دوره 26، شماره 2 - ( 10-1386 )                   جلد 26 شماره 2 صفحات 15-29 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

A. Fathi, A. A. Aghakuchak, and Gh. A. Montazer. Evaluating Weld Magnification Factor in Welded Tubular Joints Using Artifitial Neural Networks. jame. 2008; 26 (2) :15-29
URL: http://jame.iut.ac.ir/article-1-432-fa.html
علی فتحی ، علی‌اکبر آقاکوچک و غلامعلی منتظر . تعیین ضریب بزرگنمایی جوش در اتصالات لوله‌ای به وسیله شبکه‌های عصبی مصنوعی. مواد پیشرفته در مهندسی. 1386; 26 (2) :15-29

URL: http://jame.iut.ac.ir/article-1-432-fa.html


چکیده:   (2691 مشاهده)
در اتصالات لوله ای جوشی زمانی که عمق ترک خستگی کمتر از 20 درصد ضخامت جدارۀ عضو اصلی است، رشد ترک بیش از هر چیز تحت اثر هندسۀ جوش در اتصال است. از این رو حل اتصال T شکل و ضریب بزرگنمایی جوش (Mk) ابزار مناسبی برای محاسبۀ سرعت رشد ترک در این محدوده اند. در این تحقیق توانایی شبکه های عصبی مصنوعی برای تعیین Mk در اتصالات T شکل مورد آزمون قرار گرفته است. چهار شبکه از نوع پرسپترون چندلایه (MLP) طراحی و آموزش داده شده اند تا مقادیر Mk را در عمیقترین نقطۀ ترک و نقاط انتهایی آنها تحت تنشهای غشایی و خمشی تخمین بزنند. داده های استفاده شده برای آموزش و آزمون شبکه ها از داده های معتبر اجزای محدود استخراج شده است. مقایسۀ بین نتایج به دست آمده از شبکه ها و جدیدترین روابط منتشر شده برای محاسبۀ Mk نشان دهندۀ قابلیت بالای شبکه-های عصبی برای استفاده در این زمینه است.
متن کامل [PDF 1079 kb]   (397 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: ۱۳۹۳/۸/۳

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به نشریه علمی پژوهشی مواد پیشرفته در مهندسی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb

تحت نظارت وف بومی آسپا-وف