Analysis of Rolling Process for Clad Sheet Using the Modified Slab Method

F. Farhat-Nia and M. Salimi

*Islamic Azad University, Khomeinishahr Branch, Khomeinishahr, Iran
**Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran

Abstract: In this paper, an analytical model based on Modified Slab Method is presented for rolling of clad sheet or double-layers in which the two layers are bounded prior to rolling. This model considers the general case of asymmetrical rolling due to unequal
surface speed, different contact friction, roll diameters, flow stress, and thickness ratios of the two layers. Using this model, rolling parameters such as pressure distribution along the arc of contact of the rolls and the clad sheet, rolling force, and torque with respect to reduction in thickness can be easily calculated. The analytical rolling force and torque computed by the proposed model were compared with the analytical results of other researchers and were shown to be in good agreement. The proposed model is very suitable for online control application due to its completeness and its capability of predicting the rolling parameters.

Keywords: Asymmetrical rolling, Modified slab method, Plane strain condition, Clad sheet.

<table>
<thead>
<tr>
<th>نیمیتسی متسهیا ی دواوییم به عوامل مختلفی مانند فشار نورد، نسبت ضخامتی دو لایه ی که هم بیوند مخ تزی و تعیی از دو سطح بیوند وابسته است.</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت متوسط نش بریشی در جهت ضخامت به</td>
</tr>
<tr>
<td>نش بریشی سطحی</td>
</tr>
<tr>
<td>ضخامت وری در شکاف یلنکهای</td>
</tr>
<tr>
<td>ضخامت های اولیه و نهایی وری</td>
</tr>
<tr>
<td>ضخامت لایه بالایی و پایینی</td>
</tr>
<tr>
<td>نش تسیم لایه بالایی و پایینی</td>
</tr>
<tr>
<td>طول تاکم ورق با یلنکهای</td>
</tr>
<tr>
<td>ضریب اصطکاگی یلنکهای بالا و پایین</td>
</tr>
<tr>
<td>نیروی نورد بر واحد عرض</td>
</tr>
<tr>
<td>فشار بر روی المان قابی دفرانسیلی</td>
</tr>
<tr>
<td>فشار یلنکهای بالا و پایین</td>
</tr>
<tr>
<td>متوسط نش ترمال افقی بر روی المان قابی</td>
</tr>
<tr>
<td>تنش کشنیدی در ورود و خروج ورق</td>
</tr>
<tr>
<td>شعاع یلنکهای بالا و پایین</td>
</tr>
</tbody>
</table>

1- مقدمه

ورتهای پوششی دارا دو لایه دارای مواد مختلفی مانند ضخمردگی و ضسپانیشن و به طور وسیعی در صنایع تولید قرار گرفته است. خواص این نوع ورق بستگی به نسبت حجمی دو لایه نسبت به تعیین این مدل اهمیت دارد. به عنوان مثال، ورق پوششی دار فولاد زنجیر نزن بپوششی مس، دارای استحکام فولاد هم‌سایه با خواص رسانایی گرمایی مس است. روشهای مختلفی به منظور توییب این نوع ورقها در صنعت وری گرداوری از این روشهای فرابند نورد است که می‌تواند به طور داغ یا سرد صورت گیرد و نسبت به روشهای دیگر، اقتصادی و مؤثرتر است. استحکام
شکل 1- تصویر نموداری از نورد نامتقارن ورق در لایه قابی- تزر و روی عدید رانگ- کودک به منظور تعیین میدان

2- مدل سازی قابند
به منظور ساده سازی فرمولبدی در این تحقیق، فرضیات زیر مورد توجه قرار گرفته است:
غلتکی صلب در فرایند سوزن و از تغییر شکل آنها در حین انجام فرآیند صرف نظر می‌شود.
تغییر شکل دو بعدی و از نوع کرنش صفحه‌ای فرض می‌شود.
طول تمام ورق با غلتک در مقیاسی با حیات غلتک سیاپ کردن است.

3- فرمول بنیاد
شکل (1) تصویری از فرآیند نورد نامتقارن ورق در لایه قابی- تزر
شعاع و سرعت غلتک بالایی دو تاندون از غلتک پایین منفی تابا

به منظور

شکل دچار تغییر شکل پلاستیکی می‌شود. ریزد و
همکاران [12] یا بهتر گریز از روی عدید راه سازی محدود، تحقیق در

4- المانات
مورد پیشینی انجام داده می‌باشد. از طرف دیگر، قابی- تزر در نظر گرفته در

کاهش ضخامت و نسبت ضخامت لایه با استفاده از تسلیم بالاتر، باید نشان وری با انجام کمتر در خروجی نیاز به افزایش نسبت سرعت و غلتک است. آنها در این تحقیق مقادیر بهینهای
برای این نسبت به دست آورده و در تحقیقات دیگر دقیق و

همکاران [17] روی عدید راه سازی محدود با به منظور تهیه انجام تحلیل عدیدی

132

استقلال، سال 1385، شماره 1، شهریور
شکل 1- بهینه‌سازی از ورق در فضای بین غلاف‌ها

شکل 2- هدف‌سازی از ورق در فضای بین غلاف‌ها

عبارت (p + q) به توجه به تغییر ورق از مجارس لمین فون

ماژر تغییر می‌شود. جانشینی با در نظر گرفتن برخی از ورق در

نحوه 1 متوسط توزیع تنش برگزیده در جهت ضریب ورق

برای نهایه بالایی و پایینی ورق برای است: با [18]

\[\tau_1 = m_1 c_1 k_u \] (1-1)

\[\tau_2 = m_2 c_2 k_1 \] (1-2)

\[k_u = \frac{Y_u}{\sqrt{3}}, \quad k_1 = \frac{Y_1}{\sqrt{3}} \] (1-3)

اگر نیروی برخی کل از سطح مقطع ورق در شکاف غلاف‌ها

صفر فرض شود و درصورتی که لغزش بین دو لایه اتفاق

نفته، ضرایب \(c_1 \) و \(c_2 \) در معادله (1) به صورت زیر به دست

می‌آیند [18]

\[c_1 = \begin{cases} \frac{3b^2 + 2b - 1}{4b^2 (1 + b)} & \text{نحوه 1, III} \\ \frac{3b^2 - 1}{4b} & \text{نحوه II} \\ \frac{3b^2 - 1}{4b} & \text{نحوه III, I} \end{cases} \] (1-4)

\[c_2 = \frac{1}{b + 3} \] (1-5)

\[\frac{m_1 k_u}{m_2 k_1} \]

است. در معادلات بالا

فرز می‌شود ضخامت لایه بالایی از لایه زیرین بیشتر

است. (h_u > h_i). به نحوی می‌باشد که بر روی سطح غلاف‌ها

در کل یک حنجار عمودی ورق ناحیه (A) مطابق شکل (3) قرار

گرفته. خواصیم داشت:

\[\frac{q}{h} = \int_{-h}^{h} \sigma_{xy} \, dy \] (1-3)

\[p = p_1 \tan \theta_1 = p_2 + \tan \theta_2 \] (2-3)
شکل 4- سیستم تنش در جهت ضخامت ورق در فضای بین غلاف‌ها

\[p + q_{2B} = 2Y_u \left[\frac{1-(am_2e_2)^2}{3} \right]^{\frac{1}{2}} \] (2-12)

\[p + q_{2C} = 2Y_i \left[\frac{1-(am_2e_2)^2}{3} \right]^{\frac{1}{2}} \] (3-12)

با تعريف پارامترهای \(\beta_1 \) و \(\beta_2 \) و \(\beta_3 \) به صورت زیر:

\[\beta_1 = \left[\frac{1-(m_1c_1)^2}{3} \right]^{\frac{1}{2}} \] (1-13)

\[\beta_2 = \left[\frac{1-(m_2c_2)^2}{3} \right]^{\frac{1}{2}} \] (2-13)

\[\beta_3 = \left[\frac{1-(am_2e_2)^2}{3} \right]^{\frac{1}{2}} \] (3-13)

\[\frac{3}{2} (\sigma_{x_1} - \sigma_{y_1})^2 + 6(m_1c_1 \frac{Y_u}{\sqrt{3}})^2 = 2Y_u^2 \] (7)

\[\sigma_{x_1} - \sigma_{y_1} = 2Y_u \left[\frac{1-(m_1c_1)^2}{3} \right]^{\frac{1}{2}} \] (8)

با توجه به معادله فوق، برای بخش نیمه پاپایی ورق در ناحیه (C) و (B)

\[\frac{3}{2} (\sigma_{x_2} - \sigma_{y_2})^2 + 6(m_2c_2 \frac{Y_i}{\sqrt{3}})^2 = 2Y_i^2 \] (9)

\[\sigma_{x_2} - \sigma_{y_2} = 2Y_i \left[\frac{1-(m_2c_2)^2}{3} \right]^{\frac{1}{2}} \] (10)

ناحیه (B) باشد، معادله نسبت در ناحیه (B) می‌توانید:

\[p + q_1 = 2Y_u \beta_1 \] (1-14)

\[p + q_{2B} = 2Y_u \beta_2 \] (2-14)

\[p + q_{2C} = 2Y_i \beta_2 \] (3-14)

می‌توان نیروی حاصل از تنش عمودی متوسط در جهت

\[h_q = h \frac{q_1}{2} + (h_1 - \frac{h}{2})q_{2B} + h_2q_{2C} \] (15)

\[p + q_1 = 2Y_u \left[\frac{1-(m_1c_1)^2}{3} \right]^{\frac{1}{2}} \] (12-1)

شکل 8- نیروی کناری و نیروی محوری در جهت ضخامت ورق
فرض ميكنم دو لايه ورق با تنش تسليم Yع و Yب بعد از
يوندليها با یکدیگر، تشکیل ورق واحدها با تنش تسلیم
را به دهد. به طوری که بتوان معايیر تسلیم فور مایزر را
با تعریف تنش عمودی متوسط در جهت ضخامت ورق مطلوب
معدله (15) برای ورق با تنش تسلیم معادل، رهیاب تعریف:

\[p + q = Y_e (\beta_1 + \beta_2) \]

(16)

با تعیین q از معادلات (14) و (16) و
جایگذاری آنها در معادله (15)، می‌توان تنش تسلیم معادل را
بر حساب خواص لایه‌های تشکیل دهنده ورق، به دست
آورد:

\[Y_e = \xi_1 Y_u + 2\gamma \xi_2 Y_1 + (1 - 2\gamma) \xi_2 Y_u \]

(17)

در حالی که \(\gamma \) و \(\xi_1 \) و \(\xi_2 \) به صورت زیر تعریف
می‌شوند:

\[\xi_1 = \frac{\beta_1}{\beta_1 + \beta_2} , \quad \xi_2 = \frac{\beta_2}{\beta_1 + \beta_2} , \quad \xi_2 = \frac{\beta_2}{\beta_1 + \beta_2} \]

(18)

\[\gamma = \frac{h_1}{h} \]

با توجه به معادله (17) برقرار است، اما در حالتی
که باشد، تنش تسلیم معادل ورق تولید شده، با معادله
زیر قابل بیان است:

\[Y_e = \xi_2 Y_1 + 2(1 - \gamma) \xi_1 Y_u + (2\gamma - 1) \xi_2 Y_u \]

(20)

و \(\xi_1 \) و \(\xi_2 \) در معادله بالا، به صورت زیر تعریف می‌شوند:

\[\xi_1 = \frac{\beta_1}{\beta_1 + \beta_2} \]

(21)

\[\xi_2 = \left[1 - \frac{1 - \alpha}{\alpha} \right] \frac{1}{2} \]

(22)

‌اکر از معادله (16) دیفرانسيل گرفته شود، در نتیجه آن:

\[dq = -dp \]

(23)

پس از جایگذاری معادله (16) و (22) در معادله تعدد
دیفرانسیل (1) و با حل آن فشار توزیع شده در طول تمام
ورق با غلبه‌ها چنین خواهد بود(18)

167
مشترك دو لايه، يا مراجعه به شكل (5) الماني المثلثي را در ناحية 1مغ}`. يا نوشتن معادله تعايد المان در راستای ت، عواقب داشت:

\[\tau_3 ds_3 + \tau_2 (ds \cos \theta_3) \cos \theta_3 - \tau_2 (ds \sin \theta_3) \sin \theta_3 + \sigma_{y_2} ds_3 \sin \theta_3 \cos \theta_3 - \sigma_{y_2} ds_3 \cos \theta_3 \sin \theta_3 = 0 \]

(33)

\[\tau_3 = -\tau_2 \cos 2\theta_3 + (p + q_2) \frac{\sin 2\theta_3}{2} \]

(34)

\[\tau_3 = -\tau_2 \cos 2\theta_3 + 2\sqrt{2} \beta_2 \frac{\sin 2\theta_3}{2} \]

(35)

\[\tau_3 = -\tau_2 + 2\sqrt{2} \beta_2 \theta_3 \]

(36)

با تبعين نقاط خشتی، چگونگی توزیع فشار غلتکها بر ورق تعیین میشود. اگر از معادله توزیع فشار غلتکها (24) در هر سه ناحیه انگرال گیریم، نیروی لازم برای انجام فرآیند نورد، تعیین میشود:

\[P = \int_0^{x_{n_2}} P_{\Pi} dx + \int_0^{x_{n_1}} P_{\Pi} dx + \int_0^{x_{n_1}} P_1 dx \]

(30)

کشتار مورد نیاز برای انجام نورد نیز به طور جداگانه بر روی هر کدام از غلتکها محاسبه شده و با هم جمع میشوند. در معادلات زیر، T₁ و T₂ کشتار اعمال شده بر روی غلتکهای بالا و پایین است:

\[T_1 = R_1 \left\{ \frac{x_{n_2}^2}{x_{n_2}} \int_{x_{n_2}}^{x_{n_1}} m_1 k_{1u} dx + \frac{x_{n_1}^2}{x_{n_1}} \int_{x_{n_1}}^{x_{n_1}} m_1 k_{1u} dx \right\} \]

(31-1)

\[T_2 = R_2 \left\{ \frac{x_{n_2}^2}{x_{n_2}} \int_{x_{n_2}}^{x_{n_1}} m_2 k_{1u} dx + \frac{x_{n_1}^2}{x_{n_1}} \int_{x_{n_1}}^{x_{n_1}} m_2 k_{1u} dx \right\} \]

(32)

\[T_1 = R_1 m_1 k_{1u} (1 - 2x_{n_1}) \]

(31-2)

\[T_2 = R_2 m_2 k_{1u} (1 - 2x_{n_2}) \]

(32)

2- محاسبه نش به روش نور سطح پیوند دو ورق

به منظور تعیین رابطه برای نش برشی، در سطح

\[h = \frac{h_{n_1}}{h_{n_2}} = \gamma \]

(37)

استقلال، سال 1345، شماره 14، شیریور
بعد از ساده سازی معادله بالا، خواصیم داشت:

\[\tan \theta_3 = (1 - \gamma) \tan \theta_2 - \gamma \tan \theta_1 \]

معادله (38)

\[\begin{align*}
\tau_3 &= \tau_{2II} + 2Y_1\beta_2\theta_3 \quad \text{zone II} \\
\tau_3 &= \tau_{2} + 2Y_2\beta_2\theta_3 \quad \text{zone III}
\end{align*} \]

در معادله بالا، \(\beta_{2II} \) و \(\beta_{II} \) با توجه به تعریف \(\tau_2 \) در ناحیه II از معادله (39) تعریف می شوند.

\[\text{شکل 6- تغییرات نیروی نورد بر اساس سرنوشت مختلف و ضخامت‌های مختلف در لایه ورق} \]

بعد از ساده سازی معادله بالا، خواصیم داشت:

\[\tan \theta_3 = (1 - \gamma) \tan \theta_2 - \gamma \tan \theta_1 \]

معادله (38)

\[\begin{align*}
\tau_3 &= \tau_{2II} + 2Y_1\beta_2\theta_3 \quad \text{zone II} \\
\tau_3 &= \tau_{2} + 2Y_2\beta_2\theta_3 \quad \text{zone III}
\end{align*} \]

در معادله بالا، \(\beta_{2II} \) و \(\beta_{II} \) با توجه به تعریف \(\tau_2 \) در ناحیه II از معادله (39) تعریف می شوند.

\[\text{شکل 7- تغییرات نیروی نورد بر اساس تغییرات کاکه و برای مقادیر مختلفی از نسبت اتصال در لایه ورق} \]

بعد از ساده سازی معادله بالا، خواصیم داشت:

\[\tan \theta_3 = (1 - \gamma) \tan \theta_2 - \gamma \tan \theta_1 \]

معادله (38)

\[\begin{align*}
\tau_3 &= \tau_{2II} + 2Y_1\beta_2\theta_3 \quad \text{zone II} \\
\tau_3 &= \tau_{2} + 2Y_2\beta_2\theta_3 \quad \text{zone III}
\end{align*} \]

در معادله بالا، \(\beta_{2II} \) و \(\beta_{II} \) با توجه به تعریف \(\tau_2 \) در ناحیه II از معادله (39) تعریف می شوند.

\[\text{شکل 6- تغییرات نیروی نورد بر اساس سرنوشت مختلف و ضخامت‌های مختلف در لایه ورق} \]

بعد از ساده سازی معادله بالا، خواصیم داشت:

\[\tan \theta_3 = (1 - \gamma) \tan \theta_2 - \gamma \tan \theta_1 \]

معادله (38)

\[\begin{align*}
\tau_3 &= \tau_{2II} + 2Y_1\beta_2\theta_3 \quad \text{zone II} \\
\tau_3 &= \tau_{2} + 2Y_2\beta_2\theta_3 \quad \text{zone III}
\end{align*} \]

در معادله بالا، \(\beta_{2II} \) و \(\beta_{II} \) با توجه به تعریف \(\tau_2 \) در ناحیه II از معادله (39) تعریف می شوند.

\[\text{شکل 7- تغییرات نیروی نورد بر اساس تغییرات کاکه و برای مقادیر مختلفی از نسبت اتصال در لایه ورق} \]
شکل 9- تغییرات نیروی تورد بر اساس تغییرات نسبت ضرایب اصطکاک در غلک و برای نسبت‌های مختلف از ضخامت دولایه ورق

شکل 8- تغییرات نیروی تورد بر اساس نسبت‌های مختلف شمعه‌های دولایه ورق

شکل 11- تغییرات گشتاور تورد بر اساس نسبت سرعه‌های مختلف در غلک و نسبت ضخامت‌های دولایه ورق

ضرایب اصطکاک وری، ضریب افزایش، کاهش می‌باشد. اما با افزایش فاکتور اصطکاک \(m_2 \) در واقع نش اصطکاکی بخش بالای ورق در تماش با غلک بالا افزایش یافته. در نتیجه گشتاور نورد نیز افزایش می‌یابد. در شکل (11)، گچبندی تغییرات گشتاور بر اساس تغییر در نسبت سرعه‌ها و براساس نسبت‌های مختلف \(\gamma \) بررسی شده است.

در این شرایط، لایه پابری را با استحکام بالاتر، نظر گرفته‌ایم. با افزایش سهم ورق با استحکام بالاتر، مطابق نمودار قبل، میزان گشتاور نورد نیز افزایش می‌یابد. در نمودار (12)، گشتاور لازم بر اساس تغییرات کاهش در ضخامت و نسبت‌های مختلف از استحکام در ورق به دلیل افزایش 0.5 تر باین نش رفت و نسبت تیکی از

شکل 10- تغییرات گشتاور تورد بر اساس نسبت‌های مختلف از حساسیت اصطکاک در غلک و نسبت ضخامت‌های مختلف در دو لایه

ضرایب اصطکاک وری، ضریب افزایش، کاهش می‌باشد. اما با افزایش فاکتور اصطکاک \(m_2 \) در واقع نش اصطکاکی بخش بالای ورق در تماش با غلک بالا افزایش یافته. در نتیجه گشتاور نورد نیز افزایش می‌یابد. در شکل (11)، گچبندی تغییرات گشتاور بر اساس تغییر در نسبت سرعه‌ها و براساس نسبت‌های مختلف \(\gamma \) بررسی شده است.

در این شرایط، لایه پابری را با استحکام بالاتر، نظر گرفته‌ایم. با افزایش سهم ورق با استحکام بالاتر، مطابق نمودار قبل، میزان گشتاور نورد نیز افزایش می‌یابد. در نمودار (12)، گشتاور لازم بر اساس تغییرات کاهش در ضخامت و نسبت‌های مختلف از استحکام در ورق به دلیل افزایش 0.5 تر باین نش رفت و نسبت تیکی از

شکل 10- تغییرات گشتاور تورد بر اساس نسبت‌های مختلف از

ضرایب اصطکاک وری، ضریب افزایش، کاهش می‌باشد. اما با افزایش فاکتور اصطکاک \(m_2 \) در واقع نش اصطکاکی بخش بالای ورق در تماش با غلک بالا افزایش یافته. در نتیجه گشتاور نورد نیز افزایش می‌یابد. در شکل (11)، گچبندی تغییرات گشتاور بر اساس تغییر در نسبت سرعه‌ها و براساس نسبت‌های مختلف \(\gamma \) بررسی شده است.

در این شرایط، لایه پابری را با استحکام بالاتر، نظر گرفته‌ایم. با افزایش سهم ورق با استحکام بالاتر، مطابق نمودار قبل، میزان گشتاور نورد نیز افزایش می‌یابد. در نمودار (12)، گشتاور لازم بر اساس تغییرات کاهش در ضخامت و نسبت‌های مختلف از استحکام در ورق به دلیل افزایش 0.5 تر باین نش رفت و نسبت تیکی از

شکل 10- تغییرات گشتاور تورد بر اساس نسبت‌های مختلف از

ضرایب اصطکاک وری، ضریب افزایش، کاهش می‌باشد. اما با افزایش فاکتور اصطکاک \(m_2 \) در واقع نش اصطکاکی بخش بالای ورق در تماش با غلک بالا افزایش یافته. در نتیجه گشتاور نورد نیز افزایش می‌یابد. در شکل (11)، گچبندی تغییرات گشتاور بر اساس تغییر در نسبت سرعه‌ها و براساس نسبت‌های مختلف \(\gamma \) بررسی شده است.

در این شرایط، لایه پابری را با استحکام بالاتر، نظر گرفته‌ایم. با افزایش سهم ورق با استحکام بالاتر، مطابق نمودار قبل، میزان گشتاور نورد نیز افزایش می‌یابد. در نمودار (12)، گشتاور لازم بر اساس تغییرات کاهش در ضخامت و نسبت‌های مختلف از استحکام در ورق به دلیل افزایش 0.5 تر باین نش رفت و نسبت تیکی از

شکل 10- تغییرات گشتاور تورد بر اساس نسبت‌های مختلف از

ضرایب اصطکاک وری، ضریب افزایش، کاهش می‌باشد. اما با افزایش فاکتور اصطکاک \(m_2 \) در واقع نش اصطکاکی بخش بالای ورق در تماش با غلک بالا افزایش یافته. در نتیجه گشتاور نورد نیز افزایش می‌یابد. در شکل (11)، گچبندی تغییرات گشتاور بر اساس تغییر در نسبت سرعه‌ها و براساس نسبت‌های مختلف \(\gamma \) بررسی شده است.

در این شرایط، لایه پابری را با استحکام بالاتر، نظر گرفته‌ایم. با افزایش سهم ورق با استحکام بالاتر، مطابق نمودار قبل، میزان گشتاور نورد نیز افزایش می‌یابد. در نمودار (12)، گشتاور لازم بر اساس تغییرات کاهش در ضخامت و نسبت‌های مختلف از استحکام در ورق به دلیل افزایش 0.5 تر باین نش رفت و نسبت تیکی از

شکل 10- تغییرات گشتاور تورد بر اساس نسبت‌های مختلف از
شکل 12- تغییرات گشتاور نورد بر اساس کاش در ضخامت‌های مختلف و نسبی‌های مختلف از نشانهٔ تسلیم دو لاشه ورق

کاهش در ضخامت و به ازای $Y_1 = 1.5Y_u$ و $Y_1 = Y_u$، در فرمول 14 بر اساس یکسانی بودن تنش تسلیم در جهت ضخامت و رسم شده و مطابق افزایش گشتاور با گشتاور بر عرض کاش در ضخامت ورق، نسبت منفی روي دو مدل به هم تزیک شده، دنبال دارد. برای کاهش ضخامت در خروجی، متوسط فشار عماد شده بر افزایش می‌یابد و این به معنای افزایش نیروی لازم برای انجام نورد است. $Y_1 = 1.5Y_u$ در شکل (15)، توزیع فشار متوسط را به ازای مشاهده می‌کنیم، افزایش نسبت تسلیم یکی از نتایج ذکر گشتاور نورد منفی‌تر نسبت به منفی‌های نتایج ذکر دهه‌های گذشته مشابه است. افزایش ضخامت فعلی افزایش اعمال شده بر ورق بر منفی ارتفاع تغییر شکل پلاستیک در ورق می‌شود.

در شکل (16) نشان داده شده که به ازای $Y_1 = 2Y_u$ ترکیب عرضی و فشار در این افزایش می‌یابد و مکانیکی با آگاهی درست است. با افزایش نسبت تسلیم یکی از نتایج ذکر مشاهده می‌کنیم فشار خروجی در می‌شود. $n_{2,1}$ توزیع فشار بر اساس تغییرات گشتاور افزایشی است. افزایش $m_1 = 1$ به ازای $0.5 \leq m_2 \leq 1$ افزایش گشتاور نورد منفی در ضخامت گرفتار شده و افزایش روش سطح نشانه تسلیم دو لاشه ورق در شکل (17) نشان داده شده، مطابق نمودار، افزایش m_1 موجب نشانه تسلیم در شکل (17) نیز به افزایش m_2 منفی کاهش می‌یابد و در شکل (17) نیز به افزایش m_2 موجب نشانه تسلیم در شکل (17) نیز به افزایش m_2 منفی کاهش می‌یابد و
شکل 15 - چگونگی توزیع فشار متوسط برای کاهش ضخامت‌های مختلف و برای $Y_{u} = 2Y_{I}$

شکل 16 - چگونگی توزیع فشار متوسط برای کاهش ضخامت‌های مختلف و برای $Y_{u} = Y_{I}$

شکل 17 - چگونگی توزیع فشار متوسط بر اساس تغییرات نسبت فاکتور اصطکاک

شکل 18 - چگونگی توزیع فشار بر اساس تغییرات نسبت شعاع دوقولنک

131
جاهه جايب في موضع نقطة خصى x_N، لبث x_N موضعي وورود با y_N معاصي z.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

وزوقي داشته است. x_N، تغيبات في طول ناحية عند $x=0$، $y=0$ و$z=0$.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.

شده في حالي z با y_N معاصي z، وورود با y_N معاصي z.

نسبة شعاع طلق في طول ناحية عند $x=0$، $y=0$ و$z=0$.

استود: با افراش y_N، فيز توصية z، وورود با y_N معاصي z.
شکل ۲۳- تغییرات متوسط تنش برشی بر اساس تغییرات فاکتور اصطکاک (m1)

شکل ۲۴- تغییرات تنش برشی بر اساس تغییرات کاهش در ضخامت

• همانند یک فرانک نامی‌فارقان، افزایش نسبت سرعت غلتكهای موجب کاهش نیروی نورد می‌شود.
• افزایش نسبت استحکام لایه قوی‌تر در یک کاهش در ضخامت تابت، موجب جایی ناگهانی خنثی به سمت ورودی موجب کاهش نسبت زیر خانه می‌شود.
• افزایش نسبت فاکتورهای اصطکاک و همچنین نسبت شعاع‌های غلتك، موجب افزایش نیروی کاهش نورد می‌شود.
• افزایش عواملی مانند نسبت تنش تنش نورد درونی، نسبت ضخامت ورق با استحکام بالاخره نسبت فاکتور اصطکاک، نسبت شعاع دو غلتك، کاهش در ضخامت ورق، موجب بالای رفت متوسط فشار اعمال شده بر ورق می‌شود.
• تنش برشی سطح پیوند نداشت و فقط موجب جایی نظامی خنثی می‌شود. در شکل (۲۵) نیز تغییرات نسبت سرعتها، تاثیری در میزان تنش برشی نداشت و فقط براساس برقراری رابطه ثابت حجم، موجب تغییرات شدید نسبت زیر خانه، به یکدیگر می‌شود.
• در مجموع با توجه به نمودارهای رسم شده، می‌توان نتایج حاصله را به صورت زیر خلاصه کرد:
 • افزایش ضخامت لایه قوی‌تر رک هر نسبت ثابت از تنش تسلیم دو لایه می‌شود، موجب افزایش نیروی و کاهش نورد می‌شود.
 • به کارگیری لایه به استحکام بالا در یک نسبت ثابت از ضخامت دو لایه افزایش نیرو و کستنور لازم برای انجام فرانک نورد به دنبال دارد.

مراجع