Analysing of Continuous Welded Turnouts

J. A. Zakeri and F. J. Jie
School of Railway Engineering, Iran University of Science & Technology
Railway Track Department, Northern Jiaotong University, Beijing, China

Abstract: Continuous welded turnouts are important for CWR track through the railway station. According to equivalent resistance and non-linear theories and the principle of force diagram, a new method of theoretical calculation for continuous welded turnouts was developed. The continuous welded turnouts designed and installed according to the new theory behaved fairly well. The data collected on sites basically agreed with those of theoretical calculation. It was proved that the calculation theory is correct and values of calculation parameters are reasonable.

Keywords: Calculation theory of turnouts, Continuous welded turnout
فلهرست علائم

- فاصله تراوسرهای دستگاه خطوط
 a) فاصله محور ایستا بین دو اتصال و ریل داخلی
 b) فاصله محور ایستا بین دو اتصال و ریل داخلی

- سطح مقاطع عرضی ریل
 f) شماره تراوسر

- شماره تراوسر

- سطح ناشی از تراوسرهای دستگاه تعویض خط

- نگر مقاطع

- طول تراوسر دستگاه خطوط

- مقدمه
 1- طول خطوط جوشکاری شده طولی (CWR) هم در خطوط مخصوص با سرعت‌های زیاد و هم در خطوط اختصاصی یافته به فطری تاریک می‌گردد. نیروهای وارده به ریل اصلی همواره قرار می‌گیرد. این عمل, باعث انقباض با انقباض ریل داخلی نسبت به اجرای دیگر دستگاه تعویض خط شده و قسمتی از نیروی حجاری اضافی به ریل اتصالی وارد خواهد شد. [2]

- هدف اصلی نظری ویرای دستگاه تعویض خط پوسته

 مباحث انقباض با انقباض ریل داخلی, نیروی گرمایی اضافی در ریل اصلی, نیروهای وارده به اجرای دیگر ایستگاه و کشورت مقدار اثرات که در حوزه مجاز قرار گیرند.

- طرح 1. نسبت و تکنیک خطوط جوشکاری شده طولی

- در کشورهای اروپای غربی نصب شده‌اند و تغییرات دامی سالانه آنها کمتر از 90 درجه سانتی‌گراد است. لیکن هیچ مطالعه اساسی برای ارائه نظره‌های محاسباتی و آزمایش‌های تجربی بر روی مختصات به هم می‌نصل شده‌اند و هر دو انتهاات دستگاه تعویض

استقلال، سال 34، شماره 1، جلد دوم، شهریور 1384

382
شکل ۱- نیروهای وارده بر دستگاه خطوط

این نوع دستگاهها صورت نگرفته است. آقایان شیخه رو مورا و هیمه آقای پناگارا [۱۳] از زانی تحقیقاتی را با استفاده از نظریه اندر کش نیروهای بین ریلها انجام دادند. این نظریه‌ها بر استاس شرایط آب و هواپیمای کشور چینی بررسی شده و آزمایش‌های صحرایی به‌طور پرگزار شده و همکاران [۴] در این مورد صورت گرفته و تطبیق بین نظریه و نتایج آزمایش‌ها در این مقاله تشریح شده‌اند.

۲- طراحی دستگاه تعویض خط در خطوط جوشکاری شده طول

۲-۱ محاسبه انقباض و انبساط ریل داخلی

عوامل زیادی در انقباض و انقباض ریل داخلی موثرند. سه عامل اصلی عبارتند از: مقاومت بالاست، سختی تراورس‌های زیر دستگاه تعویض خط و گشتاور مقاوم پایین‌های به توجه به پیچیدگی این دستگاه‌ها و مقاومت بودن ابعاد آنها، مقاومت در برابر انقباض و انبساط ریل داخلی در نقاط مختلف متفاوت است. بنابراین، پارامتر مقاومت معادل در محاسبه انقباض و انقباض داخلی مورد استفاده قرار می‌گیرد. مقاومت طولی معادل برابر است با:

\[p = p_0 + p_a + p_b \] ۱

که در آن \(p_0 \) مقاومت طولی بالاست به‌ازای هر ریل است.

برای تراورس‌های چهارنی، در ریل داخلی داریم:

\[p_0 = \frac{f_0}{2a} (1 - b) \] ۲

در ریل اصلی:

\[p_0 = \frac{f_0}{2a} (L - 1 - b) \] ۳

برای تراورس‌های دو ریل داریم:

\[p_0 = \frac{f_0}{2a} \] ۴

به این ترتیب مقاومت تبدیل شده سختی تراورس‌های دستگاه خطوط را برای خواهد بود با:

\[p_a = \frac{\Delta p_t}{a} = \frac{6EI}{(3b^2 - 4b^3)A} \] ۵

مقاومت تبدیل شده لنگر مقاوم پایین‌ها را برای خواهد بود با:

\[p_b = \frac{\Delta p_t'}{a} = \frac{2M}{ab} \] ۶

معادله مربوط به تغییر طول ریل داخلی و مقاومت معادل غیرخطی است به همین دلیل روشن مکانیکی نکرداری برای محاسبه انقباض و انقباض به کار می‌رود.

هنگامی که \(p \) بردارت از \(p_0 \), مقاومت پایین‌ها، باشند ریل بر روی

cwrc

استقلال سال ۲۴، شماره ۱، جلد دوم، شهریور ۱۳۸۲

۳۸۳
صفحه زیر خوانده لغزید. بنابراین لازم است به جای p مقدار p_c قرار داده شود.

مقدار اندازه‌گیری انتقاص ریل داخلی قبل از محاسبات (x)

فرض می‌شود فیلیم که نیروهای گرمایی P_f وارد بر هر دو انتهای ریل و مقاومت معادل در پشت وسط سوزن محاسبه شود.

مقاومت معادل به صورت ریال دقت مناسب در تراورس x منظور می‌شود. شکل (۲). تغییر طول ریل داخلی از مقادیر مربوط به آخرین تراورس) محاسبه می‌شود. مقاومت معادل تراورس n به شرح ذیل محاسبه می‌شود:

$$f_n = \frac{\Omega_n}{EF} + \frac{a(P_0 + K_{ln}f_n + 2M/b_n)}{2EF}$$

(۸)

یعنی:

$$f_n = \frac{aP_0 + 2M/b_n}{2EF - K_{ln}a}$$

(۹)

اگر آخرین تراورس دارای ۴ ریل باشد داریم:

$$f_n = \frac{aP_0 + 2M/b_n}{2EF - K_{ln}a}$$

(۱۰)

که در آن:

E ضریب کشسان ریل

F متغیر مربوط به نقطه n من اکست، شکل (۳).

K_{ln}, l_n, b_n

هنجام محاسبه f_n, مقاومت معادل نسبی به دست می‌آید بنابراین از شکل (۲) قابل محاسبه خواهد پیدا یعنی:

$$P_n = aP_0$$

(۱۱)

به همین روش، مقدار p فاصله بعدی تراورس قابل محاسبه بیان می‌شود.

یعنی:

$$P_{n-1} = P_0 + P_a + P_b = \frac{f_0(l_n - b_n)}{2a} + \frac{K_{ln}f_n - 1 + 2M}{ab_n}$$

(۱۲)

مقدار K_{ln} به نقطه $n-1$

K_{ln}, l_n, b_{n-1}

مطابق شکل (۲) تغییر مکان n برای بستن.

این پارامترها اضافی تغییرات دما در دری اصلی

ابتدا لازم است مشخص شود که چطور نیروهای عمودی از ریل داخلی به ریل اصلی متصل می‌شود. معمولاً نیروی دما در کنار پشت و نیروی ریل در سمت مخالف تراورس و نیروی متمایل به ریل اصلی متصل می‌شود و مقاومت به‌دلیل انتقال نیروی مؤثر است.

برای بستن، نیروی متقل شده از ریل نگر مقدار پایین‌دهنده نسبتاً کوچکاند. به همین دلیل در قسمتی از محاسبه تغییر خط که در ریل دارند قابل توجه کننده. نیروهای متقل شده از طریق حسی حداکثر تراورس به نمود معمول را به جوی اختصاص می‌دهند. به این ترتیب ماکزیمم مقدار نیروهای متقل

P_n
شکل ۲- نیروی ناشی از احرازت در ریل داخلی

شکل ۳- وارد پر تراورس‌های دستگاه خطوط، شده در قسمتی از دستگاه تعویض خط که چهار ریل دارند، اتفاق می‌افتد.

بر اساس اصول مقاومت مصالح، نیروی گرماانی اضافی که از طریق سختی خمیشی تراورس به ریل اصلی منتقل می‌شود، برای است [۲۲]

\[
\Delta P_3 = \Delta P_1 + \Delta P_1' - Q
\]

(۲۱)

\[
\Delta P_1 = \frac{6E'I'f}{3Ib^2 - 4b^2}\cdot (3 - a) \quad \text{(شکل b)}
\]

(۱۸)

\[
\Delta P_2 = \frac{3EI - 1}{(lb - b^2)^2} \cdot f = K_2 f \quad \text{(شکل a)}
\]

(۱۹)

نیروی گرماانی اضافی که از طریق لنگر مقاوم ناشی از پایندها به ریل اصلی منتقل می‌شود برای است با:

\[
\Delta P_1' = \frac{2M}{b}
\]

(۲۰)

با فرض مقاومت طولی بالاست برای Q، نیروهای گرماانی اضافی که در هر نقطه از دستگاه تعویض خط به ریل اصلی منتقل می‌شوند برایند با:

\[
\Delta P_1 = \Delta P_1 + \Delta P_1' - Q
\]

(۲۱)

باید تعداد تراورس‌های دستگاه تعویض خط باشد که
شکل 4- نمودار نیروهای اضافی ریل اصلی

یک طرفه جوشکاری شده (فقط در مسیر اصلی جوشکاری شده و در مسیر انشعابی در ۲ دقیقه) و دارای تکه مرکزی منجر به آنها مطابقت و تغییرات دما و دمای ۵۵ درجه برای آنها مطابقت شده است. این شکل (۵) نشان می‌دهد که مکانیسم نیروی گرمایی اضافی در پایه‌های دستگاه خطوط انتقال می‌افتد و به این ترتیب لازم است که یک شبدنده، مقاومت ریل و مقاومت ادوات نگهدارنده شبدنده کنترل شود. همچنین لازم است که تغییر شکل انقباضی و انقباضی زبان ریل و زیانه تکه مرکزی کنترل شوند.

۳- تحلیل دستگاه‌های تعویض خط آزمایش و مشاهده

به منظور کنترل نظریه تشخیص شده در فوء (دستگاه تعویض خط CWR)، از نتایج آزمایش‌های مرکز تحقیقات راه آهن چین استفاده شده است. در این آزمایش‌ها ۱۴ نوع مختلف دستگاه تعویض خط نصب شده و آزمایش‌های صحراپی در روی آنها صورت گرفته‌اند. در طول انجام تحقیق، نیروهای گرمایی اضافی وارد شده بر ریل اصلی تغییر مکان زبان ریل (تغییر سوزون) و تکه مرکزی اندازه‌گیری شده‌اند.

در انتقال نیرو شرکت می‌کند. شکل (۴)، مقادیر نیروهای گرمایی اضافی ریل اصلی به صورت زیر خواهند بود:

\[\Delta P_0 = P_m \]

\[x_0 = \frac{\Delta P_0}{2(na_0 + P_m)} \]

\[\Delta P_i = \frac{\Delta P_i^2 + 2\Delta P_i (ip_0 a + \sum_{k=0}^{i-1} \Delta P_k - \sum_{k=0}^{i-1} x_k)}{2(na_0 + \sum_{k=0}^{i-1} \Delta P_k)} \]

\[\Delta P = \sum_{i=0}^{n} \Delta P_i \]

\[X = -(x_0 + \sum_{i=0}^{n} x_i) \]

\[\Delta P_i = \Delta P_{ti} + \Delta P_{ti} - Q_i \]

۲-۲-۲- تحلیل نتایج محاسبات

پس از نظریه تشخیص شده در فوء، نیروهای و تغییر شکلهای دستگاه تعویض خط نمره ۱۲ و ۱۸ و ۲۰ به ریل ریل اصلی تغییر مکان زبان ریل (تغییر سوزون) و تکه مرکزی اندوزه‌گیری شده‌اند.

استقلال، سال ۳۴، شماره ۱، جلد دوم، شهريور ۱۳۸۴

۳۸۶
Shape 5-9295 9295 R1 اصلی
شکل ۶- نیروهای گرماپی اضافی نظری و مقادیر اندازه گیری شده

جدول شماره ۱- مقایسه مقادیر محاسباتی و نتایج آزمونها

<table>
<thead>
<tr>
<th></th>
<th>Turnout with movable frog</th>
<th></th>
<th>Turnout with rigid frog</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>calculating values</td>
<td>testing values</td>
<td>calculating values</td>
<td>testing values</td>
</tr>
<tr>
<td></td>
<td>inner rail</td>
<td>frog rail</td>
<td>inner rail</td>
<td>frog rail</td>
</tr>
<tr>
<td>۱۹ °C</td>
<td>۴.۹</td>
<td>۳.۴</td>
<td>۴.۵</td>
<td>۳.۵</td>
</tr>
<tr>
<td>۱۴ °C</td>
<td>/</td>
<td>/</td>
<td>۲.۶</td>
<td>۳.۰</td>
</tr>
<tr>
<td>۲۹ °C</td>
<td>۶.۸</td>
<td>۴.۲</td>
<td>۷.۰</td>
<td>۵.۰</td>
</tr>
</tbody>
</table>

(۱) نوع دستگاه خطوط (۲) تغییر شکل‌ها بر حسب میلیمتر (۳) تغییرات دما

جدول شماره ۲- نتایج محاسباتی ماکزیمم فواصل مختلف محصور شده بوسیله حاصل تغییر برای

ریل ۶۰ kg/m و نمره دستگاه ۱۲

<table>
<thead>
<tr>
<th>restricted distances /mm</th>
<th>(1) /kN</th>
<th>(2) /kN</th>
<th>(3) /kN</th>
<th>(4) /kN</th>
<th>(5) absolute mm</th>
<th>(6) relative mm</th>
<th>(5) absolute mm</th>
<th>(6) relative mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷</td>
<td>۳۸۱.۴</td>
<td>۱۹۷.۹</td>
<td>۱۶۹.۲</td>
<td>۱۵۲.۴</td>
<td>۱۶.۰۱</td>
<td>۱۳.۹۲</td>
<td>۶.۹۵</td>
<td>۵.۶۲</td>
</tr>
<tr>
<td>۸</td>
<td>۳۵۰.۹</td>
<td>۱۷۵.۷</td>
<td>۱۴۲.۹</td>
<td>۱۵۲.۴</td>
<td>۱۷.۰۱</td>
<td>۱۵.۴۷</td>
<td>۶.۹۵</td>
<td>۵.۲۲</td>
</tr>
<tr>
<td>۹</td>
<td>۳۱۸.۶</td>
<td>۱۵۳.۵</td>
<td>۱۱۵.۷</td>
<td>۱۵۲.۴</td>
<td>۱۸.۰۱</td>
<td>۱۶.۹۷</td>
<td>۶.۹۵</td>
<td>۴.۸۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۲۸۶.۳</td>
<td>۱۳۳.۲</td>
<td>۸۹.۳</td>
<td>۱۵۲.۴</td>
<td>۱۹.۰۱</td>
<td>۱۸.۳۶</td>
<td>۶.۹۵</td>
<td>۴.۴۲</td>
</tr>
</tbody>
</table>

(۱) ماکزیمم نیروی کنشی اضافی (۲) ماکزیمم نیروی فشاری اضافی (۳) نیروی برخورد نفور (۴) نیروی برخورد نفور وارد (۵) تغییر نقطه نظری سوزن (۶) تغییر نقطه

 نقطه نظری تکه مركزي متحرک

استقلال، سال ۲۴ شمسی، جلد دوم، شهریور ۱۳۸۴

۳۸۸
شکل ۷- نیروهای گرامایی اضافی نظری و نتایج آزمون‌ها

۴- نتایج گیری

بر اساس محاسبات نظری و نتایج آزمایش‌ها، ی پیشنهادهای زیر برای جوشکاری و نصب دستگاه تعمیم خط ارائه می‌شوند.

۱- دستگاه تعمیم خط با پایه‌ای در محدوده دما، قابلیت است. نصب شود. با توجه به پیچیدگی دستگاه تعمیم خط و فشار، تجربه کافی در آزاد سازی تنظیم گرامایی این دستگاه‌ها، لازم است که از نظر و اتصال دستگاه‌های جوشکاری شده طولی در خارج از محدوده دماپتربانی خط ثابتی شود. این عمل در نکوداشتهای جوشکاری شده طولی مفید می‌باشد.

۲- دستگاه تعمیم خط پیچیدگی ترین قسمت خطوط بوده و لازم است که بر اساس مقیاس‌های نگهداری شود. همچنین توجه شود که تکمیل بالاست، محکم نگهدارش پایان‌ها و پیچ و مهره‌های با مقاومت زیاد می‌باشد.

۳- حاکی این‌اکنون پایان‌نها به تأثیر نیروهای اضافی قرار می‌گیرد و اگر ضرورت داشته باشند، باز مداومت و تعداد آنها بر اساس محاسبات نظری افزایش یابند. به این ترتیب زیانات ریل و ریل باید شکل تنه مرکزی مناسب و

۳۸۹

استقلال، سال ۲۴، شماره ۱، جدول دوم، شهریور ۱۳۸۴
با مقاومت بالا در انتهای ریل اصلی مورد استفاده قرار گیرنده.

- هگامی که اعدادی از دستگاه تعویض خط CWR در کنار هم نصب شوند، تأخیر قیمتی اضافی آنها به همدیگر افزوده می‌شوند، ولی مقادیر اضافی کمتر از حاصل جمع این تأخیرها برای هر یک از دستگاه‌های متفرق شوند. شکل (7).

نابرابری کافی است که در دستگاه خطوط متفاوت کنترل شود.

تشکر و قدردانی

در پایان از همایش‌های مالی انجامیده تحقیقات راه آهن چین و دانشگاه چینبوئیک شما از طریق آزمایشات مختلف در تواحی مختلف چین تشرک و قدردانی می‌شود.

1. heel point
2. breathing zone

2. دکتری ج. ع. جویزه در سیستم‌های تعویض خطوط راه آهن ‘دانشگاه علم و صنعت ایران’ ص 1386-501.