تأثیر شرایط به‌همه مدل حمام الکترولس روی کیفیت پوشش‌های ضداصطکاک
کامپوزیتی نیکل، فسفر، سولفور مولیبدن

محمدرضا طاهری‌فردی، احمد ساعدی‌فر و جلال حجازی

دانشگاه علم و صنعت ایران، دانشگاه صنعتی اصفهان

(دریافت مقاله: ۱۳۸۷/۵/۲۶ - دریافت نسخه نهایی: ۱۳۸۷/۸/۲۷)

چکیده - به‌دیل خواص مناسب سولفور مولیبدن از نظر ثابتیت خود روشگاری و پایداری در دمای‌های نسبتاً بالا، این ماده جانشین مناسبی برای ایجاد کامپوزیت نیکل، فسفر، سولفور مولیبدن است [1]. در این مقاله تأثیر عوامل مختلف پهن‌سده چند روی زیره‌های ضداصطکاک است. از آنجاییکبیان کردند که برای تشکیل نیکل، فسفر، سولفور مولیبدن (Ni-P-MoS2) است، ممکن است با توجه به اینکه برای اندازه‌گیری سرعت رسوب، نیاز به ارتفاع مناسبی، فسفر، سولفور مولیبدن، آزمایش‌های ساختار، قالب‌گیری و تریگر ارائه شود. تا این طور است به‌همه مدل حمام از مناسبی است که بتواند پهن‌سده چند روی زیره‌های ضداصطکاک است.

The Effects of Agitation on the Properties of Antifriction Ni-P-MoS2 Composite Coatings

M. Monir-Vaghefi, A.Saatchi and J.Hejazi

University of Science and Technology, Isfahan University of Technology

ABSTRACT- In this work the effects of various methods of agitation on the properties of electroless Ni-P-MoS2 composite coatings were investigated. Magnetic stirring as well as purging the solution with gas (Air, Oxygen, Nitrogen) were used. Plating rate, chemical composition, MoS2 distribution, and hardness of the deposit were measured. Topography of coating was studied with metallography and scanning electron microscopy. It was concluded that purging the solution with air produced optimum results, i.e. high rate of deposition, uniform distribution of MoS2 particles and appropriate surface morphology.

* دانشجوی دکترا ** دانشیار *** استاد

استقلال، سال ۱۵، شماره ۱، شهریور ۱۳۷۵
سولفورمولیبیدن (MoS₂) دارای ساختارهگزگونالبدونریکی از جاذبه‌برداری‌های حاوی چگاه‌های جامد‌کننده [1]. کمی تغییر در کتیزی فلزی شیمی با پیش‌بینی از مدل‌سنجی، تغییر میکروسکوپ الکترونی ریوی سولفورمولیبیدن به‌کار رفته در آزمایش‌ها در شکل (1) نشان داده شده است. سولفورمولیبیدن با استحکام کمیلیت فعدا می‌تواند به عنوان یکی از ماده‌های دهنده ابزاری برای ساختن نمایندگی سطحی و یا به صورت تابش‌های هم‌سایگی در نیوده‌گزگی یا عمل کننده در حالت کم روشنی‌گزگی غیره‌پای یا با داده‌های قابل قبول تبدیل برای برای بهینه‌سازی در محیط‌های سخت است. اطلاعات کمی در زمینه تأثیر بهبود زدن حمام‌های الکتروس در دسترس است. احتمالی بهبود سرتختی فنی می‌تواند به بهبود کیفیت حمام به‌عنوان یکی از سه طبقه تحت پوشش قرار گیرد (1) و (2) هستند که روشنی‌گزگی محسولات و رشد نیز از سطح می‌شود.

در حمام‌های جدید الکتروس پمپ کردن سولفورمولیبیدن و پیشلبردن آن به منظور بهبود عملکرد حمام صورت می‌گیرد تا کوچک‌ترین ذرات خصوصاً آهن، نیکل و سر در اندام‌های میکروانی از حمام خارج و کم‌تی حمام به حالت اولیه برگرد (3). جهت شاربایی دقیقاً محققان اجرای قوانین پوششکشی کامپوزیت الکترولیک سیکل فسفر است زیرا در این سیستم‌ها، عند مورد نظر برای ایجاد پوشش

1 - مقدمه
سولفورمولیبیدن (MoS₂) دارای ساختارهگزگونالبدونریکی از جاذبه‌برداری‌های حاوی چگاه‌های جامد‌کننده [1]. کمی تغییر در کتیزی فلزی شیمی با پیش‌بینی از مدل‌سنجی، تغییر میکروسکوپ الکترونی ریوی سولفورمولیبیدن به‌کار رفته در آزمایش‌ها در شکل (1) نشان داده شده است. سولفورمولیبیدن با استحکام کمیلیت فعدا می‌تواند به عنوان یکی از ماده‌های دهنده ابزاری برای ساختن نمایندگی سطحی و یا به صورت تابش‌های هم‌سایگی در نیوده‌گزگی یا عمل کننده در حالت کم روشنی‌گزگی غیره‌پای یا با داده‌های قابل قبول تبدیل برای بهینه‌سازی در محیط‌های سخت است. اطلاعات کمی در زمینه تأثیر بهبود زدن حمام‌های الکتروس در دسترس است. احتمالی بهبود سرتختی فنی می‌تواند به بهبود کیفیت حمام به‌عنوان یکی از سه طبقه تحت پوشش قرار گیرد (1) و (2) هستند که روشنی‌گزگی محسولات و رشد نیز از سطح می‌شود.

در حمام‌های جدید الکتروس پمپ کردن سولفورمولیبیدن و پیشلبردن آن به منظور بهبود عملکرد حمام صورت می‌گیرد تا کوچک‌ترین ذرات خصوصاً آهن، نیکل و سر در اندام‌های میکروانی از حمام خارج و کم‌تی حمام به حالت اولیه برگرد (3). جهت شاربایی دقیقاً محققان اجرای قوانین پوششکشی کامپوزیت الکترولیک سیکل فسفر است زیرا در این سیستم‌ها، عند مورد نظر برای ایجاد پوشش

2 - آزمایشها
نمونه‌ها، از انواعی ساده و سنگنزن انتخاب‌شدند و پس از آماده‌کردن سطح تحت عملیات حفری‌داری و شستشوی لازم قرار گرفت و سپس در بیک حمام الکترولیس تیکل، فسفر تجارتی آمیزی به مدت 5 دقیقه پوشش اولیه داده شد و گرم شد و به نمونه‌ها بی به حمام الکترولیس کامپوزیتی که در آن ذرات سولفور مولیبیدن شناور بودند منتقل شدند. قبل از اضافه کردن ذرات سولفور مولیبیدن به حمام، ذرات با استحکام موادی‌شستشو و سسپ سپس در محلول 5 درصدی تری‌فلورید، برای خروج ناخالصی‌ها آماده قرار گرفتند. سپس ذرات معداً شسته شدند و شکل دادند.

برای اندازه‌گیری ضخامت از نگاه‌های ابعادی به وسیله SEM شکل 1- تصویری از سولفور مولیبیدن با کار رفته در آزمایش‌ها.
مقاله ۲ - تأثیر میزان بارگذاری ذرات MoS۲ در حمام روی سرعت رسوب میکروتراپی با تغییرات ظریف و بزرگ در حمام ۱۵ درجه هوا

در تحقیق تابث در نظر گرفته شد که میزان بارگذاری ذرات MoS۲ در حمام ۱۵ درجه هوا به طور معنی‌داری با تغییرات ظریف و بزرگ در حمام کاهش می‌یابد.

۳-۲ - تأثیر میزان بارگذاری ذرات MoS۲ در حمام روی سرعت رسوب مولیبدن

در تحقیق تابث در نظر گرفته شد که میزان بارگذاری ذرات MoS۲ در حمام ۱۵ درجه هوا به طور معنی‌داری با تغییرات ظریف و بزرگ در حمام کاهش می‌یابد.

۳-۲ - تأثیر میزان بارگذاری ذرات MoS۲ در حمام روی سرعت رسوب مولیبدن

در تحقیق تابث در نظر گرفته شد که میزان بارگذاری ذرات MoS۲ در حمام ۱۵ درجه هوا به طور معنی‌داری با تغییرات ظریف و بزرگ در حمام کاهش می‌یابد.

۳-۲ - تأثیر میزان بارگذاری ذرات MoS۲ در حمام روی سرعت رسوب مولیبدن

در تحقیق تابث در نظر گرفته شد که میزان بارگذاری ذرات MoS۲ در حمام ۱۵ درجه هوا به طور معنی‌داری با تغییرات ظریف و بزرگ در حمام کاهش می‌یابد.

۳-۲ - تأثیر میزان بارگذاری ذرات MoS۲ در حمام روی سرعت رسوب مولیبدن

در تحقیق تابث در نظر گرفته شد که میزان بارگذاری ذرات MoS۲ در حمام ۱۵ درجه هوا به طور معنی‌داری با تغییرات ظریف و بزرگ در حمام کاهش می‌یابد.

۳-۲ - تأثیر میزان بارگذاری ذرات MoS۲ در حمام روی سرعت رسوب مولیبدن

در تحقیق تابث در نظر گرفته شد که میزان بارگذاری ذرات MoS۲ در حمام ۱۵ درجه هوا به طور معنی‌داری با تغییرات ظریف و بزرگ در حمام کاهش می‌یابد.

۳-۲ - تأثیر میزان بارگذاری ذرات MoS۲ در حمام روی سرعت رسوب مولیبدن

در تحقیق تابث در نظر گرفته شد که میزان بارگذاری ذرات MoS۲ در حمام ۱۵ درجه هوا به طور معنی‌داری با تغییرات ظریف و بزرگ در حمام کاهش می‌یابد.
3-۴- تأثیر میزان به هم زدن حمام الکترولز بر سرعت پوشش

پوشش کامپوزیتی نیاز به سولفور مولبدن حاوی ذرات نرم در زمینه سنگان است. با تاپاراین در مقابل سختی انتشار‌کننده‌ی اکسیژن، پراکندگی ماده مورد استفاده مولبدن سولفور مولبدن حدود ۱/۲۵ در مقیاس موس است [۸]. میزان سولفور مولبدن در حمام ۱۰ درصد وزنی انتخاب شد. تأثیر سختی پوشش بر حساب میزان به هم زدن حمام مطالب شکل (۵) به میزان ملایم شکل که با انرژی سرعت به هم زدن سختی پوشش به هم زدن کاهش یافته است.

3-۳- تأثیر شرایط به هم زدن حمام الکترولز روی توپوگرافی سطح پوشش

مقدار سولفور مولبدن در حمام ۵گرم در لیتر انتخاب شد. شرایط کردن ذرات سولفور مولبدن از روی دیدن با هوا، اکسیژن، از و روش مناطقی با سرعت مختلف استفاده شد. زمان آزمایش ۴ ساعت بود و بررسی‌های توپوگرافی سطحی توسط میکروسکوب الکترونی روی شکل‌های کپاسیت (۶) و (۷) به هدف آماده‌سازی.
شکل 4- تأثیر سرعت به مه دهن و نوع مه دهن حمام روی سرعت روسپ پوشش کامپوزیت اکترولس Ni-P-MoS₂ پارگانی ۱۰ گرم در لیتر

۴- بررسی تأثیر

۴-۱- افزایش میزان پارگانی درات سولفور مولیبدن در حمام منجر به کاهش سرعت راسب شدن می‌شود. این کاهش در حالتی که به مه دهن حمام با گاز بیشتر از مه دهن مغناطیسی است (شکل ۲) به نظر می‌رسد آفزایش بیشتر از حد ذرات سولفور مولیبدن خطر پیش‌آمده شدن حمام را افزایش می‌دهد و با حداقل باعث کننده سرعت راسب شدن و غیر اتصالی بودن حمام می‌شود. بنابراین در یک میزان پارگانی مطلوب ذرات در حمام باعث سرعت راسب شدن را به‌وسیله سایر عوامل مثل تغییر در سرعت به مه دهن افزایش داد.

۴-۲- افزایش سرعت به مه دهن حمام که برای شناور کردن ذرات سولفور مولیبدن صورت می‌گیرد باعث کاهش سرعت راسب شدن می‌شود. این کاهش هنگامی که به مه دهن با مه دهن کاهش نیست به به مه دهن مغناطیسی بیشتر است (شکل ۳). بنابراین با افزایش مقدار ذرات سولفور مولیبدن داشته باشید با وجود آفزایش ذرات ریز پایه بایستی دقت به تغییر درصد ذرات در پوشش کامپوزیت می‌باشد (شکل ۳). لازم به یاداری است که درصد ذرات در پوشش کامپوزیت اکترولس شیاه مه دهن که می‌تواند خطر تجمع در حلالی که به مه دهن مغناطیسی
شکل ۷- تصاویر پوشش کامپوزیت الکترولیت نیکل-فسفار سولفورمولبدن تحت سرعت‌های مختلف به هم زدن مغناطیسهٔ زمان آبکاری ۳ ساعت
الف - ۲۰۰ دور در دقیقه
ب - ۲۵۰ دور در دقیقه
د - ۳۰۰ دور در دقیقه
ج - ۳۵۰ دور در دقیقه

تایبچه نشان می‌دهد که درصد ذرات سولفور مولبدن در پوشش تابع زاویه نمونه پایه نسبت به وضعیت قائم در حمام است. به همین تأثیر در حالی که همه منابع حمام مشابه باشد پیشرفت است (شکل ۴).

۴-۵- افزایش سرعت به هم زدن حمام باعث کاهش سطح پوشش می‌شود (شکل ۵). از اینجایی که با افزایش سرعت به هم حمام وجود درد.

۴-۶- گرچه با افزایش سرعت به هم زدن حمام درصد ذرات شناور سولفور مولبدن افزایش می‌یابد و در نتیجه مقدار سولفور مولبدن درپوشش افزایش می‌یابد و به همین دلیل مقدار نشست سولفور مولبدن در پوشش اثر می‌گذارد (شکل ۴).
پرورش کامپوزیت Ni-P-MoS۲ تحت سرعت‌های مختلف دمیدن در حمام زمان آبگاری ۲ ساعت

شکل ۸- تصاویر

ب - ۲/۵ لیتر در دقیقه

الف - ۲ لیتر در دقیقه

ج - ۲/۵ لیتر در دقیقه

زدن، سرعت رسوب کاهش می‌یابد در نتیجه سختی‌های به‌دست آمده از پروپانول با ضخامت کمتر پایین خواهد بود.

۴- تغییر در شدت به‌هم زدن و نوع به‌هم زدن روی ترپوگرافی سطحی پرورش کامپوزیت Ni-P-MoS۲ اثر می‌گذارد (شکل‌های ۷-۹ و ۱۰). در حالتی که پرورش کامپوزیت در حمام با به‌هم زدن با گاز تشکیل شده باشد ترپوگرافی سطحی از پستی و بلندی کمتری نسبت به حالت به‌هم زدن محتوایی برخوردار است (مقایسه شکل ۶ و ۱۰). این را یادبرده به شرایط جایگزین

پیشر و سرعت رسوب کمتر نسبت داد.

هنگامی که سرعت به‌هم زدن محتوایی پایین باشد پستی و بلندی ترپوگرافی سطحی نشان دهنده حالت جریان اغتشاشی است.
شکل 9- تصاویر پوشش کامپوزیت Ni-P-MoS₂ تحت سرعتهای مختلف دیدن کسیون در حمام، زمان آبگیری ۴ ساعت

الف - ۲ لیتر در دقیقه

د - ۲/۵ لیتر در دقیقه

ج - ۳/۵ لیتر در دقیقه

شناخت ماده ذرات سنگین سولفور مولیبدن با وزن مخصوص ۴/۸ در حمام با وزن ۱/۵۰ شوید. بنابراین در روش به هم مختلط می‌شود.

۵-۵ - روش به هم‌زن با هوا به عنوان بهترین روش در فرآیند آبگیری پوشش کامپوزیت نیکل، فسفور مولیبدن به لحاظ کیفیت پوشش تشخیص داده شد.

۵-۴ - خطر تجمد ذرات سولفور مولیبدن در پوشش در حالتی که به هم‌زن حمام به روش مختلطی باشد نسبت به روش‌های دیگری با گاز بیشتر است.

۵-۳ - در سرعتهای بالای به هم‌زن با گاز ازت حمام الکترولیس کامپوزیت مواجه با تاپایداری می‌شود.

نتیجه‌گیری در این مقاله تأثیر شرایط به هم‌زن حمام بر برایهای مختلف
شکل ۱۰- تصاویر پوشش کامپوزیت Ni-P-MoS$_2$ تحت سرعت‌های بالای دمیدن ازت در حمام، زمان آگکاری ۴ ساعت SEM

ب - ۲/۳ لیتر در دقیقه
الف - ۲/۵ لیتر در دقیقه
د - ۲/۵ لیتر در دقیقه
ج - ۲/۵ لیتر در دقیقه

واژه‌نامه

میکروسکوب الکترونی روبشی: scanning electron microscope (SEM)

۵-۴ در روش بهم زدن با هوا با سرعت ۲/۵ تا ۲/۶ لیتر در دقیقه پوشش کامپوزیتی نیکل، فسفر، سولفوردزگری مولبدن‌دار، بالابردن درصد سولفوردزگری مولبدن پوشه ضمن ایجاد پوشش از نظر زیری سختی و ضخامت نیز مطلوب خواهد بود.

۵-۵ وجود جریان‌های لایه‌ای و افتتاکشی حمام روی توله‌گرایی سطح پوشش کامپوزیتی نیکل، فسفر، سولفوردزگری مولبدن اثر می‌گذارد. این اثر در حالتی که حمام با گاز بهم زده شود نسبت به حالتی که با روش مغناطیسی بهم زده شود کاملاً منتفی است.
5. Ramesh, C. S., Sehadri, S. K., and Layer, K. G. L., "Characteristics of Nickel-Flyash Electro-