A New Approach for QFT-type Robust Controller Design in Uncertain Multivariable Systems

M. Sobhani, M. Rafeeyan
Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT- This paper presents a robust controller design methodology for a class of linear uncertain multivariable systems with hard time-domain constraints on their outputs and control signals in response to step disturbance inputs. In this approach, the m×m MIMO system is replaced by m SISO systems and then, using the QFT technique, desirable controllers are synthesized. The final controller will be diagonal and since its entries are designed separately with suitable bandwidths, an economic design can be achieved. The application of this new method will be demonstrated through an example.
François María

شامل تسهیلات هسته‌ای نموده‌ای از گونه سیستم‌ها مستند. مشخصات عاملی می‌تواند در این سیستم‌ها شامل عملکرد خروجی و قیاس کست‌اندازی مانند آشوب محرکا و نیز محدودیت‌های فنی نیستند. البته برقراری پایداری مقام مقدوم بر اراضی هر روش مکان دیگری دیگر است.

تقریبا در دنیایی تمام سیستم‌ها واقعیت پرامترهای وجدان دارند که مقدار دقیق آنها معلوم نیست ولی محدوده آنها مشخص است (مانند ضرب مقاومت‌های الکترودبانکی). به این عبارت دامنه نامعمی ساختاری با پارامتری که توجه به محدودیت در اثر تغییر در دلیل از عوامل حذف شده پاشند که در فکرکشانی بالا اثر کلی‌تر روز رفتار سیستم داشته باشد (مانند دستیابی به مدل‌شناسی). این نوع تامینی در صورتی است که روش آن سیستم‌ها بسیاری نظره کستن مقاوم یکشته است که روز توسط QFT ایجاد شده توسط QF

هوئیتوس [1] یکی از مهم‌ترین آنهاست. به دلایل مختلف، علاوه‌مندی زیادی در خصوص سیستم‌های پی‌بردن QFT چندگی و تابع با زمان و جویدار، قیاسی اصلی در این زمینه از این نیاز ناشی می‌شود که پایداری مقاوم و عملکرد مطلوب باید هماهنگ باشد. به این ترتیب تعیین سیستم‌ها مانند QF نتیجه‌گیری که تعیین QF که توسط زیست [2] ایجاد و به‌سوی دوو و دیگران [3] توسعه یافته و نیز روش QFT هر روش عکس‌های به‌کار رفته در هزینه‌های مراقبی ثابت انتقال حساسیت برای سیستم‌هایی که در حال حاضر بالا رفته است. این تست هر روش می‌تواند در روش‌های مارکوس تناسب QFT حلقه و توانایی ویژه‌ای است. در نتیجه، اخیراً در مورد فناوری در حال ایجاد سیستم‌های QFT تحلیل و طراحی سیستم‌ها از روش

افتتاح، سال 18، شماره 1، شماره 1388

162
شکل ۱- نمودار جمبای سیستم

یک می شوند.

تعریف ۱: فضای نرمدار کامل را با تابع q گویند.
تعریف ۲: یک زیرمجموعه S از فضای نرمدار، به عنوان می شود
اگر شامل تمام نقاط حدیچی باشد.
تعریف ۳: یک زیرمجموعه S از فضای نرمدار برداری باشد که به
اگر در نباین نامناسب از اعضای D دارای هماهنگی باشد که به
یکی از اعضای S همگرا شود.
تعریف ۴: به مجموعه یک فضای برداری، محدود S نامیده
می شود اگر برای هر x, y ∈ S داشته باشیم
آ + (1 - a)y ∈ S
تعریف ۵: یک تغییر در فضای باناخ X برای یک نقطه ثابت X
که نقاط ثابت تابع T نامیده می شود. نکته اینکه
T^x = x
فضه نقاط ثابت شاد. اگر یک زیرمجموعه فشرده باشد و
X به یک تغییر را باشد و T نامناسب یک چنین از
دایرای یک نقطه ثابت Φ(T) = T^x
است به توجه که

\[\left| y_i(t) \right| \leq \alpha_i \right. \left| u_i(t) \right| \leq \beta_i \quad i = 1, \ldots, m \quad \forall t \geq 0 \]

که در روابط فوق \(m = \text{تعداد ورودی} = \text{تعداد خروجی} \) و
\(\alpha_i, \beta_i \) اعدادی مثبت و ارزش دو تابع مشابهند.

۳- روش طراحی

۳- ۱- مبانی ریاضی

در این قسمت برخی از مفاهیم ریاضی مورد نیاز از مرجع

۱۶۳

استقلا، سال ۱۸، شماره ۱، شهریور ۱۳۷۸
معادله با یک سیستم دومتغییره SISO

\[\Lambda = \text{diag} \left(\frac{1}{q_{11}}, \frac{1}{q_{22}} \right), \quad G = \text{diag} \left(g_{11}, g_{22} \right) \]

\[B = \begin{bmatrix} \frac{1}{q_{11}} \\ \frac{1}{q_{22}} \end{bmatrix} \]

و با توجه به روابط فوق اعضای ماتریس عبارت می‌شوند از

\[T^{D} = t_{11}^{D} = \frac{q_{11}}{1 + g_{11} q_{11}} \quad \frac{1}{q_{11}} - \frac{t_{11}^{D}}{q_{11}} \quad t_{22}^{D} = \frac{q_{22}}{1 + g_{22} q_{22}} \quad \frac{1}{q_{22}} - \frac{t_{22}^{D}}{q_{22}} \]

\[T^{D} = \begin{bmatrix} \frac{q_{11}}{1 + g_{11} q_{11}} & \frac{t_{11}^{D}}{q_{11}} \\ \frac{q_{22}}{1 + g_{22} q_{22}} & \frac{t_{22}^{D}}{q_{22}} \end{bmatrix} \]

\[y = (I + PG)^{-1} P d \]

لذا تابع انتقال حلقه به‌هست می‌شود

\[y = T^{D} d \quad T^{D} = (I + PG)^{-1} P \]

با توجه به روابط فوق می‌توان نوشت

\[(I + PG) y = P d \]

* با فرض اینکه فاکتوره به ازای تمامی مقادیر نامعین‌ها معلوم‌پذیر باشد آنگاه می‌توان نوشت

\[\left(P^{-1} + G \right) y = d \]

\[\text{(5)} \]

\[\text{اگر} \quad G \quad \text{تابع انتقال تنظیم‌کننده} \quad \text{قطری فرض شود و همچنین} \quad P^{-1} \]

\[\text{بر خش قطعه} \quad \Lambda \quad \text{و غیرقطعي} \quad B \quad \text{نفسیت شود به‌عنی} \]

\[\text{آنگاه با توجه به معادله} \quad (5) \quad \text{می‌توان نوشت} \]

\[(\Lambda + B + G) y = d \quad y = (\Lambda + G)^{-1} \left(d - B y \right) \]

\[\text{که برای} \quad m = 2 \quad \text{خواهیم داشت:} \]

\[\text{(6)} \]
3-2-استخراج نماسوپاهای مربوط به سپنگالهای خرچنگ

و یک گرد

ناماسوپاهی (1) در میدان زمان پیان شدندان و لذا برای آلتهای قابل استفاده در روش QFT شوند. با این روش به‌طوری‌که دارای استقلال بوده است. شوند. برای این کار می‌توان از لحظه زیر استفاده کرده: یک (2) با شرایط اولیه صفر و در این پیمان M به‌طور تعریف

در این صورت پاسخ به‌طور عکس واحد آن به شکل زیر می‌باشد: یک

\[y(t) = L^{-1} \left[\frac{G(s)}{s} \right] \leq 2M \]

(8)

از آنجا که معادلات (9) و (10) تجربی چنین محققان (9) و (12) بایستی با استفاده در روش QFT به‌طور کامل حل شوند.

3-3-روش جدید

در اینجا به‌منظور مسیرهایی جدید به‌طور کامل به‌طور کامل پاسخ به‌طور کامل می‌توانند انتقال‌های خروجی‌های سیستم را می‌توان به صورت زیر نوشته: یک

\[y = T d ; \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \]

(9)

که با چایگذاری از (7) خواهیم داشت:

\[y_1(s) = \frac{q_{11}}{1 + g_{11}} \left[1 + \frac{1}{q_{11}} \left(\frac{T_{11} + \mu T_{12}}{q_{11}} \right) \right] d_1 + \frac{q_{11}}{1 + g_{11}} \left[\frac{1}{q_{11}} \left(\frac{T_{12}}{q_{11}} \right) \right] d_2 \]

(15)

\[y_2(s) = \frac{q_{22}}{1 + g_{22}} \left[1 + \frac{1}{q_{22}} \left(\frac{T_{21} + \mu T_{22}}{q_{22}} \right) \right] d_1 + \frac{q_{22}}{1 + g_{22}} \left[\frac{1}{q_{22}} \left(\frac{T_{22}}{q_{22}} \right) \right] d_2 \]

(10)

با فرض اینکه ورودی می‌توانیم به صورت

بااشنده در این صورت

\[y_1(s) = \frac{q_{11}}{1 + g_{11}} \left[1 + \frac{1}{q_{11}} \left(\frac{T_{11} + \mu T_{12}}{q_{11}} \right) \right] \]

(11)

\[y_2(s) = \frac{q_{22}}{1 + g_{22}} \left[1 + \frac{1}{q_{22}} \left(\frac{T_{21} + \mu T_{22}}{q_{22}} \right) \right] \]

(11)

احال به‌این معادله‌های (15) را به‌ناهجیر مناسبی در معادله‌های (13) چایگذاری کرد. این چایگذاری به‌گونه‌ای انجام می‌گیرد که از بزرگ‌ترین فرق طراحی روی کنترل‌کننده‌ها بکارهای. یعنی عبارات سمت چپ ناماسوپاهای زیر انتخاب می‌شوند

\[y_1(s) = \frac{q_{11}}{1 + g_{11}} \left[1 + \frac{1}{q_{11}} \left(\frac{T_{11} + \mu T_{12}}{q_{11}} \right) \right] d_1 + \frac{q_{11}}{1 + g_{11}} \left[\frac{1}{q_{11}} \left(\frac{T_{12}}{q_{11}} \right) \right] d_2 \]

(15)

\[y_2(s) = \frac{q_{22}}{1 + g_{22}} \left[1 + \frac{1}{q_{22}} \left(\frac{T_{21} + \mu T_{22}}{q_{22}} \right) \right] d_1 + \frac{q_{22}}{1 + g_{22}} \left[\frac{1}{q_{22}} \left(\frac{T_{22}}{q_{22}} \right) \right] d_2 \]

(10)}

با فرض اینکه ورودی‌های ماروی به‌طور عکس واحد آن به شکل زیر می‌باشد:

\[y = T d ; \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \]

(9)

که با چایگذاری از (7) خواهیم داشت:

\[y_1(s) = \frac{q_{11}}{1 + g_{11}} \left[1 + \frac{1}{q_{11}} \left(\frac{T_{11} + \mu T_{12}}{q_{11}} \right) \right] d_1 + \frac{q_{11}}{1 + g_{11}} \left[\frac{1}{q_{11}} \left(\frac{T_{12}}{q_{11}} \right) \right] d_2 \]

(15)

\[y_2(s) = \frac{q_{22}}{1 + g_{22}} \left[1 + \frac{1}{q_{22}} \left(\frac{T_{21} + \mu T_{22}}{q_{22}} \right) \right] d_1 + \frac{q_{22}}{1 + g_{22}} \left[\frac{1}{q_{22}} \left(\frac{T_{22}}{q_{22}} \right) \right] d_2 \]

(10)

با فرض اینکه ورودی‌های ماروی به‌طور عکس واحد آن به شکل زیر می‌باشد:

\[y = T d ; \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \]

(9)

که با چایگذاری از (7) خواهیم داشت:

\[y_1(s) = \frac{q_{11}}{1 + g_{11}} \left[1 + \frac{1}{q_{11}} \left(\frac{T_{11} + \mu T_{12}}{q_{11}} \right) \right] d_1 + \frac{q_{11}}{1 + g_{11}} \left[\frac{1}{q_{11}} \left(\frac{T_{12}}{q_{11}} \right) \right] d_2 \]

(15)

\[y_2(s) = \frac{q_{22}}{1 + g_{22}} \left[1 + \frac{1}{q_{22}} \left(\frac{T_{21} + \mu T_{22}}{q_{22}} \right) \right] d_1 + \frac{q_{22}}{1 + g_{22}} \left[\frac{1}{q_{22}} \left(\frac{T_{22}}{q_{22}} \right) \right] d_2 \]

(10)

با فرض اینکه ورودی‌های ماروی به‌طور عکس واحد آن به شکل زیر می‌باشد:

\[y = T d ; \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \]

(9)

که با چایگذاری از (7) خواهیم داشت:

\[y_1(s) = \frac{q_{11}}{1 + g_{11}} \left[1 + \frac{1}{q_{11}} \left(\frac{T_{11} + \mu T_{12}}{q_{11}} \right) \right] d_1 + \frac{q_{11}}{1 + g_{11}} \left[\frac{1}{q_{11}} \left(\frac{T_{12}}{q_{11}} \right) \right] d_2 \]

(15)
ساختی که در هر فرکانسی در محدوده‌های قرار گیرند که نامساویهای مربوطه آنها اراست بودند. مثلاً، یک پایه به گونه‌ای طراحی می‌شود که در هر فرکانس با نامس اول (17) و (18) صحیح کند. همچنین برای اینکه به وجود وابسته شده‌است، یک پایه نسبی و وجود داشته باشد، مناطقی که با منحنی U-شکل نمایش داده است به عنوان منطقه ضریح پایدار نسبی از پیش تعیین شده را برای هر حلقه تضمین می‌کنند. شایان ذکر است که این روش قابل توسعه به سیستم‌های بیش از 2 است.

۴- مثال

قرارگیری که در اینجا استفاده می‌شود از یک گزینه شده است. این قرارگیری یک قرارگیری دو متغیره خاطی است که دارای نامی نام‌یون پایداری به صورت زیر است:

$$P(s) = \frac{1}{s+1} \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} \frac{1}{s+1} \\ \frac{1}{s+1} \end{bmatrix}$$

$$\sum_{i=0}^{n} \begin{bmatrix} k_{i1} & k_{i2} \\ k_{i1} & k_{i2} \end{bmatrix}$$

با محدوده‌های سخت و مداوم به روش سیگنالهای خروجی و کنترل خواسته شده به صورت زیرند:

$$\begin{cases} |u_1(t)| \leq 3 \\ |u_2(t)| \leq 1/5 \\ |y_1(t)| \leq 0/05 \\ |y_2(t)| \leq 0/05 \end{cases}$$

قرارگیری صفته از ناحیه پایداری کنترل QFT کامل اختیاری است، به صورت زیر در نظر گرفته می‌گردد:

$$P(s) = \frac{1}{s+1} \begin{bmatrix} 1/s+8 \\ 1/s+8 \end{bmatrix}$$

در ضمن هر دو ورودی مراحل مساوی و برای پاسخ واحدند. با استفاده از روشی که در اینجا معرفی شده است، مثلاً با بالا و حول تابیت در شکل‌های زیر آورده شده‌اند. در این مثال حال بهتر به ازای GM=9 db تعام نامی‌یون سیستم در نظر گرفته شده است. تعام نامی‌یون سیستم با پایه‌های تحتانی آنها هستند که ناحیه بالایی آنها در نمودار سیگنال در نامس اول مربوط به یک فرکانس خاص و کنترل. عکس این

بتاپایایی با جایگزینی (15) در (13) و رعایت (16) و با در نظر گرفتن نامس اول (17) و (18) کنترل می‌شود.

$$\begin{cases} \frac{1}{\frac{a_1}{q_{11}}} |_{s=j\omega} \leq \alpha_1 \\ \frac{1}{\frac{q_{11}}{L_{1}q_{11}/q_{11}}} |_{s=j\omega} \leq \alpha_2 \end{cases}$$

$$\begin{cases} \frac{1}{\frac{a_1}{q_{12}}} |_{s=j\omega} \leq \alpha_3 \\ \frac{1}{\frac{q_{22}}{L_{2}q_{22}/q_{22}}} |_{s=j\omega} \leq \alpha_4 \end{cases}$$

اکنون با یک نامس اول مربوط به سیگنالهای کنترل مشخص شوند. با توجه به شرایط (10) و مطابق با این، از لبه انتقال می‌توان نوشته:

$$u_1 = -g_{1} y_1, \quad u_2 = -g_{2} y_2$$

با توجه به شرایط (10) و مطابق با این، از لبه انتقال می‌توان نوشته:

$$u_1 = \frac{g_{1}}{1+g_{1} y_1 \left(1-\frac{1}{q_{11}} \left(D_{1}+\mu_{1} D_{2}\right)\right)} d_1 \right] \varepsilon_{1}$$

$$|\varepsilon_1| \leq \beta_1 \Rightarrow |u_1(t)| \leq \beta_1$$

و سرانجام با استندارد مشابه حالت قبل برای هر دو سیگنال کنترل خواهد داشت:

$$\begin{cases} L_{1}q_{11}/q_{11} |_{s=j\omega} \leq \frac{1}{\frac{a_1}{q_{11}}} |_{s=j\omega} \leq \alpha_1 \\ \frac{1}{\frac{L_{1}q_{11}/q_{11}}{q_{11}}} |_{s=j\omega} \leq \alpha_2 \end{cases}$$

حال با استفاده از نامس اول (17) و (18) در هر فرکانس می‌توان

با تغییر نامی‌یون موجود در قرارگیری در زوایای ناز مختلف، مناطقی از نمودار نیکولاژ را که در نامس اول صدق می‌کند، شناسایی کرد. حاصل کار، پایه‌های تحتانی با فاقدای با صدایی برای است که شناسانده کرده‌اند نواحی مجاز در هر فرکانس‌اند. پس از تعیین پایه‌های مربوطه، عمل شکلی همیشه یک مثابه برای طراحی انتقال قابل
موضوع در مورد باندهای فوقانی وجود دارد. شکل‌های (3) تا (6) این باندها را در برخی از فرکانس‌ها نشان می‌دهند. با روش شکل‌دهی حلقه، توابع انتقال حل‌گر باز اسمی سیستم و در تبیین توابع انتقال کنترلکننده‌ها به صورت زیر طراحی می‌شوند:

g_1(s) = \frac{s+0.5}{s(s+0.5)(s+12)}
(21)

g_2(s) = \frac{s+0.5(s+0.5)(s+22)(s+6)(s+0.5)}{s(s+4)(s+17)(s+5)}
(22)

از خصوصیات مهم کنترلکننده‌های به دست آمده، محدود بودن
شکل 8 - سیگنال کنترل ($u(t)$) به ارزیابی برخی از مقادیر نامنی‌هایش

شکل 7 - سیگنال خروجی ($y(t)$) به ارزیابی برخی از مقادیر نامنی‌هایش

شکل 9 - سیگنال خروجی ($y(t)$) به ارزیابی برخی از مقادیر نامنی‌هایش

شکل 10 - سیگنال خروجی ($y(t)$) به ارزیابی برخی از مقادیر نامنی‌هایش

فرایندهای چندمتغیره خطی و نامنی که مربوط به معکوس پذیر

پدیدار می‌نماید و دارای محصولی از سنت زمانی بر روی خروجی و

سیگنال‌های کنترل در پاسخ به انتشارات در نظر گرفته شده در

این روش، فرایندهای چند متغیره تجزیه $m^2_{x \times m}$ به $m^2_{x \times m}$

