رأس هر مثلث بر حسب شماره لایه و شماره راس اصلی آن، لازم است معادلات زمانی سیویچینگ بردارهای ولتاژ تشكیل دهنده یک مثلث را حالت دوم:

\[j = 1-1 \]
به‌دست آوریم. در ادامه فرض کنیم انتهای بردار مرجع در مثلث‌بندی Pj و Pj1 و Pj2 قرار گرفته باشد.
با توجه به معادلات اساسی مدولاسیون بردار فضایی خواهیم داشت:

\[
\begin{align*}
V_{\text{ref}} &= V \cdot (\cos \theta + i \sin \theta) \\
V &= \left| V_{\text{ref}} \right|
\end{align*}
\]

به‌ giác در آن Pj و Pj1 و Pj2 به ترتیب زمان‌های مربوط به پردارهای Pj، Pj1 و Pj2 در ترتیب موجود برداری در T در پردازشی‌هایی این‌چهای این‌چهایی یک سیکل تحقیقی است. حال با توجه به شماره‌ای با شماره‌های مثلث مورد نظر، با شماره‌های مثلث اندازه‌گیری شده و نشان دهنده مساحت بی‌تصویری می‌باشد. مساحت‌هایی که در حالی زوج به فرد بودن، به انجام محاسبات مربوط به شماره‌های مثلث مورد نظر بروزرده و است. به دنیه باشند این تفاوت که در این نقطه متنوع با شماره‌های زوج وجود ندارد.

اگر فرض می‌کنیم که از (1) و در راس (j) از (1, 2, 3, m) و در مثلث‌بندی با شماره‌های فرد شماره‌دادری:

خواهیم داشت:

\[
P_j = \frac{1}{m-1} \left[V_{\text{DC}} + (-1)^j \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) i \right]
\]

\[
P_{j,0} = P_j + \frac{V_{\text{DC}}}{m-1} \left[1 - \frac{1}{2} (j+1) + \frac{\sqrt{3}}{2} (j-1) i \right]
\]

\[
P_{j,2} = P_j + \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) i \frac{V_{\text{DC}}}{m-1} \left[1 - \frac{1}{2} (j+2) + \frac{\sqrt{3}}{2} (j+1) i \right]
\]

\[
P_{j,1} = \frac{V_{\text{DC}}}{m-1} \left[1 - \frac{1}{2} j + \frac{\sqrt{3}}{2} (j-1) i \right]
\]

در نتیجه باشند، اگر ماتریس ضرایب را ماتریس مجهولات FL، ماتریس مقدارهای G1، ماتریس مقدارهای G2، با توجه به معادلات اساسی مدولاسیون بردار فضایی خواهیم داشت:

\[
P_j \cdot t_j + P_{j,0} \cdot t_{j,0} + P_{j,1} \cdot t_{j,1} + P_{j,2} \cdot t_{j,2} = V_{\text{ref}} \cdot T
\]

\[
t_j + t_{j,0} + t_{j,1} + t_{j,2} = T
\]

\[
V_{\text{DC}} = \left(\frac{l-1}{2} (j+3) \right) t_j + \left(\frac{l-1}{2} (j+1) \right) t_{j,1} + \\
\left(\frac{l-1}{2} (j+2) \right) t_{j,2} + \left(\frac{l-1}{2} (j+1) \right) t_{j,1} + \\
\left(\frac{l-1}{2} (j+2) \right) t_{j,2} = V \cdot T \cdot \cos \theta
\]

\[
V_{\text{DC}} = \left(\frac{l-1}{2} (j+3) \right) t_j + \left(\frac{l-1}{2} (j+1) \right) t_{j,1} + \\
\left(\frac{l-1}{2} (j+2) \right) t_{j,2} = V \cdot T \cdot \sin \theta
\]

\[
t_j + t_{j,0} + t_{j,1} + t_{j,2} = T \left(t_j, t_{j,1}, t_{j,2} \right)
\]
ماتریس A_l در (۲۱) مشخص است که برای اعمال زمان‌هایی که باید در ماتریس ساده A_l دستگاه معادلات m بعدی خطی که برای ثابت با تغییرات l به قابل محاسبه‌اند. این مزیت در ارائه شکل بیست معادلات زمان‌هایی ساده، حجم محاسبات را به نحو چشمگیری کاهش داده و پیداکردن آن را به صورت دیجیتالی و با یک کوریتر ساده امکان‌پذیر می‌سازد.

برای اجرای الگوریتم بردار فضایی و اعمال بردارهای زمان‌هایی ساده، در این ایستگاه مایه راه‌های مختلف برداری را به صورت $2m$ بعدی می‌باشد. با توجه به اینکه هر یک از اعداد Δt ماتریس A_l در (۲۱) مشخص است که برای اعمال زمان‌هایی که باید در ماتریس ساده A_l دستگاه معادلات m بعدی خطی که برای ثابت با تغییرات l به قابل محاسبه‌اند. این مزیت در ارائه شکل بیست معادلات زمان‌هایی ساده، حجم محاسبات را به نحو چشمگیری کاهش داده و پیداکردن آن را به صورت دیجیتالی و با یک کوریتر ساده امکان‌پذیر می‌سازد.

برای اجرای الگوریتم بردار فضایی و اعمال بردارهای زمان‌هایی ساده، در این ایستگاه مایه راه‌های مختلف برداری را به صورت $2m$ بعدی می‌باشد.
حال ماتریس‌های حاوی ضرایب معادله خطوط شکل دهنده در مدتی به شماره‌های 1-2 و 2-1 (j-l) می‌باشد.

\[(m-l)^{2} \]

و از ساختار (m-l)^{-1} گانه‌ای که (m-l)^{-1} را نشان می‌دهد. رفتاره در تشخیص نواحی مثلثی (m-l)^{-1} گانه‌ای که (m-l)^{-1} را نشان می‌دهد. تجربه در این ماتریس‌ها محدود نظر بوجود نمی‌آید.

الف: مثلثی با شماره 1-2 و 2-1 (j-l) را در نظر گرفته، معادلات خطوط شکل دهنده آن را در صفحه (αβ) به دست می‌آوریم:

\[
L1: \beta = \sqrt{\frac{3}{2}} (j-1) \frac{V_{DC}}{m-1} \\
L2: \beta = \sqrt{3} (\alpha - 1) \frac{V_{DC}}{m-1} + (j-l) \frac{V_{DC}}{m-1} \\
L3: \beta = -\sqrt{3} \alpha + \sqrt{3} \frac{1}{m-1} \frac{V_{DC}}{m-1}
\]

حال با توجه به معادلات خطوط به دست آمده، ماتریس ضرایب مورد نظر که در می‌روی را مشابهی با آنچه در حالت سطحی بیان شده، به دست می‌آوریم:

\[
\begin{bmatrix}
0 & 1 & -\sqrt{\frac{3}{2}} (j-1) \frac{V_{DC}}{m-1} \\
\sqrt{3} & -1 & -\sqrt{3} \frac{V_{DC}}{m-1} \\
-\sqrt{3} & -1 & \sqrt{3} \frac{1}{m-1} \frac{V_{DC}}{m-1}
\end{bmatrix}
\]

ماتریس در دستگاه خواهی داشت:

\[
\begin{bmatrix}
0 & 1 & 0 \\
\sqrt{3} & -1 & 0 \\
-\sqrt{3} & -1 & 0
\end{bmatrix}
\]

تعمیم ساختار جهارسیره که در قسمت (3-2) برای تشخیص مثلث‌های جهارسیره در حالت سطحی ارائه شده بود برای m سطحی می‌برداشد.

3-5 استفاده از یک شبکه عصبی کلاس‌کننده برای تشخیص

(m-l)^{-1} گانه‌ای در حالت سطحی

با توجه به آنچه قبل بیان شد، برای اجرای مدل‌سازی بردار فضایی در حالت m سطحی، باید مکان انتهای بردار ولتاز (m-l)^{-1} را به دست آورد. نتایج نشان می‌دهد که این کار توسط یک شبکه عصبی کلاس‌کننده مطلوب آنچه در قسمت (3-3) ارائه شد، انجام شده است. ساختار این شبکه نیز مانند ساختار انتهای شده در شکل (α) است، با این تفاوت که به جهت مسیر دارایی (m-l)^{-1} سیستم این باعث در این ابتکار خواهی کرده که ساختار (m-l)^{-1} مسیری مورد نظر به یک ساختار در مسیری همراه با یک گویتر باز برای استفاده مکان انتهای بردار محصول مناسب می‌باشد. هر دوین ساختار ساختار نیز مانند ساختار انتهای شده در شکل (7) است.

برای تکمیل این مطلب کافی است که شکل علوم ماتریس‌های موجود در هر مسیر را در حالتی ضرایب خطوط شکل دهنده مثلث‌ها با نواحی سوپریساینس، مشخص کنیم.

برای این منظور نقطه‌ای را در نظر می‌گیریم که در لایه 1 ام واقع شده باشد. و در این لایه دارای شماره‌ای باشد. همانطور که قبلی نیز بیان شد، هدف نقطه می‌باشد تا در مثلاً باشد که بتواند دارای شماره‌ای باشد و دیگری دارای شماره‌ای باشد. اگر تمامی مثلث‌ها را به‌ترتیب از داخل‌الینه‌انه بیرون شماره‌گذاری کنیم (m-l), (m-l)^{2},... (m-l)^{3}, شماره‌ای این مثلاً به ترتیب 1 + 2 + (j-l) + (1-j-l-1)^{2} + 2 + (j-l-1)^{3} + (m-l)^{-1} به ترتیب 1 + 2 + (1-j-l-1)^{3} + (m-l)^{-1} خواهد بود، باعث شده که این شماره از (m-l)^{-1} ترکیبی تشکیل به‌دست دارد. به‌عبارت دیگر، به‌عنوان 1 + 2 + (j-l) + (1-j-l-1)^{3} + (m-l)^{-1} وجود نخواهد داشت.

استلال، سال 33، شماره 1، شهریور 1383

77
نمادهٔ نتایج حاصل از مطالعات تحلیلی به‌دست آمده در این مقاله به کمک نرم‌افزار Simulink و Matlab برای یک مدل سطحی در فرکانس اصلی و فرکانس نمونه‌برداری در انرژی‌سوز و سطح سیستم‌های همبسته‌سازی شیب‌سازی شده‌اند. ولتاژ خروجی و فرکانس همبسته‌سازی مشخصه‌های به‌کارگیری روش SVM در پیش‌نهادی به‌این انرژی‌سوز مدل‌سوز متنوع در شکل‌های (11) و (12) نشان داده شده‌اند. شکل (12) نمایش‌دهندهٔ مدل‌سوز متنوع نشان می‌دهد. هر چند می‌تواند بر تکنیک کلاس‌بندی بردارکاری که در این مقاله ارائه شد، از اصول شرایط مورد نظر انتخاب سایر شرایط ندارد.

اما، فرمول‌های به‌دست آمده جهت محاسبه زمان‌های سویچینگ در روش پیشنهادی صرف‌نظر از مدل‌سوز مدل (m) می‌تواند برای بازه‌های ولتاژ سری‌سوز متنوع در افزایش ولتاژ و کاهش سری‌سوز متنوع در کاهش ولتاژ مورد استفاده قرار گیرد.

از آنجا که این روش مبنی بر کلاس‌بندی بردارکاری استفاده از محدوده‌های بزرگ‌تر و از روش‌های خاصی بهره‌مند بوده است، بتواند کاهش زمان‌های سویچینگ، مشخص است که $m = 1$ و ماتریس مورد

منبع: نیاز در مسیر به (m) $m = 1$ کاهش انتظاری در پیش‌نهادی شناسایی، و با تغییرات 1 و 2 به‌دست می‌آید. در نتیجه، کلی یک ساختار را توسط پیکسل‌های یک در بازه و ماتریس همبسته‌سازی‌ها در حالات مختلف قبل بیان‌سازی است. این مزیت در ارائه شکل‌های ساختاری است. این

محاسبات و حافظه مورد نیاز باید را نحو چشمگیری کاهش

ب ملت شماره $2 + (j)^3$ و واکنش اینکه این شماره کوچک‌تر با معنا $2 + (j)^3$ باشد را در نظر گرفته. مدل‌سوز خشونت مشکل همراه آن در صفحه (αβ) به‌دست می‌آوریم:

$$L_1: \beta = \sqrt{3} \frac{(1 - j)^2}{m - 1} \frac{V_{DC}}{V_{DC}}$$

$$L_2: \beta = -\sqrt{3} \alpha + \sqrt{3} \frac{1 - 2}{m - 1} \frac{V_{DC}}{V_{DC}}$$

$$L_3: \beta = \sqrt{\frac{3}{2}} \frac{j V_{DC}}{m - 1}$$

در نتیجه خواهیم داشت:

$$\begin{bmatrix}
-\sqrt{3} & 1 \\
\sqrt{3} & 1 \\
1 & 0 \\
\end{bmatrix} \begin{bmatrix}
\text{ماتریس ضرایب}
\end{bmatrix}$$

در اینجا نیز مشابه محاسبات انجام شده برای ضرایب زمان‌های سویچینگ، مشخص است که $m = 2$ و ماتریس مورد

نیاز در مسیر به (m) $m = 2$ کاهش انتظاری در پیش‌نهادی شناسایی، و با تغییرات 1 و 2 به‌دست می‌آید. در نتیجه، کلی یک ساختار را توسط پیکسل‌های یک در بازه و ماتریس همبسته‌سازی‌ها در حالات مختلف قبل بیان‌سازی است. این
شکل 11- نتایج شبیه‌سازی SVM سطحی به ازای اندازه مدولاسیون 1 = m

شکل 12- نتایج شبیه‌سازی SVM سطحی به ازای اندازه مدولاسیون 0.8 = m
شکل ۱۳- نمودار طیف هارمونیکی ولتاژ خروجی را به ازای اندهسای مختلف مدولاسیون.

شکل ۱۴- نمودار تغییرات اندازه مولفه اصلی ولتاژ خط خروجی به ازای اندهسای مدولاسیون متغیر در حالت SVM و SPWM برای دو روش.
1. *Space Vector Modulation*

کیفیت و توانایی راه حل‌های RA به‌طور قابل ملاحظه‌ای بهبود می‌یابد.

یکنون می‌خواهد مقدار و منجر به احتیاط از هگنه تغییر توانایی و در نتیجه

رطف در محسوس دنباله‌های سپردی چنین و نتایج اعمال آنها

می‌شود، بلهک زمان لازم برای انجام محاسبات ساده این روش از

زمان لازم برای اجرای روشهای متداول

روشهای تغییر توانایی ایجاد شده کنند، کوتاهتر است.

در این روش با یک روش انجام محاسبات بدینگ، در نتیجه

کاهش زمان‌های محاسباتی، امکان تغییرات فرکانس سپردی چنین

فرآیند همچنین حجم سخت‌افزار و ترم‌افزار سیستم

به‌طور قابل ملاحظه‌ای کاهش می‌یابد و افزایش دقت بال‌سالهای

عکس ادامه تضمین می‌شود. صحت واقعیت‌پذیری تحلیل به‌دست

آمده توسط شبیه‌سازی رایانه‌ای به‌تابی رسدی است.

۷- نتیجه‌گیری

در این مقاله روش مدولاسیون بردار فضایی پیش‌بینی بر

کلاس‌بندی بردارهای کنترل انرژی‌های منبع ولتاژ چند

سطح پیش‌بینی و الگوریتمی عمومی برای انجام محاسبات به

شكل مستقیم و برای تحقق دیجیتال این تكنیک ارائه شده است.

واژن‌نامه

مراجع