Volume 31, Issue 2 (Dec 2012)                   jame 2012, 31(2): 23-37 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

M. Parvinzadeh, S. Moradian, A. Rashidi, M. E. Yazdanshenas. A study on morphological and thermal properties of polyethylene terephthalane nanocomposites containing hydrophilic and hydrophobic nanosilica. jame. 2012; 31 (2) :23-37
URL: http://jame.iut.ac.ir/article-1-541-en.html
Department of Textile Engineering, Islamic Azad University, Shahre Rey Branch , mparvinzadeh@gmail.com
Abstract:   (7003 Views)
Polyethylene terephthalate (PET) based nanocomposites containing three differently modified silica particles were prepared by melt compounding. The influence of type and amount of nanosilica on various properties of nanocomposite was studied using atomic force microscope, thermal degradation, thermal-mechanical properties, scanning electron microscope, and reflectance spectra. AFM test was used to study the roughness of composites which indicated that the roughness is related to hydrophilicity degree of silica, increasing with an increase in hydrophilicity of particles. SEM images were studied on the surface, confirming that the surface roughness of nanocomposite depends on the type of nano-silica used. Results of thermal analysis showed that the interaction between nanosilica particle and polyethylene terephthalate chains is effective in thermal stability of composite. UV-vis spectra of polyester nanocomposites indicated that the refraction of hydrophilic silica nanocomposites is more than hydrophobic one, indicating agglomeration of hydrophilic particles at the surface of nanocomposite compared with hydrophobic one.
Full-Text [PDF 5058 kb]   (3397 Downloads)    
Type of Study: Research | Subject: General
Received: 2015/02/9 | Accepted: 2015/05/6 | Published: 2015/05/6

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb