تهیه نانوپودر ایتریا آلائیده‌‌ شده با Nd3+ و+La3 به‌روش سل-ژل احتراقی

نویسندگان

1 1- دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، شاهین شهر، اصفهان

2 2- دانشکده شیمی، دانشگاه صنعتی اصفهان

چکیده

در این تحقیق، نانوپودر ایتریا آلائیده‌‌ شده با لانتانیم و نئودیمیم به‌روش سل-ژل احتراقی تهیه شد. اسید سیتریک و گلایسین به‌ترتیب به‌عنوان عامل ژل­ساز و احتراق استفاده شد. تأثیر نسبت ­­های مولی اسید سیتریک به گلایسین بر اندازه­ و مورفولوژی دانه ­ها بررسی شد. برای ارزیابی نمونه­ بهینه شده از آزمون­ های پراش‌سنج پرتوایکس (XRD)، تصاویر میکروسکوپی الکترونی روبشی گسیل میدانی (FESEM)، میکروسکوپ الکترونی عبوری (TEM)، تجزیه حرارتی (TG-DTA)، طیف­بینی مادون قرمز با تبدیل فوریه (UV-Vis) و طیف­بینی تبدیل فوریه مادون‌ قرمز (FTIR) استفاده شد. نمونه بهینه، با استفاده از نسبت مولی اسید سیتریک به گلایسین برابر با ۰۶/۱: ۰۶/۱، دارای محدوده اندازه­دانه ۴۰-۳۰ نانومتر و مورفولوژی کاملاً کروی است و هم‌چنین فاقد آگلومره بوده و تراز ­انرژی فرعی برابر با ۲۹/۳ الکترون ولت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of La3+ and Nd3+ co-Doped Yttria Nanopowder by Sol-Gel Combustion Method

نویسندگان [English]

  • S. Shirinparvar 1
  • R.S. Razavi 1
  • R.S. Razavi 1
  • F. Davar 2
  • F. Davar 2
  • M.R. Loghman-Estarki 1
  • S. Ghorbani 1
چکیده [English]

In this research, the nanopowders of lanthanum and neodymium co-doped yttria were synthesized by sol-gel combustion method. Citric acid and glycine were used as the gel maker and fuel respectively. The effect of molar ratio of citric acid to glycine on the grain size and morphology was evaluated. The optimized products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), UV–visible (UV–Vis), thermal gravimetric-differential thermal analysis (TG/DTA), and Fourier transform infrared spectrometer (FTIR). The optimized products which are synthesized with a molar ratio citric acid to glycine 1.06:1.06 have an average grain size of 30-40nm with spherical morphology, and without agglomeration. Also, their band gap is 3.29eV.

کلیدواژه‌ها [English]

  • Lanthanum and neodymium co-doped yttria
  • Citric acid
  • Glycine
  • Sol-gel combustion
  • morphology
1. Akio, I., and Yan Lin, A., “Ceramic Laser Materials”, Nature Photonics, Vol. 2, pp. 721-727, 2008.
2. Collard. J., Duncan, R.C., Pressley, R.J., Sterzer, F., and Walsh, T:, “Interim Engineering Solid State Laser Exportations”, Defense Technical Information Center, USA, Vol. 2, pp.5-21, 1964.
3. Hatch, S.E., Parsons, W.F., and Weagley, R.J., "Hot‐Pressed Polycrystalline CaF2: Dy2+ Laser", Journal of Applied Physics, Vol. 58, pp. 153-154, 1964.
4. Greskovich, C., and Wood, K.N., “Fabrication of Transparent ThO2-Doped Y2O3”, International Journal of American Ceramic Society, Vol. 52,
pp. 473–478, 1973.
5. Greskovich, C., and Chernoch, J.P., “Improved Polycrystalline Ceramic Laser”, Journal of Applied Physics, Vol. 45, pp. 4495–4502, 1974.
6. With, G., and Dijk, H.J.A., “Translucent Y3Al5O12 Ceramic”, Materials Research Bulletin, Vol. 19,
pp. 1669–1674, 1984.
7. Sekita M., Haneda, H., Yanagitani, T., and Shirasaki, S., “Induced Emission Cross Section of Nd: YAG Ceramics”, Journal of Applied Physics, Vol. 67,
pp. 453–458, 1990.
8. Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida, K., “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers”, International Journal of American Ceramic Society, Vol. 78, pp. 1033–1040, 1995.
9. Lu, J.R., Lu, J.H., and Murai, T., “Nd3+:Y2O3 Ceramic Laser”, Journal of Applied Physics, Vol. 40, pp. 12-77, 2001.
10. Sardar, D.K., Dee, D.M., Nash, K.L., Yow, R.M., and Gruber, J.B., “Optical Absorption Intensity Analysis and Emission Cross Sections for the Intermanifold and the Inter-Stark Transitions of Nd3+ (4f3) in Polycrystalline Ceramic Y2O3”, Journal of Applied Physics, Vol. 100, pp. 123106-123113, 2006.
11. Prasad, N.S., Edwards, W.C., Trivedi, S.B., and Kutcher, S.W., “Recent Progress in the Development of Neodymium-Doped Ceramic Yttria”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, pp. 831-837, 2007.
12. Robin, I.C., Kumaran, R., Penson, S., Webster, S.E., Tiedje, T., and Oleinik, A., “Structure and Photo-luminescence of Nd: Y2O3 Grown by Molecular Beam Epitaxy”, Optical Materials, Vol. 30, pp. 835-838, 2008.
13. Toci, G. , Vannini, M., Ciofini, M. , Lapucci, A., Pirri, A., Ito, A., and Goto, T. et al. "Nd3+-Doped Lu2O3 Transparent Sesquioxide Ceramics Elaborated by the Spark Plasma Sintering (SPS) Method. Part 2: First Laser Output Results and Comparison with Nd3+-Doped Lu2O3 and Nd3+-Y2O3 Ceramics Elaborated by a Conventional Method", Optical Materials, Vol. 41, pp. 12-16, 2015.
14. Aballea, P., Suganuma, A., Druon, F., Hostalrich, J., Georges, P., Gredin, P., and Mortier, M., "Laser Performance of Diode-Pumped Yb: CaF2 Optical Ceramics Synthesized Using an Energy-Efficient Process", Optica 2, Vol. 4, pp. 288-291, 2015.
15. Vorona, I.O., Yavetskiy, R.P., Shpilinskaya, O.L., Yu Kos’yanov, D., Doroshenko, A.G., Parkhomenko, S.V.,Lopin, A.V., and Tolmachev, A.V., "The Effect of Residual Porosity on the Optical Properties of Y3Al5O12: Nd3+ Laser Ceramics", Technical Physics Letters, Vol. 5, pp. 496-499, 2015.
16. Sergei, B., Osipov, V.V., Vatnik, S.M., Shitov, V.A., Shteinberg, I. S., Vedin, I.A., and Kurbatov, P.F., "Re3+ YAG Laser Ceramics: Synthesis, Optical Properties and Laser Characteristics", Quantum Electronics, Vol. 5, pp. 492-497, 2015.
17. Yu, D., Baumer, V.N., Yavetskiy, R.P., Voznyy, V.L., Kravchenko, V.B., Kopylov, Y. L., and Tolmachev, A.V., "Nd3+: Y3Al5O12 Laser Ceramics: Influence of the Size of Yttrium Oxide Particles on Sintering", Crystallography Reports, Vol. 2, pp. 299-305, 2015.
18. Yoshikawa, Y., Hanada, T., and Kogai, T., “Fabrication of Transparent Lead Lanthanum Scandium Niobate Ceramics by Two-Stage Atmosphere Sintering”, Journal of the European Ceramic Society, Vol. 24, pp. 1041, 2004.
19. Eilers, H., “Fabrication, Optical Transmittance, and Hardness of IR-Transparent Ceramics Made from Nanophase Yttria”, Journal of the European Ceramic Society, Vol. 27, pp. 4711, 2007.
20. Dou, C., Yang, Q., and Xu, J., “Luminescence Characteristics of Yb3+, La3+ Codoped Yttrium Oxide Nanopowders”, Journal of Non-Crystalline Solids, Vol. 354, pp. 3864, 2008.
21. Mangalarajaa, R.V., Mouzonb, J., Hedstr, P., Kerob, I., Ramama, K.V.S., Carlos, P., and Camurria, M., “Combustion Synthesis of Y2O3 and Yb–Y2O3 Part I. Nanopowders and their Characterization”, Journal of Materials Processing Technology, Vol. 208, pp. 415–422, 2008.
22. Wang, N., Xiyan, Z., Zhaohui, B., Haiying, S., Quansheng, L., Liping, L., Xiaoyun, M., and Wang, X., “Synthesis of Nanocrystalline Ytterbium-doped Yttria by Citrate-Gel Combustion Method and Fabrication of Ceramic Materials”, Ceramics International, Vol. 37, pp. 3133-3138, 2011.
23. Chaonan, W., Weiping, Z., and Min, Y., “Preparation and Spectroscopic Properties of Y2O3:Eu3+ Nanopowders and Ceramics”, International Journal of American Ceramic Society, Vol. 474, pp. 180-184, 2009.
24. Nengli, W., Xiyan, G., Guanming, Q., Haiying, S., Quansheng, L., Xiaoyun, M., and Xiaochun, W., “Synthesis of La3+ and Nd3+ Co-doped Yttria Nanopowder for Transparent Ceramics by Oxalate Precipitation Method”, Journal of Rare Earths,
Vol. 28, pp. 232-236, 2010.
25. Mangalaraja, R.V., Mouzon, J., Hedström, P., Camurri, C.P., Ananthakumar, S., and Odén, M., “Microwave Assisted Combustion Synthesis of Nanocrystalline Yttria and its Powder Characteristics”, Journal of Materials Processing Technology, Vol. 191, pp. 309-314, 2009.
26. Huan. W, Min. Y, Cuikun. L, Xiaoming. I., and Jun. L, “Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+SiO2 Particles with Core-shell Structure” The Journal of Physical Chemistry C, vol. 111, pp. 11223-11230, 2007
27. Roberto, A., Carla, C., Anna, M., Gabriella, P., Giorgio, P., and Mariano, C., “A Two-Stage Citric Acid–Sol/Gel Synthesis of ZnO/SiO2 Nanocomposites Study of Precursors and Final Products”, Journal of Nanoparticle Research, Vol. 10, pp. 107–120, 2008.
28. Junying, Z., Zhongtai, Z., Zilong, T., Yuanhua, L., and Zishan, Z., “Luminescent Properties of Y2O3: Eu Synthesized by Sol–Gel Processing”, Journal of Materials Processing Technology, Vol. 121, pp. 265–268, 2002.
29. Fatemeh, D., and Mohammad, R.L.E., “Synthesis and Optical Properties of Pure Monoclinic Zirconia Nanosheets by a New Precursor”, Ceramics International, Vol. 40, pp. 8427–8433, 2014.
30. Farbun, I.A., Romanova, I.V., and Kirillov, S.A., “Optimal Design of Powdered Nanosized Oxides of High Surface Area and Porosity Using a Citric Acid Aided Route, with Special Reference to ZnO”, Journal of Sol-Gel Science and Technology, Vol. 68, pp. 411–422, 2013.

ارتقاء امنیت وب با وف ایرانی