Velocity Profile and Reynolds Shear Stress in Overflow Gabion Dam Crest

H. R. Sheibani and H. Bayyat
Engineering Department, Tehran Payam-e-noor University
Civil Engineering Department, Amirkair University

Abstract: A physical model of gabion overflow dams was studied to determine the velocity profile and Reynolds shear stress. Physical tests were done under two different conditions of dam crest, overflow dams with impermeable and with permeable crests. Instantaneous velocity components over dam crest were measured by an ADV (Acoustic Doppler Velocimeter) instrument. This
instrument is capable of measuring instantaneous velocity components with frequencies up to 25 Hz. Average velocity components and bed shear stress were extracted from ADV measurements. The results of this research show the effect of crest permeability on velocity and Reynolds shear stress. The magnitude of Reynolds shear stresses, horizontal velocity components, and absolute value of vertical velocity components under the permeable scenario are bigger than those of the impermeable scenario. Velocity distribution over the dam crest is different from the universal logarithmic profile.

Keywords: porous media – gabion dam – permeable bed – velocity profile – Reynolds shear stress – flood control – sediment – ADV

| فهرست علائم |
|------------------|------------------|
| مقدار ثابت | A |
| نامابند فطر داههای مصالح | D_{50} |
| شناب نل | g |
| عمق آب در کانال | h |
| زنبوری بستر | k_s |
| مؤلفه افقی سرعت لحظه‌ای | u |
| سرعت تغییر | u_r |
| سرعت برشی | u_* |
| ضریب تصحیح سرعت در رابطه اندازه حركت | β |
| پارامتری از جنس طول | δ_z |
| ضریب ون کارمن | κ |
| گرانریزی سینماتیک | ν |
| جرم مخصوص آب | ρ |
| نشان برش در کف | t_b |

1 مقدمه

بندهای توری سگی که عمداً به صورت سرپیچ شونده ساخته می‌شوند در طراحی آبخیزداری جابجایی خاصی دارند. آنها به مظاهر کرکل فرسایشی، تله اندازی رسوب و کاوش یک سیالپ در مسیر رودخانه و آب‌راه‌ها احداث می‌شود. یک بند بندهای توری سگی با هر هدفی که ساخته شود بعد از مدت زمان مخزن این ابزارهای از رسوب می‌شود و جریان آبراهه یا مخزن بالادست یا آبنما آن‌ها را وارد بندهای سر تبدیل می‌کند. هر چه رسوبات ابزارهای شده در مخزن ریزدی‌انگیز باشد نفوذ جریان از نمای بالادست بند کمتر خواهد بود و نفوذ جریان به داخل بندی متخلخل بند توده از سطح ناحیه نفوذی‌ناری بالادست صورت می‌گیرد. نفوذ سیال به داخل سطح ناحیه ناحیه، شرایط هیدرولوژیک خاصی را برای جریان کناری از روی رأس به وجود می‌آورد

استقلال، سال 1386، شماره 1، شهروپ 14
ناحیه انتهایی ورود جریان به داخل سطح وجود دارد. شکل (1) به طور شماتیک این دو حالت را نشان می‌دهد.

گونتا و پاودیل (۳) جریان در کانال‌ها سطح آزاد و کف متخلخل تفویضی را مورد مطالعه آزمایش‌ها قرار دادند. نتایج آزمایش‌ها نشان داد که توزیع لگاریتمی برای سرعت صادق است در کف کانال لنگر همگن و در فاصله ۰.۷ از کف کانال فرض شود و نیز ضریب ون کارمن از مقدار ۰.۷ که برای جریان بر روی سطح تفویض ناپایدار صادق است، به مقدار یک/۲/۷ بای کف کانال با کف تفویضی تغییر پیدا کند. معادله زیر برای توزیع سرعت پیشنهاد شده است.

\[\bar{u} = \frac{1}{\kappa} \ln \left(\frac{y + \delta}{k_s} \right) + A \]

با کمک دستگاه اندازه‌گیری سرعت ایدری، مولفه‌های سرعت لحظه‌ای در فضای دو بعدی اندازه‌گیری شده است. توزیع سرعت به دست آمده در عمق ضمن انپکش‌گیری شده است. سرعت در کف صفر نیست نیز گرادیان‌کمتری برای تغییرات سرعت در عمق را ارائه می‌دهد. به عبارت دیگر، وجود تفویض جریان در کف، توزیع سرعت حالت پیوسته‌تری را دارد.

در کف یک نوع جریان در کف، تنش برخی یون‌های از افزایش آزمایشگاهی درباره چگونگی توزیع سرعت در کانال مستقل از محدوده از ایجاد آب. برای تولید سطحی مورد نیاز سرعت در کافی کافی و در از ایجاد آب است. چن و چیو [۵] تحقیق حداکثر آرایه توزیع سرعت برای جریان کنترلی از کف کانال تفویضی میدوست.

می‌گیرد و با پیشرفت بیشتر در این محدوده این فاصله‌های
این در شکل 2 مشاهده می‌گردد که در این مدل آزمایشگاهی، داشته‌اند. آنها نیز ضمن تایید بافت‌های پیشین، توزیع زیر را برای سرعت پیشنهاد کردن.

\[
\frac{\dot{u} - u_k}{u_k} = \frac{1}{k} \ln \frac{y + \delta z}{\delta z} + \frac{v_s}{4u_k} \left(\frac{1}{\ln \frac{y + \delta z}{\delta z}} \right)^2
\]

در بررسی شرایط هیدرولیکی جریان‌های کاذبی از روی محیط‌های متخلف تحت تاثیر مطالعات آزمایشگاهی و ریاضی صورت گرفته است. بنابراین در مطالعه مستقیم بر روی شرایط آشفتگی جریان‌های کاذبی از روی بند توری سنجی مشاهده نمی‌شود.

2 - تجهیزات آزمایشگاهی

از توری سنجی با ارتفاع 30 عرض 52 و طول 24 سانتی‌متر بسته‌بندی به ضریض 21 × 10 سانتی‌متر، از توری‌های گالوانیز با جمجمه‌های دو پایه حضور می‌باشد. این سانتی‌متر ساخته شده است و با مصالح گرد گوشه، یا قطر متوسط (d50) 18 میلی‌متر و تخلخل (n) معادل 33/7 بر صد است. شکل 3 این مدل آزمایشگاهی به راحتی استفاده می‌کند. بنابراین آزمایش‌گاهی با عرض 52 سانتی‌متر، طول 56 متر قرارداده شده است. در کف کانال از جنس فولاد جهت جدایی آن از شیسته است. استقرار درجه‌ی افزایش سطح خرما و نیروی در بالای دسته انتها کانال، کنترل و تغییر سطح آب در باین دست سازه را بر عهده دارد. در پیچی نیز تحریک هر کدام حدود 50 لیتر در ثانیه بی‌بخاری کانال را نشان می‌دهد. مخزن آرام کندل‌های در مسیر بین بی‌بخاری و کانال قرار داشته و جریان ورودی را به کانال آرام می‌کند. بعد از فلوس و قبل از رسیدن به سریز اندمازه‌گیری جریان، فروشیدن افزایش جریان را مستحکم می‌کند و جریان ملایمی را برای اندمازه‌گیری به سریز می‌رساند. جریان خروجی از سیستم به یک سیستم توسط بی‌بخاری به کانال بنا کردنده می‌شود. توسط دستگاه‌های دو مولفه‌های لحظه‌ای سرعت اندمازه‌گیری شده، اطلاعات دریافتی از مسند دستگاه به پردازش کندل‌های در رابطه‌مند می‌شود و مولفه‌های لحظه‌ای سرعت در فاصله مشخص بین می‌شود. اگر دربردارنده سرعت با فرکانسی تا 25 هرتز از قابل‌پذیری‌ای این دستگاه است، آن‌ها نگهدارند دستگاه ای، در قاب‌یلیت حرفک به سه جهت طول، عرض و عمق کانال را موجب می‌شود. برای اندمازه گیری سرعت در مجاورت مزدا به‌دست ایجاد شده باشد. حجم نمونه بردارد 4 متر مکعب، دو سانتی‌متر در بالا و دو سانتی‌متر در پایین دارد. عدم ساخت روی 6 سانتی‌متر عون می‌شود (راهنمای استفاده از ای، 25-07-2001 [1]) لازم به ذکر است که چنین‌گونه بستر متخلف با مصالحی در هشت دامنه، مزرا و
سرعت‌های متوسط زمانی و تنش برخی رینولدز در مقطع‌های واقع در آزمایش‌های انجم شده در این تحقیق، این حداکثر فاصله برای

3. شرح آزمایش‌ها

مقطع آزمایش به فاصله 7 سانتی‌متری از ابتدا بند و برای

3.1. اندماژه‌گیری سرعت و تنش برخی در نظر گرفتند شده است. برای

3.1.1. جریان برای 29/15 لیتر در ثانیه انتخاب شده است. زمان

3.1.2. اندماژه‌گیری سرعت لحظاتی به دفعات مختلف برای 300، 500، 700، 900، 1800، 2700 و 3600 ثانیه انتخاب شده و

3.1.3. ملاحظه شده است با انتخاب زمان‌های بین از 900 ثانیه تغییری

در مقادیر متوسط حاصل شده توسط متغیرهای داده نمی‌شود

3.1.4. برای این زمان به عنوان زمان کافی برای دوره اندماژه‌گیری

سرعت لحظه‌ای تعین شد. آزمایش‌ها در دو حالت مختلف

بند با توجه نپذیرید و بند با توجه نپذیرید صورت گرفت تا

با توجه نپذیرید جریان در دو بند را بروی متغیرهای حاصله معنی

3.1.5. کرد. در شکل (3) تصویر برای بروده سنگی و در شکل (4)

تصویر شماتیک آن در دو حالت مختلف نماش گذاشته شده است. ارتفاع جریان در مقع

7/58 و در حالت دوم 7/58 سانتی‌متر گزارش می‌شود. تحلیل

نتایج خام آزمایش‌گاهی (سرع‌مقدار لحظه‌ای) با متره‌رای

شکل 3- شکل سمت چپ تاج نفوذ‌پذیر و سمت راست تاج نفوذ‌پذیر

مقدار برخی رینولدز

3.2. در توزیع سرعت برای جریان بر روی سطوح نفوذ‌پذیر به

3.2.1. لحظه‌های دیده‌بانی سایت‌های از توزیع لگاریتمی مقدار معادله (7)

3.2.2. تعبیه می‌گردد. برای جریان توسه به فاصله مقدار ثابت‌های

3.2.3. به ترتیب برابر 0.05 و 0.5 هستند.

\[
U^+ = \frac{1}{k} \ln Y^+ + A
\]

(7)

\[
U^+ = \frac{u_+}{V}, \quad Y^+ = \frac{u_+}{V}
\]

(8)

\[
\bar{u} = \frac{u_+}{k} \ln \frac{Y}{A} + \frac{u_+}{A} \ln u_+ + u_+ = \frac{u_+}{V} \ln \frac{Y}{A} + B
\]

(9)

در شرایط تاج با بستر نفوذ‌پذیر، با رسم منحنی مقدار

3.2.4. آزمایش‌گاهی \(\bar{u} \) در برای نمودار

3.2.5. شکل (6). مقدار \(u_+ \) و در

3.2.6. معادله توزیع سرعت به ترتیب زیر استخراج می‌شود.

\[
\kappa = 0.41
\]

\[
\frac{u_+}{k} = \sqrt{u_+} \quad \text{پس} \quad \tau_B = \rho u_+^2 = \frac{1}{2} k \frac{N}{m^2}
\]

\[
\text{بند:} \quad \text{پس} \quad A = \frac{1}{2} \frac{K}{u_+}
\]

\[
B = \frac{u_+}{K} \ln u_+ + u_+ = \frac{u_+}{A} \quad \frac{74}{774}
\]

17

استقبال، سال 32، شماره 1، شهریور 1386
شکل ۴ - شکل‌ها به ترتیب بالا مقطع طولی بند با تاج تفوذدیزیر، وسط مقطع طولی بند با تاج تفوذدیزیر و پایین بند با تاج تفوذدیزیر
شکل ۵ - مولفهای افقی و عمودی سرعت متوسط و تنش برخی روتولدز بر روی تاج بند

جریان بر روی بند با ناحیه نفوذ پیدا
جریان بر روی بند با ناحیه نفوذ ناپیدا

\[\overline{\nu} (\text{cm}^3/\text{s}) \]
\[\overline{V} (\text{cm}^3/\text{s}) \]
شاخص ۶ - توزیع سرعت چرخان روی بنده با سطح تاج نفوذپذیر

شاخص ۷ - مقایسه مقادیر سرعه‌های آزمایشگاهی بر روی تاج، با توزیع لگاریتمی مرسوم

متاوان بر توزیع لگاریتمی مرسوم است، گویش و پاویدل [۱۳] معادله ۱ نمونه‌ای از این توزیع است. انداده‌گیری‌های آزمایشگاهی در تحقیقات قبلی، همان طور که پیشتر نیز اشاره شد، نشان داده‌نگری که ضریب ون کارمن برای چرخان گذشته از روی میان‌مخلخل تحت فنود نفوذ ۰/۳۴ نیست. لذا تعداد مجولات موجود در معادله لگاریتمی سرعت بر روی میان‌مخلخل، بین‌های و A، نسبت به میان‌مخلخل غیر مخلخل از دو مجهول به سه مجهول افزایش پیدا کرده است و با مقایسه سرعه‌های آزمایشگاهی با توزیع لگاریتمی مرسوم سرعت، دیده می‌شود که مقادیر سرعت بر روی بنده با ناحیه نفوذپذیر، مقادیر بخشی از آنچه توزیع لگاریتمی ارائه می‌کند بهبود می‌یابد. این مقایسه در شکل (۷) نمایش داده شده است.

برای بررسی شرایط چرخان روی بنده با سطح تاج نفوذپذیر، پادار سرعت که مطلوب بر روی تاج داده‌نگری که توزیع سرعت بر روی میان‌مخلخل تحت فنود نفوذ، توزیعی لگاریتمی اما

استقلال سال ۲۳، شماره ۱۰، شهريور ۱۳۸۶
شکل 8 - توزیع تنش پریونلودز روی بند و با سطح ناقص نفوذ‌پذیر

نیم‌توان به ترتیبی که برای سرعت تناج سطح ناقص نفوذ‌پذیر عمل کرد برای شرایط با نفوذ پذیری تناج، مقدار تنش پریونلودز بر روی کف را به‌دست آورد.

چگالی و قیمت (A و C) در مطالعه خود بر روی جریان گذاری از ناحیه مخاطرات تحت نفوذ مقدار سرعتی یکدین ترتیب به‌دست آوردند که این سرعت باید با پریونلودز از مقدار تنش پریونلودز در عمق، مقدار این تنش بر روی مزر بوارود کردن و سپس از این مقدار، تنش پریشی بر روی کف و در نتیجه سرعت پریشی را نیز تعیین کردند. آن محققان اشاره داده که مکانیسم است پریونلودز با استفاده از نقطه‌نگاری مرس صورت گیرد. این اینتار نگارگاهی موجود در این تحقیق شرایط برداشت در فاصله نگاری به مخاطرات تحت نرفتاری را فراهم کرده، این روند به‌دست آمده‌اند که دارد سرعت‌های لاحق‌تری از فاصله بیشتری از شروع تناج پت‌بوده می‌توان احتمالاً اختلاف بیشتری بین تنش‌های پریشی در دو حالت وجود و عدم وجود نفوذ‌پذیری می‌خورد.

- توزیع سرعت روی بند و با کف تناج نفوذ‌پذیر

نفوذ شرایط در کف تناج بند توری سطح شرایط جدیدی برای پرچالشمل سرعت جریان بوجود می‌آورد. برای ملاحظه این شرایط جدیدی مقداری از سرعت‌های نگارگاهی با توزیع

نیم‌توان به ترتیبی که برای سرعت تناج سطح ناقص نفوذ‌پذیر عمل کرد برای شرایط با نفوذ پذیری تناج، مقدار تنش پریشی بر روی کف را به‌دست آورد.

چگالی و قیمت (A و C) در مطالعه خود بر روی جریان گذاری از ناحیه مخاطرات تحت نفوذ مقدار سرعتی یکدین ترتیب به‌دست آوردند که این سرعت باید با پریونلودز از مقدار تنش پریونلودز در عمق، مقدار این تنش بر روی مزر بوارود کردن و سپس از این مقدار، تنش پریشی بر روی کف و در نتیجه سرعت پریشی را نیز تعیین کردند. آن محققان اشاره داده که مکانیسم است پریونلودز با استفاده از نقطه‌نگاری مرس صورت گیرد. این اینتار نگارگاهی موجود در این تحقیق شرایط برداشت در فاصله نگاری به مخاطرات تحت نرفتاری را فراهم کرده، این روند به‌دست آمده‌اند که دارد سرعت‌های لاحق‌تری از فاصله بیشتری از شروع تناج پت‌بوده می‌توان احتمالاً اختلاف بیشتری بین تنش‌های پریشی در دو حالت وجود و عدم وجود نفوذ‌پذیری می‌خورد.

- توزیع سرعت روی بند و با کف تناج نفوذ‌پذیر

نفوذ شرایط در کف تناج بند توری سطح شرایط جدیدی برای پرچالشمل سرعت جریان بوجود می‌آورد. برای ملاحظه این شرایط جدیدی مقداری از سرعت‌های نگارگاهی با توزیع

نیم‌توان به ترتیبی که برای سرعت تناج سطح ناقص نفوذ‌پذیر عمل کرد برای شرایط با نفوذ پذیری تناج، مقدار تنش پریشی بر روی کف را به‌دست آورد.

چگالی و قیمت (A و C) در مطالعه خود بر روی جریان گذاری از ناحیه مخاطرات تحت نفوذ مقدار سرعتی یکدین ترتیب به‌دست آوردند که این سرعت باید با پریونلودز از مقدار تنش پریونلودز در عمق، مقدار این تنش بر روی مزر بوارود کردن و سپس از این مقدار، تنش پریشی بر روی کف و در نتیجه سرعت پریشی را نیز تعیین کردند. آن محققان اشاره داده که مکانیسم است پریونلودز با استفاده از نقطه‌نگاری مرس صورت گیرد. این اینتار نگارگاهی موجود در این تحقیق شرایط برداشت در فاصله نگاری به مخاطرات تحت نرفتاری را فراهم کرده، این روند به‌دست آمده‌اند که دارد سرعت‌های لاحق‌تری از فاصله بیشتری از شروع تناج پت‌بوده می‌توان احتمالاً اختلاف بیشتری بین تنش‌های پریشی در دو حالت وجود و عدم وجود نفوذ‌پذیری می‌خورد.
شکل ٩ - منحنی مقادیر نرم‌الایز شده سرعت بر روی تاب عبوری نفوذ‌پذیر به ازای \(\delta z \) های مختلف.

جدول ١ - مقادیر ثابت‌های \(\kappa \) در معادله توزیع سرعت لگاریتمی بر روی محیط متخلف.

<table>
<thead>
<tr>
<th>(\delta z)</th>
<th>(\kappa)</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.33D_{50})</td>
<td>(\approx 0.89)</td>
<td>(22/28)</td>
</tr>
<tr>
<td>(D_{50})</td>
<td>(\approx 2)</td>
<td>(22/27)</td>
</tr>
<tr>
<td>(0.65D_{50})</td>
<td>(\approx 0.65)</td>
<td>(19/23)</td>
</tr>
<tr>
<td>(0.75D_{50})</td>
<td>(\approx 0.75)</td>
<td>(18/24)</td>
</tr>
<tr>
<td>(0.85D_{50})</td>
<td>(\approx 0.85)</td>
<td>(17/29)</td>
</tr>
<tr>
<td>(0.95D_{50})</td>
<td>(\approx 0.95)</td>
<td>(16/19)</td>
</tr>
</tbody>
</table>

به ازای \(\delta z \) های مختلف، \(A \) در معادله توزیع سرعت لگاریتمی بر روی محیط متخلف، \(D_{50} = \frac{1}{A} \) کمیت متفاوت.

نحوی است که مقادیر افقی جریانی متقابل توجه‌ای را در درون بندن متخلف بند به‌خود اختصاص می‌دهند و این مقادیر افقی در تمامی عمق و جو دارند. از این رو این افت‌های جو دارد که به‌ترتیب حاضر، فاصله کف‌ت سطح مینیا. یعنی \(\overline{\delta z} \)، مقادیر بیشتری از آنچه این محاسبان در تحقیق خود به‌دست اوردند را دارد. به‌هرحال به‌این \(\delta z \) های متفاوت، منحنی \(\ln\frac{y + \delta z}{k_s} \) در معادله \(U^+ = \frac{1}{\kappa} \ln \frac{y + \delta z}{k_s} + 8.5 \) ارائه شده در معادله (۱) و نیز با توزیع سرعت جریان بر روی سطح زیر معادله (۹)، انجام گرفته است.

\[
U^+ = \frac{1}{\kappa} \ln \frac{y + \delta z}{k_s} + 8.5
\]

با توجه به معادله (۱)، منحني \(U^+ \) در برقراری رسم \(\ln \frac{y + \delta z}{k_s} \) می‌شود و چنانچه منحنی که به‌دست می‌آید یک خط باشد، توزیع واقعی سرعت یک توزیع لگاریتمی است و از شیب و عرض از مبدا خط به‌دست آمده می‌توان ضریب معادله را برای اطمینان با واقعیت حاصل کرد. جریان بر روی و درون بند نیروی سنتیک به

استقلال. سال ۲۶، شماره ۱، شهریور ۱۳۸۶

ازمایش و مشخصات فیزیکی مصالح معلومند

\[u_0 = 4/17 \text{ cm/s}, \quad D_{50} = 1/8 \text{ cm}, \quad k_s = 1/8 \text{ cm} \]

منحنی (9) نشان می‌دهد که پروپت سرعت بر روی موقعیت متغیر یا (به انگلیسی: نسبت) در اثر توزیع دو تابعی در دو اثر مقدار دارد. به طور کلی، این مقادیر را با این مقادیر \(k = 24 / 50 \text{ cm} \), \(D_{50} = 5 / 80 \text{ cm} \), از دو نقطه یکپاره که گوشی، پاودیل [3] از آزمایش‌های خود به دست آورده، حاصل می‌شود. شکل (10) مقایسه بین سرعه‌های نرم‌الابز شده آزمایشگاهی با های فوق الذکر را نشان می‌دهد توزیع سرعت گوشی، پاودیل [3] نشان می‌دهد. شرایط هیدرولوژیکی جریان در درون بدن صفحات بین تری سنگی و تفاوت این دو در تری سنگی هیدرولوژیکی جریان در کانال با سرعت توزیع متغیر در سرعت توزیع نرم‌الابز شده آزمایشگاهی و سرعت‌های است. مدل فیزیکی این فیزیکی از (12) در جدول (1) برای شرایط فیزیکی و هیدرولوژیکی اقدام به حاضر است و نیروی ناپای و ان نسبت این تابعی در اثر تشکیل درون بدن سطح زیر رنگی که باید در اثر دقت این مطالعه ان دقت مورد نظر ناشده است. هدف تحقیق عمدتاً مقایسه نشان دهنده بررسی ریالندر و تصویر سرعت در دو شرایط مختلف فیزیکی از سطح ثبت بدن تری سنگی سری‌بردند بوده است. یکی شرایط عملی ناج بدن که امکان تفویض جریان در سطح ثبت وجود دارد و دیگری

23

استقلال، سال 23، شماره 1، شهریور 1386
شکل ۱۱ - مقایسه سرعت‌های آزمایشگاهی با توزیع لگاریتمی بر روی سطح زیر

موفقیت افقی سرعت جریان بر روی ناحیه نفوذ‌پذیر به‌مراتب بیش از موفقیت افقی سرعت تحت شرایط بدون نفوذ است.

- موفقیت قابل جریان برای مقطعه مورد آزمایش در ناحیه تاب و برای شرایط بدون وجود نفوذ در سطح ناحیه، مقدار دمایی ولي‌کوچکی را به‌خود اختصاص می‌دهد در حالت که برای جریان گذشته از روی ناحیه نفوذ‌پذیر، موفقیت قابل سرعت مقدار منفی و با شرایط (قدرت مطلق) بین‌شیری در دارایی در شرایط مشابه گذر دیس پیکسان از روی ناحیه و برای مقطعه مشابه از ناحیه تحت شرایط عدم نفوذ است.

- برخورد سرعت بر روی ناحیه تاب دوری سنسگی تحت نفوذ از یکوانتی بیشتری برخوردار است. برخورد سرعت در جریان بر روی بستر مخلوط تحت نفوذ موجب افزایش سرعت گردش گذشته در دارایی در بند مخلوط بند با شرایط گذر جریان بر روی آن است. همچنین سرعت‌های لغزش بین‌شیری بروی بند در مقایسه با این نوع محیط‌های مخلوط واقع می‌شود.

- تابی بین‌شیری برای معادله توزیع سرعت در جریان بر روی بستر مخلوط تحت نفوذ، برای جریان گذشته از روی بند توری سنسگی صدق نمی‌کند.

- شرایط تامعمی که با گذاردن صفحه فلزی بر روی سطح ناحیه، از نفوذ جریان به داخل آن سطح ممنع‌نشده به عمل آمده است. این مقایسه کمک می‌کند تا بدانیم چنانچه بتوان در شرایط واقعی از نفوذ جریان در سطح ناحیه تاب بر روی سنسگی ممانعت شود، تنها در آن سطح کاهش می‌یابد. نیاز آگاه شدن کم تابیتی‌های بردی معاله شده توزیع سرعت در جریان بر روی بستر‌های مخلوطی تحت نفوذ، برای جریان گذشته از روی بند صدق نمی‌کند.

۶ - نتیجه‌گیری

نتایج به‌دست آمده از آزمایش‌های آزمایشگاهی مدل بند توری سنگی و بررسی بر روی آنها مورد بررسی و به‌دست داده است.

- توزیع سرعت بر روی بند با تاج نفوذ‌پذیری، توزیع لگاریتمی است. اما مقدار سرعت‌های آزمایش‌گاهی روانی داده‌های که در سرعت‌های واقعی بین‌شیری بروی بند دست‌آمده است از توزیع لگاریتمی مرسوم به‌دست می‌آید.

- توزیع سرعت بر روی بند با تاج نفوذ‌پذیری توزیع لگاریتمی ولی مقدار با توزیع لگاریتمی مرسوم برای سطوح نفوذ‌پذیری است. سرعت‌های نمونه‌ای شده واقعی در هر سطح بیش از سرعت‌های اندازه‌گیری شده توسط این توزیع لگاریتمی است.

- در شرایط مشابه و گذر دیس پیکسان از روی بند توری سنگی.
1. ADV (Acoustic Doppler Velocimeter)
2. no slip condition
3. sampling volume