Study of Reinforced Slopes Safety Factor Using the Inclined Slices Method

S. Shekarian, A. Ghanbari, and M. Sabermahani
Faculty of Engineering, Tarbiat Moallem University
Faculty of Engineering, University of Tehran

Abstract: Stability of reinforced slopes is almost always carried out using limit equilibrium methods and controlled by the shear strengths of the slope materials and the extension force of reinforcements. According to limit equilibrium methods, the stability of slopes is assessed by dividing the whole failure wedge into several vertical elements. In order to determine the safety
factor of the reinforced slopes, a new approach is proposed based on the inclined slices method. According to this approach, a formulation is introduced which uses fewer unknowns and a simpler formulation to calculate the extension forces of reinforcements and safety factors of the slopes. Additionally, moment and forces equilibrium in all slices are taken into account while the tensile force of each reinforcing element is independently calculated. Comparisons revealed differences at 5 to 10 percent level between analytical results obtained from this method and those of ReSSA software.

Keywords: Limit equilibrium, Reinforced slope, Safety factor, Inclined slices, ReSSA.
راه حل‌های متغیری بر مبنای ویک‌ردرس تحلیل شبیه‌سازی قابل ارائه است. روشهای متداول استفاده شده برای ایجاد معادلات پایه عبارت اندر این فرآیند از لحاظ تولید قطعه (ج) تولید نگر برای هر قطعه ج. تولید نگر برای کل تولدها خاک قرار داده می‌شود در پایه سطح نگش و - تولید نگر برای کل تولدها خاک قرار داده می‌شود در پایه سطح نگش.

در جدول (1) فرض‌ها و مشخصات نمونه بری تولید قطعات قانون آماری شده است.

در این تحقیق روشی تولید برای ارزیابی ضرایب اطمنان پایداری گویه گسیختگی در شیوه‌ای سلول شده بر اساس تعاریف قطعات مایل به روش‌های مجزآی این ادعا است. از این می‌شود. در این روش معادلات تولید نگر تولید نگر به تحلیل شبیه‌سازی خاکی که در این‌مانهای سلول کننده مایل‌اند، بیان می‌شود.

3- مطالعات محققان پیشی

با توجه به گسترش روش افزون مسلح سازی تولده‌های خاکی محققان راک‌هاریا مجدد برای بررسی پایداری این سازه‌ها ایران کرده‌اند. در این مطالعه آن با اکثریت مسلح کننده برای هر یک از مراحل تولید از مرکز داراییه می‌کند در معادلات تولید کننده شده و ضرایب اطمنان به صورت زیر تعریف می‌شود:

\[F_s = F_n + \left(\frac{M_p}{M_d} \right) \tag{1} \]

در این معادله مقادیر ضرایب اطمنان در تولده خاکی مسلح کننده از اهمیت بسزایی برخوردار است. این تولید به‌طور تاثیر زاویه‌ای است که منبع قطعات بین مسلح کننده و خاک، مشخصات هندسی مسلح کننده، فاصله بین مسلح کننده و زاویه مسلح کننده با سطح افق و ناشی از نمای‌های وارد بر مسلح کننده فشار دارد (3). در بررسی از شبیه‌سازی مسلح شده تئوری سه‌قطعه‌ای به‌طور دقیق در صورتی شیب‌دار با سطح افق در خاک کاهش می‌شود (2) در مطالعات قائم برای مسلح کننده در دو طرف قطعه مجهول است و تغییرات زیر روی کشش در دو طرف قطعه شکل است. ضمن آنکه در هر طرف مکان است به تعیین کل مسلح کننده بر انتقال مجرای برای کم قطعه از این ماجرا مجهول است و فرمول‌ها مجهول در دو طرف قطعه بیان می‌شود در این مدل در انتقال روشی که به طبیعت مجهولات مسلمانه مجهول به فرمول‌ها مجهول در دو طرف قطعه بیان می‌شود در این مدل در انتقال روشی که به طبیعت مجهولات مسلمانه مجهول به فرمول‌ها مجهول در دو طرف قطعه بیان می‌شود در این مدل در انتقال روشی که به طبیعت مجهولات مسلمانه مجهول به فرمول‌ها مجهول در دو طرف قطعه بیان می‌شود در این مدل در انتقال روشی که به طبیعت مجهولات مسلمانه مجهول به فرمول‌ها مجهول
4- معادلات اساسی محاسبه ضربی طیف اطمنان بر

اساس روش قطعات مایل

محاسبه ضربی طیف اطمنان بر روی گوی گیسوختگی در

توپردیه مصطلح شدید یکی از مهم‌ترین اهداف تحلیل شبیه‌ای

مصطلح شدید است. به طور کلی، شبکه‌ای فرضی ارائه شده برای

سطح گیسوختگی در روش‌های تحلیل حداد شامل سطح

گیسوختگی صفحاتی، و ناتجی از قطعات مختلف، دایره ای، و

یا سطح گیسوختگی اختلال تگرایی‌ای است. در روش ارائه

شد این روش نوسان‌گران برای محاسبه ضربی طیف اطمنان بر روی

گوی گیسوختگی یا همانه که همگانی تکنیک به دست خاک

باسیاب یا به عنوان یکی از این پیشانی‌ها ممکن است این قطعات به

ردیف کرده و در نظر گرفته تحلیل استاتیک برای هر قطعه

ضریب طیف اطمنان گوی گیسوختگی را به دست می‌آورد. در

این روش تحلیل لنگر و تیکام قطعات در نظر گرفته

شده که می‌تواند این روش به عنوان یکی از روش‌های

تولید آن ارائه شده است. در روش گیسوختگی یا همانه که

هی‌تیم‌های یا مجموعه مصالح گیسوختگی که می‌تواند بر

نهایی قطعه و نوعی برای اندازه‌گیری قطعه، نیروی بریش وارودی انجام

شده که می‌تواند بر

به دست می‌آید.

\[F_s = \frac{\sum (c_i / \Delta x_i + w_i \tan \phi_i / m_a_i)}{\sum (w_i \sin \alpha_i - T_i \cos \alpha_i)} \]

در روشهای پای دش سطح بالای خط گیسوختگی به تعیین

قطعه قائن تبدیل می‌شود. در مطلوبه انجام شده توپردیه و

همگانی روش‌هایی همانند پای تبدیل به دست می‌آورد. افکار

ایجاد شده است که در این پایوند نظرات و مهجوله‌ای ارائه

شهده در فرمولی ساده شده، با دستگاه گریفی مانند معلوم

برای موج‌های ساده و نیز در جدول (1) مطالعات و مهجوله‌ای

در جدول (2) و (3) به ترتیب مقاومت بریش متوسط

خاک و عمق مستحکم هی‌تیم میدان سطح در صفحه می‌شود.

موج‌های ساده و مهجوله‌ای کاملاً می‌تواند قطعات افکار

تولید در مسکنون ارائه شده است. در

\[\sigma_n = \tanh \left(au + b \right) \]

به دست می‌آید.

\[\text{برای دست می‌آید.} \]
جدول ۲ - معادلات و مجهول‌های فرمول‌نامه ساده برای تحلیل شیروانی‌های سلح‌شده به روش قطعات افقی

<table>
<thead>
<tr>
<th>مجهول‌ها</th>
<th>تعادل معادله</th>
<th>معادلات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) (نریوهای عموم وارد بر انتهای قطعه)</td>
<td>(\sum F_y = 0) (برای هر قطعه)</td>
<td>(a = 2 \tan \alpha \log \left(\frac{2K_a}{K_a + K_r} \right) \quad b = \frac{(\log K_a + K_r) / 2}{K_a - K_r})</td>
</tr>
<tr>
<td>(n) (نریوهای برای وارد بر انتهای قطعه)</td>
<td>(\tau_m = \frac{r_f}{F_s}) (برای هر قطعه)</td>
<td>(u = \frac{x}{z})</td>
</tr>
</tbody>
</table>
| \(S_i \) (ضریب اطمینان) | \(\sum F_y = 0 \) (برای یک قطعه) | که در آن \(z \) به ترتیب فاصله طول از مبدأ و عمق نقطه مورد نظر مطبق شکل (۱) است. همچنین توابع \(K_a \) و \(K_r \) صورت زیر تعریف می‌شوند:

\[
K_a = \left[\frac{\sin(\alpha - \varphi)}{\sin \alpha + \sqrt{\sin \alpha \cos(\alpha - \varphi)} \sin \varphi} \right]^2
\]

\[
K_r = \tan^2 \left(45 - \frac{\theta}{2} \right)
\]

\[
\alpha = \frac{a}{b}
\]

- نقطه اثری برای عمداً بین قطعات، مرکز سطح توزیع تنش محاسباتی از بند (۱) است. ج- سطح گیسیکتی در این روش به صورت دارای ای در نظر گرفته شده است. د- تحلیل بر مبنای روش تعادل حدسی صورت گرفته است. ه- اثر رويه‌های محافظت ۱۱ در محاسبات مطوف خوده است. و- مقدار ضریب اطمینان برای همه قطعات یکسان در نظر گرفته شده است. ز- توجه خاص در محاسبات به صورت همگن در نظر گرفته شد. ح- فرض شده است که سطح گیسیکتی از پایه شیب عبور کند- ط- محاسبات نهایی از نظریه (۱) ارائه شده است. ی- محل المپی‌روی \(N_i \) دانه‌ای(شماره ۰) \((c) \) ماده شده است. آ- محل المپی‌روی \(N_i \) سطح انتهای قطعه است.

در این روش تعادل محول‌های جدول ۲ مجهول‌های عموم پایه ۲ معادله تعیین می‌شود.

<table>
<thead>
<tr>
<th>مجهول‌ها</th>
<th>تعادل معادله</th>
<th>معادلات</th>
</tr>
</thead>
</table>
| \(H_i \) | \(\sum F_y = 0 \) (برای هر قطعه) | که برای آن ها طبق الگوریتم فیکشی و تعریف پارامترهای مذکور در شکل‌های (۲) و (۳) آمده است.
| \(n \) و \(S_i \) | \(\tau_m = \frac{r_f}{F_s} \) (برای هر قطعه) | که برای محول مجهول \(F_s \) قابل دسترسی هستند. به منظور پیدا کردن مقدار \(r_f \) به گونه‌ای گیسیکتی ایجاد شده از معادله تعیین شده برای هر مقدار \(F_s \) ضریب اطمینان (۱) مقدار \(F_s = \frac{r_f}{\tau_m} \) (برای هر قطعه)
جدول 3- معادلات و مجهولات فرمولیندی در نظر گرفته شده توسط نگارندها برای محاسبه ضریب اطمینان

پایداری شیب به روش قطعات مایل

<table>
<thead>
<tr>
<th>مجهولات</th>
<th>تعداد معادله</th>
<th>معادلات</th>
<th>تعداد معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_i</td>
<td>n</td>
<td>$\sum F_i = 0$</td>
<td>n</td>
</tr>
<tr>
<td>T_i</td>
<td>n</td>
<td>$\sum F_y = 0$</td>
<td>n</td>
</tr>
<tr>
<td>N_i</td>
<td>n</td>
<td>$\sum M_o = 0$</td>
<td>n</td>
</tr>
<tr>
<td>S_i</td>
<td>n</td>
<td>$\tau_m = \frac{\tau_f}{F_y}$</td>
<td>n</td>
</tr>
<tr>
<td>F_{y}</td>
<td>1</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

- n تعداد قطعات

شکل 2- نمای کلی شیب و موقعیت قرارگیری مسلح کنده‌ها
جدول ۴- مشخصات در نظر گرفته شده برای شرایطی نمونه تحلیل شده:

| شیب می‌مان (θ) | ضریب زاویه اتصالی داخلی خاکپزی (ϕ) | ضریب زاویه اتصالی خاکپزی (ϕ) | همچنین با لحاظ سه معادله نسبت به جدایی تعادل سه مجهول و N_H تعیین می‌شود. یا اینکه مقدار F_S از این قطعه و جاگذاری مقدار آن را در قطعات بالایین، مقادیر برای هر قطعه به دست می‌آید.
| موجد |

به ازای سه قطعه با تأثیر حاصله از نرم افزار رسا که به منظور تحلیل شبیه‌سازی مسطح شده توسط لینگسکی ارائه شده است، مورد مقایسه قرار گرفته است. در این نرم افزار بر مبنای روش تعادل حذف و با استفاده از روش قطعات بر مبنای دو روش گردنبند و امستر شرایطی مورد تحلیل قرار گرفته و ضریب اطمینان بر روی گوه گسیختگی حاصل می‌شود. معادلات به کار رفته در نرم افزار مذکور بر مبنای روش قطعات قائم ارائه شده‌اند. جنبه‌های شرایطی مسطح شده نمونه که در تحلیل مورد استفاده واقعی شده، در جدول (۴) ارائه شده است. در این مقایسه به ازای سه زاویه مركبی ($β_j$) مختلف برای $β_j$ (90° و 80° و 70°)، به طوری که مرکز دایره در موقعیت ارتفاعی ($Y=3$ m) جایی جا می‌شود، سه گوه گسیختگی قطعه بر حسب F_S به دست آورده شده و در قطعه پایینی آن جاگذاری می‌شود. این کار با قطعه آخر (قطعه n) ادامه می‌یابد. در قطعه آخر با داشتن مقادیر محاسبه H_L, H_T, H_L, H_T و T_f همچنین با استفاده سه معادله تعادل سه مجهول و N_H تعیین می‌شود. یا اینکه مقدار F_S از این قطعه و جاگذاری مقدار آن را در قطعات بالایین، مقادیر برای هر قطعه به دست می‌آید.

۵- مقایسه نتایج روش قطعات مایل با روش‌های موجود

به منظور مقایسه روش قطعات مایل برای دستیابی به مقدار گوی گسیختگی در شرایطی، نتایج روش مورد نظر استفاده. سال ۱۳۸۷ شمسه ۲۸ اسفند
جدول 5 - مقارنة ضريبة أطماني حاصلة من روش تحليل قطعات مابل بنتائج ترم افتازر ريسارد حالت إستانيك

<table>
<thead>
<tr>
<th>$\varphi = 35$</th>
<th>$\varphi = 30$</th>
<th>$\varphi = 25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣT_i (kN)</td>
<td>ضريبة أطماني</td>
<td>ΣT_i (kN)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ReSSA</td>
<td>قطعات مابل</td>
<td>ReSSA</td>
</tr>
<tr>
<td>35.6</td>
<td>3.16</td>
<td>2.91</td>
</tr>
<tr>
<td>41.3</td>
<td>2.81</td>
<td>2.59</td>
</tr>
<tr>
<td>44.2</td>
<td>2.34</td>
<td>2.12</td>
</tr>
</tbody>
</table>

جدول 6 - مقارنة ضريبة أطماني حاصلة من روش قطعات مابل بنتائج ترم افتازر ريسارد حالت إستانيك $(\alpha = 90)$

<table>
<thead>
<tr>
<th>$\varphi = 35$</th>
<th>$\varphi = 30$</th>
<th>$\varphi = 25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣT_i (kN)</td>
<td>ضريبة أطماني</td>
<td>ΣT_i (kN)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ReSSA</td>
<td>قطعات مابل</td>
<td>ReSSA</td>
</tr>
<tr>
<td>42.6</td>
<td>2.94</td>
<td>2.8</td>
</tr>
<tr>
<td>44.2</td>
<td>2.74</td>
<td>2.6</td>
</tr>
<tr>
<td>45.8</td>
<td>2.65</td>
<td>2.5</td>
</tr>
</tbody>
</table>

جدول 7 - مقارنة ضريبة أطماني حاصلة من روش قطعات مابل بنتائج ترم افتازر ريسارد حالت إستانيك $(\alpha = 75)$

<table>
<thead>
<tr>
<th>$\varphi = 30$</th>
<th>$\varphi = 25$</th>
<th>$\varphi = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣT_i (kN)</td>
<td>ضريبة أطماني</td>
<td>ΣT_i (kN)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ReSSA</td>
<td>قطعات مابل</td>
<td>ReSSA</td>
</tr>
<tr>
<td>49.8</td>
<td>3.88</td>
<td>3.61</td>
</tr>
<tr>
<td>53.2</td>
<td>3.69</td>
<td>3.47</td>
</tr>
<tr>
<td>56.1</td>
<td>3.64</td>
<td>3.41</td>
</tr>
</tbody>
</table>

جدول 8 - مقارنة ضريبة أطماني حاصلة من روش قطعات مابل بنتائج ترم افتازر ريسارد حالت شبه إستانيك $(\alpha = 60)$

<table>
<thead>
<tr>
<th>$\varphi = 30$</th>
<th>$\varphi = 25$</th>
<th>$\varphi = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣT_i (kN)</td>
<td>ضريبة أطماني</td>
<td>ΣT_i (kN)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ReSSA</td>
<td>قطعات مابل</td>
<td>ReSSA</td>
</tr>
<tr>
<td>33.1</td>
<td>6.00</td>
<td>5.74</td>
</tr>
<tr>
<td>36.1</td>
<td>4.92</td>
<td>4.71</td>
</tr>
<tr>
<td>39.5</td>
<td>4.15</td>
<td>3.95</td>
</tr>
</tbody>
</table>

K_h = 0.05
K_h = 0.1
K_h = 0.15

استناداً إلى هذه الجداول، تظهر أن ضريبة أطماني حاصلة من روش قطعات مابل تتفق بشكل عام مع نتائج ترم افتازر ريسارد حالت إستانيك. ومع ذلك، يوجد بعض الاختلافات النسبية في النتائج. هذه الاختلافات يمكن أن تعود إلى بعض العوامل مثل العمليات المختلفة التي تُستخدم في الحسابات أو التباينات في البيانات المدخلة. من خلال مقارنة هذه النتائج، يمكن للباحثين والمهندسين الاستفادة من البيانات الحقيقية لتحديد السلوك المثالي للمواد المصنوعة من الأجزاء المصنوعة من الأجزاء في الحالة المذكورة.
جدول 9: مقایسه ضریب اطمینان حاصله از روش قطعات مابل با تابع ترم افزار ریسارد حالت شبه استاتیکی برای دیوار 6 متری (β = 90 درجه)

<table>
<thead>
<tr>
<th></th>
<th>φ = 30</th>
<th></th>
<th>φ = 25</th>
<th></th>
<th>φ = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣT_i</td>
<td>ضریب اطمینان</td>
<td>ΣT_i</td>
<td>ضریب اطمینان</td>
<td>ΣT_i</td>
<td>ضریب اطمینان</td>
</tr>
<tr>
<td>(kN)</td>
<td>ReSSA</td>
<td>قطعات مابل</td>
<td>ReSSA</td>
<td>قطعات مابل</td>
<td>ReSSA</td>
</tr>
<tr>
<td>62.4</td>
<td>2.67</td>
<td>2.52</td>
<td>71.3</td>
<td>2.07</td>
<td>1.93</td>
</tr>
<tr>
<td>67.6</td>
<td>2.49</td>
<td>2.35</td>
<td>77.2</td>
<td>1.93</td>
<td>1.80</td>
</tr>
<tr>
<td>73.2</td>
<td>2.32</td>
<td>2.18</td>
<td>84.1</td>
<td>1.80</td>
<td>1.67</td>
</tr>
</tbody>
</table>

تعداد قطعات در نظر گرفته شده و همچنین در نظر گرفتن انتهای هر قطعه به صورت یک خط صاف که در اصل به صورت کمی از یک دیابه است، عزوم این تأثیر کاذب در اختلاف مشاهده شدند.

در روش قطعات قائم مقدار نیروی کانتشی در وضعیت قطعه مجهول بود و تعیین تغییرات آن در دو طرف قطعه کار داشواری است. ضمن اینکه در یک قطعه مکانیکی تعداد کلі‌کنده‌ها نیروی مجهول در دو طرف قطعه وجود داشته باشد که این نوع از افزایش تعداد محولین می‌شود. به همین دلیل روش قطعات مابل که بر اساس آن محول‌های مسلسل کاهش‌پذیر و فورمول‌بندی در نظر گرفته شده برای تعیین محول‌های ساده‌تر می‌شود از کارایی بالاتری برخوددار است. از سوی دیگر یک توجه به انگاه در فرمول‌بندی ارائه شده برای روش قطعات مابل تعداد لگر و نیروی در کلی قطعات اراضی شده است و همچنین از آنجایی که تعداد قطعات مشاهده است که تعداد قطعات راست‌ای

محل کنده در نظر گرفته شده و در این روش مقدار نیروی کانتشی در مسلسل مکانیکی به صورت داده‌گیری محاسبه می‌شود. این در حالی است که در روش‌های نوری و شاهقی و همکاران صرفأ مجموع نیروی مسلسل کنده‌ها (ΣT_i) برآورده می‌شود. در مجموع، در این نوشته‌ها عنصرهای سیری‌های مسلسل و ارائه راهکاری برای تحلیل شیروانی‌های که با ورود به مسلسل شده، امکان محاسبه نیروی کانتشی بر مسلسل کنده تعیین شده و در محدوده برای تثبيت مسیر افزایش حالت شبه استاتیکی برای دیوار 6 متری (β = 90 درجه) روی یک گونگ‌سیکستگی فرضی با θ_β = 90 درجه موانع ارتفاع و ارتفاع حالت شبه استاتیکی ارائه است. در جدول (6) به ازای زوایای شیب برای با 75 درجه و 60 درجه ضریب اطمینان برای همان گونگ‌سیکستگی فرضی (θ = 90 درجه) ارائه شده است. همچنین در جدول (9) برای یک دیوار 6 متری با زاویه شیب 90 درجه روی گونگ‌سیکستگی فرضی با θ_β = 90 درجه، نتایج دوباره مورد بررسی قرار گرفته است.

6- نتیجه‌گیری

شیروانی‌های حاکی و سنگی در بسیاری از موارد توسط انرژی مالی مسلسل می‌شوند. در این شرایط روش قطعات مابل که توسط نگارنده‌گان در این نوشته به معرفی شده است نسبت به آن دسته‌ای از روش‌های تعادل حیدری بر اساس راهکارهای قطعات قائم و با افقه نوشته‌های شده‌اند در کارایی بالاتری برخوددار است. مقایسه نتایج حاصله از روش قطعات مابل با نتایج نرم افزار طراحی نیروی سیستم هاکی به چند باره نموده در این نوشته ارائه شده، حاکی از آن است که نتایج حاصله حدوداً ۵ تا ۱۰٪ اختلاف دارند.
قیزدان
از همکاران مطرح آفرینان دکتر علی فراهانی و دکتر علی فاخری خاطر راههایی‌های یافته‌ای ارائه‌می‌شود. قیزدانی می‌شود.

1. ReSSA (Reinforced slope stability analysis)
2. Fellenius
3. Bishop
4. Spencer
5. Sarma
6. nailing
7. planner
8. bilinear
9. piecewise
10. circular
11. log spiral
12. facing