Effect of Limestone Powder on Compressive Strength of Concrete Containing Silica Fume and Optimization of Mix Design Using Response Surface Method

D. Mostofinejad and M. Reisi
Department of Civil Engineering, Isfahan University of Technology

Abstract: Silica fume has been largely used in concrete in recent decades due to its effect on improvement of strength and...
durability of concrete. On the other hand, attention has been recently paid to the use of limestone powder as a substitute for part of cement in concrete, basically because of its low price and its positive effect on the durability of concrete. The aim of the current study is the investigation of the interactive effect of silica fume and limestone powder on the compressive strength of concrete and the optimization of the mix design. To do so, 27 mix designs including 3 water-to-cementitious materials ratios (W/CM=0.25, 0.3 and 0.4); 3 silica fume-to-cementitious materials ratios (SF/CM=5%, 15% and 30%); and 3 limestone powder-to-cement ratios (LP/C=0%, 15% and 30%) were used and 28-day compressive strengths of the cubic concrete specimens were determined. Then, the interactive effect of silica fume and limestone powder on compressive strength of concrete was investigated using isoresponse curves. Furthermore, the optimization of the mix design for concretes containing silica fume and limestone powder was carried out using “cost effective factor” (CEF) which is defined compressive strength divided by cost of concrete.

Keywords: Concrete, Limestone powder, Silica fume, Compressive strength, Response surface method.

1- مقدمه
گران بودن قیمت سیمان در جهان به که به حدود 100 دلار در هر تن می رسد، باعث افزایش قیمت تأمین شده بین منابع شد. از این روایت بافت، موادی که هر میزان باشند و در صورت یافتنی به جای سیمان خواص مناسب داشته باشند، رونق زیادی پیدا کرده است [1]. یکی از این مواد افزودنی که تحقیقاتی بر روی آن تقریباً از 15 سال قبل شروع شده است، پودر سنگ آهک است. اطلاعات از این مصالح به دلیل در دسترس بودن زیاد، هر روش بیشتری می شود؛ به طوری که EN استاندارد 197-4، در سال 2016 روند نوی سیمان پرتلاند (type II/A-L)، سنگ آهکی که یکی شامل: سنگ آهک اسید (type II/B-L)، و دیگری حاوی سنگ آهک (type II/B-L) است. را وارد استاندارد سیمان اروپا کرده است [2]. در ایران نیز به خاطر وجود سنگ‌پیچه‌های فراوان و با توجه به اینکه پودر سنگ آهک جزو ضایعات سنگ‌پیچه‌است، استفاده از این مصالح در ساختمان ساختمان‌های زیادی را به نظر می رسد؛ زیرا در صورت استفاده مناسب از آن، علاوه بر کاهش انرژی مصرفی، سطح میزان تأمین تمام شده است را نیز کاهش داد.

تحقیقات زیادی بر روی خواص بین حاوی پودر سنگ آهک مثل مقاومت فشاری، زمان گیرش، سلامت و بررسی ریز انجام شده است [1 و 3]. تحقیقاتی نیز بر روی ساختمان با مقاومت بالا با استفاده از پودر سنگ آهک انجام گرفته است [3 و 4]. همچنین تحقیقاتی بر روی بهینه‌سازی طرح اختلافات مالات با مقاومت بالای ساخته شده با پودر سنگ آهک انجام گرفته است [1].

هدف از تحقیق حاضر بررسی تأثیر پودر سنگ آهک بر

402
استقلال، سال 34، شماره 1، جلد دوم، شهروی 1384
روح باعث تأثیر بزرگ قطعیت ضایعات در مدلی نیروی ضایعات با سحابی بزرگ نیروی ضایعات را می‌کند. اگر ضایعات داده‌ای باشد، میدانی نیروی مستقل ایجاد می‌شود. همچنین، مدل‌های راهبردی به‌عنوان یکی از مدل‌های متغیرهای MDM می‌تواند به‌عنوان یکی از مدل‌های تغییری در مدل‌های ارتقاء و تغییر در مدل‌های ارتقاء و تغییر مدل‌های ضایعات را می‌کند. به‌طور کلی اگر بتوان روش‌ها یافته که واریانس ضایعات رگرسیون حداکثر شود، مدل‌های ضایعات رگرسیون می‌توانند ساخته شوند. به‌طور کلی اگر بتوان روش‌ها یافته که واریانس ضایعات رگرسیون حداکثر شود، مدل‌های ضایعات رگرسیون می‌توانند ساخته شوند.
4- انجام فاز آزمایشگاهی این تحقیق

در تحقیق حاضر، برای بررسی تأثیر میکروسپلیس و پودر سگ آهک بر مقاومت فشاری و ارایش ظرح انتقال بهینه از روش منتحبی هم پایه استفاده شده است. منتحبی هم پایه، برای مقاومت فشاری 28 روزه و فاکتور تأثیر قسمت (CEF) که به صورت معادله (3) تعریف می‌شود، ترسریم شده و سپس با مورد استفاده قرار می‌گیرند. به طرح‌های عاملی یک روش انتخاب داده‌ها برای پیش‌بینی مقدار A، تغییر می‌کند. به این صورت بر اساس طرح عاملی یک و همان طور که در شکل (2-الف) مشاهده می‌شود، انتخاب داده‌ها باید در تغییر که با شماره‌های 3، 2 و 4 مشخص شده و به یکسانی در روزی مورد قرار داده شود.

انجام گیرد. برای اینکه مناسب بودن مدل نکات شود، لازم است بر روی تغییرهای از داده‌ها آزمایشات تکرار شود؛ این‌طور در طرح عاملی یک در نقطه مرکز محدوده مورد بررسی 4 تکرار صورت می‌گیرد. این مطلب در شکل (2-الف) به وضوح نشان داده شده است. همان‌طور که در این شکل مشاهده می‌شود، در نقطه وسط مرز، 4 تکرار صورت گرفته است که با شماره‌های 5، 6، 7 و 8 مشخص است.

3- طرح‌های بررسی مدل مرتبه دوم [5]

در مورد مدل مرتبه اول به گروهی از اطراف اشکار شد که

شماره 2- نمودار دوم براساس‌طرح مرکزی [6]

شکل 2- نمودار دوم برای مدل (الف) مرتبه اول براساس‌طرح عاملی یک

خاکیت تعمید دارند؛ بعنوان واریانس ضرایب رگرسیون در آنها می‌باشد. در مورد مدل‌های مرتبه دوم لزوم طرح‌هایی وجود دارد که خاصیت تعمید دارند. این امر به عنوان طرح‌های مرکزی، شناخته می‌شوند. در این نوع طرح‌های مرکزی، همان‌طور که در شکل (2-ب) دیده می‌شود، انتخاب داده‌ها طوری صورت می‌گیرد که فاصله بهم‌آنها از مرکز ناحیه مورد بررسی به یک فاصله مشابه باشد و با بلوک‌بندی داده‌های انتخابی بر روی دایره قرار گرفته بشهند (به داده‌های 1 تا 2 و 9 تا 13 در شکل 2-ب) توجه شود. به‌عنوان برای اینکه بتوان کنترل مدل برای این داده را از جهت مناسب بودن در مورد این نوع طرح انجام داد. در نقطه مرکزی ناحیه مورد بررسی 4 تکرار صورت می‌گیرد (به داده‌های 5 تا 8 در شکل 2-ب توجه شود).

404
جدول 1 - مصالح مورد استفاده برای ساخت یک متر مکعب بن بی‌سی سه‌گوش

<table>
<thead>
<tr>
<th>وزن مختصات بن</th>
<th>SP</th>
<th>W</th>
<th>FA</th>
<th>CA</th>
<th>LP</th>
<th>SF</th>
<th>C</th>
<th>شماره طرح اختلاف</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D111</td>
</tr>
<tr>
<td>238 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D112</td>
</tr>
<tr>
<td>236 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D113</td>
</tr>
<tr>
<td>234 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D114</td>
</tr>
<tr>
<td>232 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D115</td>
</tr>
<tr>
<td>230 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D116</td>
</tr>
<tr>
<td>228 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D117</td>
</tr>
<tr>
<td>226 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D118</td>
</tr>
<tr>
<td>224 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D119</td>
</tr>
<tr>
<td>222 ± 0.2</td>
<td>9.0</td>
<td>11.0</td>
<td>26.0</td>
<td>41.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>D120</td>
</tr>
</tbody>
</table>

W = فرمول سطح، SP = پیوست مکعب، CA = تعداد رون کننده محلول، SF = درشت دانه، LP = ریزدانه، C = سیمان
بحث بر روی نمو‌دهرهای فوق، طرح اختلاف مناسب تعیین

می‌شود. لازم به ذکر است که در معادله (۳) مقادیر

\[\text{CEF} = \frac{f_i}{C} \]

در فاز آزمایشگاهی این تحقیق، طرح اختلاف با ۳ تعبیر

\[W \]

اب با مواد سیمانی (SF) برای با ۱/۲۵، ۱/۵ و ۱/۴ تعبیر

ظرفیت سیمان با مواد سیمانی (SF) برای با ۰ درصد، ۵ درصد

و ۱۰ درصد؛ و ۳ تعبیر سپس آهن به سیمان (LP) برای

با ۰ درصد، ۵ درصد ساخته شد. مشخصات و

قيمت مصالح مرده استفاده در ساخت نمونه‌های بینه به قرار

زیر است:

۱- سیمان تیب با چگالی ۲/۶۵ و سطح مخصوص \(\frac{m^2}{kg} \)

۲- میکروسبلیس با چگالی ۲/۸۵ و با سطح مخصوص \(\frac{m^2}{kg} \)

۳- پودر سنگ آهن با چگالی ۲/۸۵ و سطح

مخصص \(\frac{m^2}{kg} \)

۴- پودر فوق روان کنده ملمست با چگالی ۱/۸۸ و قیمت

۱/۱۶. درشت دانه آهن mm ۵- با چگالی ۲/۶۲، رطوبت

طیبی ۱/۲، رطوبت اشباع ۰/۵ و قیمت

۰/۵۰۰. رطوبت طیبی ۰/۲۰۰، رطوبت اشباع ۰/۷۰۰,

۶- ریز دانه آهن با چگالی ۲/۶۰، رطوبت طیبی ۰/۲۰۰,

رطوبت اشباع ۰/۷۰۰. لازم به ذکر است که در محاسبه قیمت‌ها، قیمت سیمان برای

واحد فضایی است که در برابر مقادیر، بهمراه برای CEF

از آزمایشات و همچنین بهره‌گیری

در نوار فاصله‌های اختلاف مناسب برای CEF

یک کلیه طرح‌های اختلاف رسید، در ادامه به این منجیبات و تناصی

بودن این نوع منجیبات اشاره می‌شود.
جدول ۲- مقاومت فشاری و مقاومت CEF برای طرح‌های اخیاط

| CEF₂ | CEF₁ | شماره طرح
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۵/۲۰۵</td>
<td>۵/۲۰۴</td>
<td>۶/۳۴</td>
</tr>
<tr>
<td>۵/۲۰۹</td>
<td>۵/۲۰۸</td>
<td>۶/۳۴</td>
</tr>
<tr>
<td>۵/۱۹۶</td>
<td>۵/۱۹۵</td>
<td>۶/۳۴</td>
</tr>
<tr>
<td>۵/۴۱۱</td>
<td>۵/۴۱۰</td>
<td>۶/۳۴</td>
</tr>
<tr>
<td>۵/۲۲۸</td>
<td>۵/۲۲۷</td>
<td>۷/۰۹</td>
</tr>
<tr>
<td>۵/۵۰۰</td>
<td>۵/۵۰۰</td>
<td>۷/۰۹</td>
</tr>
<tr>
<td>۵/۴۰۵</td>
<td>۵/۴۰۵</td>
<td>۷/۰۹</td>
</tr>
</tbody>
</table>

۵- منحنیهای هم پاسخ برای مقاومت فشاری

نرخ دکتر شدن منحنیهای هم پاسخ با انریش (CIF)، می‌توان نتیجه گرفت که اثر پودر سنگ آهک در کاهش مقاومت فشاری بین با افزایش میکرولسیس به مواد سیمانی بیشتر می‌شود.

- در هر سه نسبت آب به مواد سیمانی با توجه به نرخ دکتر شدن منحنیهای هم پاسخ با افزایش (CIF، می‌توان نتیجه گرفت که ضریب کاهش مقاومت فشاری در صورت استفاده از پودر سنگ آهک در نسبت‌های بالاتر پودر سنگ آهک به سیمان، بهمچنین در هر سه نسبت آب به مواد سیمانی، با توجه به

استقلال، سال ۲۴، شماره ۱، جلد دوم، شهریور ۱۳۹۷

۴۰۷
شکل ۳- منحنی‌های هم‌پاسخ برای مقاومت فشاری ۲۸ روزه بتن با نسبت آب به مواد سیمانی

شکل ۴- منحنی‌های هم‌پاسخ برای مقاومت فشاری ۲۸ روزه بتن با نسبت آب به مواد سیمانی

شکل ۵- منحنی‌های هم‌پاسخ برای مقاومت فشاری ۲۸ روزه بتن با نسبت آب به مواد سیمانی
بیشتر است.

- در تنها یک طرح مورد بررسی در نسبتهای آب به ماد سیمانی، برازیش ۱۳/۴ و ۵/۴، با افزایش نسبت میکروسیلیس به ماد سیمانی ($\frac{W}{CM}$) مقاومت فشاری افزایش می‌یابد. ولی در ($\frac{W}{CM}$) ۱۲/۵ با افزایش $\frac{SF}{CM}$ تا حدود ۱ می‌یابد.

نتایج بررسی نشان داد که آب یا ماد سیمانی در تنها یک طرح مورد بررسی در نسبتهای آب به ماد سیمانی، برازیش ۱۳/۴ و ۵/۴، با افزایش نسبت میکروسیلیس به ماد سیمانی ($\frac{W}{CM}$) مقاومت فشاری افزایش می‌یابد. ولی در ($\frac{W}{CM}$) ۱۲/۵ با افزایش $\frac{SF}{CM}$ تا حدود ۱ می‌یابد.

شکل ۷- منحنی‌های هم‌پاسخی مربوط به CEF برای این با نسبت آب به ماد سیمانی ۲۵/۱۵۰٪ ؛ (الف) قیمت پودر سنگ آهک: ۵۰/۱٪ قیمت سیمان؛ (ب) قیمت پودر سنگ آهک: ۲۰/۱٪ قیمت سیمان

شکل ۶- منحنی‌های هم‌پاسخی مربوط به CEF برای این با نسبت آب به ماد سیمانی ۲۵/۱۵۰٪ ؛ (الف) قیمت پودر سنگ آهک: ۵۰/۱٪ قیمت سیمان؛ (ب) قیمت پودر سنگ آهک: ۲۰/۱٪ قیمت سیمان
برای بین‌بینی و بررسی منحنی‌های به‌پایه 노력ی که بر روی متغیرهای هم پاسخ اندازه‌گیری شده، ابتدا به‌طور کلی از رابطه با استفاده از پویا پنج آهنگ با توجه به نتایج آزمایشات مقاومت فشاری فعال برداشت است، شکل 8- منحنی‌های هم پاسخ مربوط به CEF برای بین با نسبت آب به مواد سیمانی 20/0/5

CEF
در شکل‌ها (1) و (2)، منحنی‌های هم پاسخ براي CEF رسم شده است. با دقت در این شکلها نتایج زیر حاصل می‌شود:

1- شکل کلی اکتیویتی مربوط به حالت که قیمت پودر سنگ آهک 1/0/5 قیمت سیمان در نظر گرفته شده است (حالت الاف) و حالتی که قیمت پودر سنگ آهک 20/0/5 قیمت سیمان در نظر گرفته شده است (حالت ب) در نسبت‌های آب به مواد سیمانی برای به بیش از 0/2 می‌باشد یکدلیت اندازه‌گیری و در هر حالت (الاف) و (ب) با افزایش مقادیر LP_C می‌باشد، از طرفی هر چه قیمت میکروسیلیس به مواد سیمانی بیشتر باشد، این میزان افزایش کمتر خواهد بود.

2- در نمودارهای مربوط به نسبت آب به مواد سیمانی برای به بیش از 25/0/5 در حالت (الاف) و در نمودارهای مربوط به نسبت آب به مواد سیمانی برای به بیش از 0/3 در حالت (الاف) و (ب)، به ازای هر مقادیر CEF می‌توان با نظری نمودار کاندور پیدا کرد: یک مقادیر مربوط به پایین و مقادیر دیگر مربوط به

3- بحث و نتیجه‌گیری
علیرغم بر نتیجه‌گیری‌ها که بر روی منحنی‌های هم پاسخ اندازه‌گیری شده، ابتدا به‌طور کلی از رابطه با استفاده از پویا پنج آهنگ با توجه به نتایج آزمایشات مقاومت فشاری قابل برداشت است،
سنگ آهک، تأثیر مستقل دوام در تعیین ضرب پایداری قیمت در نظر گرفته شود.

قدرتانی

بهین و سبیل از حمایتی با تقلب علیع، و تکنولوژی زیر دریا (بخش تحقیقات) .CEOST در جهت تکمیل این تحقیق تنشک و قدردانی می‌گردد.

واژه‌نامه

7. ACI Committee 211, “Proportions for Normal, Heavyweight, and Mass Concrete,” ACI-211-1, American Concrete Institute, Michigan,1998.
10. ایرانی، م.، رساله مهندسی، ریاضی-تجربی، برای تعیین خواص مکانیکی سنگ آهک، مقاومت بالا با توجه به تنفس ملات و درست داشن. پایان‌نامه کارشناسی ارشد، دانشگاه مهندسی عمران، دانشگاه صنعتی اصفهان، 1379.
11. ایرانی، م.، بررسی تأثیر عوامل شیمیایی آب دریا (سولفات و کالر) بر بعضی رویدادهای پایداری سنگ آهک، پایان‌نامه کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان، 1382.