تحليل استاتیکی صفحات مثلثی

محمدرضا سعیدپور و داوود مخالفی
دانشگاه مهندسی عمران، دانشگاه صنعتی اصفهان
(دریافت مقاله: 1375/6/22 - دریافت نسخه نهایی: 1376/1/24)

چکیده - مقاله حاضر به عنوان یک روش عدید جدید برای تحلیل استاتیکی صفحات مثلثی نازک در دستگاه طبیعی مختصات
تلقی می‌شود. اطلاعات منتشر شده در مورد حل صفحات مثلثی با شرایط مرزی مختلف حاکی از حل ریاضی - ژنتیک
صفحات در دستگاه مختصات کارتریج است که نیازی به ارائه معادلات مرزی و انگرال‌گیری نیست. این روش بر حسب می‌بایست
در این مقاله از دستگاه مختصات صفحات استفاده شده است. در آن هندسه شکل با تغییرات یک مثلث پایه پی آید ارائه
و انتخاب چند جمله ای‌های بسط نماینده دارای می‌باشد. این روش بر حسب سادگی محاسبه می‌شود. در راه حل
پیشنهاد می‌شود به طور دقیق مثالهای متعددی حل شد. استفاده با تعداد محدود جواب‌های صفحات مثلثی متفاوت
مطالعه شده است.

Static Analysis of Triangular Plates

M. M. Saadatpour and D. Mkhalefi
Department of Civil Engineering, Isfahan University of Technology

ABSTRACT- This paper may be regarded as a new numerical method for the analysis of triangular thin plates using the natural area coordinates. Previous studies on the solution of triangular plates with different boundary conditions are mostly based on the Rayleigh-Ritz principle which is performed in the Cartesian

دانشجوی کارشناس ارشد

استقلال، سال ۱۶، شماره ۲، اسفند ۱۳۷۶
<table>
<thead>
<tr>
<th>توابع علامتی</th>
<th>معنا</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>مختصات مطلبي</td>
</tr>
<tr>
<td>β</td>
<td>$M_0 \gamma_0 \gamma_y$</td>
</tr>
<tr>
<td>γ</td>
<td>$M \gamma_0 \gamma_y$</td>
</tr>
<tr>
<td>δ</td>
<td>$\gamma_0 \gamma_y$</td>
</tr>
<tr>
<td>ϵ</td>
<td>γ_y</td>
</tr>
</tbody>
</table>

coordinates. Consequently, manipulation of the geometry and numerical calculation of the integrals are time consuming and tedious. In this paper a new approach is developed to analyze triangular plates by the Ritz method, using interpolation functions in the area coordinates. The geometry is presented in a natural way by mapping a parent triangle and the integrals are evaluated analytically. In this approach, the convergence is always assured due to the completeness of interpolating polynomials. Several examples are presented and the results are compared with other available data.

مراجع

[1] گزارش
[2] نظر می‌رسد اطلاعات مربوط به حمل استاتیکی صفحات مثلث از اتوکد پنکران، محدود به اطلاعاتی است که کلی از تکنیک‌های مورد حمل‌ونقل جریان دستگاه کاربردی‌که به طور طبیعی تبدیل و انتظار جوامعی می‌باشد، گزارش

فکرولبردی

صفحات مثلث‌یا با شکل کلنی و شرایط مرزی مختلف را مورد مطالعه قرار داده‌اند. در هر دو این مقدمات صحتی از تعیین تابع انرژی سیستم برناوهای چپ و وسط یا چپ صفحه‌ی می‌شود و در نهایت از مدل جمهوری کلی در دستگاه x,y استفاده شده است.

سیک و چاک‌روختی [8] تا حل مثلث‌یا ارتعاشات صفحات مثلثی پرداخته‌اند و با پیش نمایی جابجایی حقیقی صفحه برحسب توابع مشخصه‌ی مجزای مداری و محاسبه‌ی انتزاعی و حداکثر کردن آن نسبت به هر یک از مختصات تعییم یافته به استخراج نتایج پرداخته‌اند. تمام مراجع فوق و دیگر مراحل که توسط مراجع می‌باشد بیان داده شده است مثلث‌یا ارتعاشات صفحه مثلثی را به روش ریی- ریزت مورد مطالعه قرار می‌دهند. مزینی که راه حل نهایی مراحل [A] بر دیگر مراحل دارد، نگاشت صفحه مثلثی کلی از دستگاه x,y به دستور مقاله چپ و ارتعاشات صفحه مثلثی [8] تزئین استفاده از توابع مجزای مداری، مثلث‌یا در دستگاه x,y برای پیش نمایی جابجایی است. این فاصله تا حدود زیادی از حجم محاسبات می‌گذارد و نتایج سختی را بررسی مختصات تعیین یافته از حالات مربوطی خارج می‌کند.

در مقاله حاضر اگرچه از همان روش معرفی شده در حل مکانیات گرافیکی توسط سیستم‌های شرایط مرزی مختلف و بارگذاری متنوي سپس مزئین استفاده می‌شود لیکن برای تعیین انرژی و ارتعاشات تابع برای عددی کردان آن از دستگاه مختصات مساوی بهره برده می‌شود. این دستگاه که به طور گسترده‌ای در روش انجام محور برای تعیین مانند سختی آژیر مثلث‌یا مورد استفاده قرار می‌گیرد [1], تاکنون در حل صفحات به طور یکجا استفاده شده است. استفاده از این دستگاه دو...
مهم‌ترين از آنچه که مختصات لازم برای تعريف نقطه در فضای دو بعدی است، لذا لازم است وابستگي بين این مختصات صريحاً به صورت زيبر بيان شود:

$$L = L_1 + L_2 + L_3 = <L>$$

(2-ب)

از حل تناول معادلات (2) به نتیجه زيبر مي‌رسيم:

$$L_i = \frac{1}{\gamma_A}(\alpha_i + \beta_i x + \gamma_i y)$$

(3)

به طوری که

$$\alpha_i = x_j y_k - y_j x_k , \quad \beta_i = y_j - y_k = y_{jk}$$

$$\gamma_i = x_k - x_j = -x_{jk}$$

(3-ب)

و به این ترتیب روابط مختصات مطلقي ل۱ برحسب مختصات کارترین (خ) صريحاً به دست مي‌آید.

2-4 تبدیل اپراتورهای مشتقاتی مشتاق‌گری مشتق‌های اول و دوم مي‌تواند به دسته‌گي با توجه به يا معادلات (2) و (3) و مشتق‌گری زنجیره‌ای به دست مي‌آید، پس

$$\tilde{U} = \int_A \frac{1}{\gamma_A} [\gamma_i]d\gamma dA$$

(8)
تشکیل شده باشد مطالب زیر استفاده می‌کنیم

\[w = \Phi \cdot \tilde{w} \]

(14)

به طوری که \(\Phi \) تابع مرزی به صورت

\[\Phi = L_1 \cdot L_2 \cdot L_3 \]

(14-الف)

از آنجا که تابع \(w \) برای کاربرد در روش ریاضی ریزی بايد

شرايط مرزی هنگفت را ارضا کند لذا تابع مرزی \(\Phi \) به صورت

همچنین برای \(a \) و \(b \) طوری انتخاب می‌شود که خنثی یا حرفه‌ای

پراوردگر شود. این کمیت‌ها تمامی در جدول (14-ب) برای شرایط مرزی

مخفف داده شدهاند. تابع \(\tilde{w} \) شامل جملاتی با ضرایب نامعلوم به

شکل زیر است:

\[\tilde{w} = a_{ij} \cdot L_1^{i} \cdot L_2^{j} \cdot L_3^{k} \]

(14-ب)

که در آن \(a \) عددی ساخته دچار جمله ای به کار رفته

در این تابع میدانی است.

معادله (14-ب) را برای سهولت محاسبات ماتریسی خنثی

می‌تویسم:

\[\tilde{w} = \Delta_1 \cdot \Psi_1 (L_1, L_2, L_3) \]

(15-الف)

جدول 1- مقدار \(a \) و \(b \) در تابع مرزی

<table>
<thead>
<tr>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>آزاد</td>
<td>ساده</td>
<td>ثابت</td>
</tr>
</tbody>
</table>

به طوری که اندیس \(I \) و ضریب \(\Delta_1 \) تابع چند جمله‌ای به

\(\Psi_1 \) به طوری که پایان \(\Delta_1 \) و تابع \(\Delta_1 \) چند جمله‌ای

پایان می‌شود:

\[U = \int \int A \cdot \tilde{w} \cdot [D] \cdot \tilde{w} \cdot dA \]

(9)

که در آن \([D] \) ماتریس ساخته‌ای ساده اصلاح شده برای استفاده در

دستگاه مطلق است. این ماتریس به صورت زیر داده می‌شود به

طرح صریح قابل محاسبه است.

\[[D] = [Q]^T \cdot [D] \cdot [Q] \]

(10)

انرژی پتانسیل نیروهای خارجی: انرژی پتانسیل با گستره‌ی خارجی

به سهولت با توجه به تابع تغییر

\(P \) می‌تواند به صورت ماتریسی به

\(w(x,y) \) می‌تواند به صورت ماتریسی به

\(w(x,y) \) می‌تواند به صورت

\[V = - \int_A \sum P_i w_i \ dA \]

(11)

که در آن \(w_i = w(x_i, y_i) \) تابع می‌تواند به صورت زیر

\(P_i \) تابع می‌تواند به صورت

\[V = - \int_A \sum P_i w(x_i, y_i) \ dA \]

(12)

از آنجا که پایان جمله دوم سمت راست معادله (11) در قابلémان

جمله اول نیاز ممکن پذیر است، لذا برای سهولت در محاسبات به

حذف آن در معادله (12) اقدام شده‌اند.

انرژی پتانسیل کل صفحه به صورت زیر ارائه می‌شود:

\[V = \int_A \sum P_i w(x_i, y_i) \ dA \]

(13)

به یک سمت میدانی با جایگذاری

برای پایان میدانی می‌گذرد در دستگاه مطلق \([L_1 L_2 L_3] \)

به پایان میدانی می‌گذرد در دستگاه مطلق \([L_1 L_2 L_3] \)

که در قابلémان حاصل‌ضرب دو تابع انرژی و تابع میدانی یک دستگاه

استمالة، سال 16، شماره 2، اسفند 1376
\[I = \frac{1}{r}(m - i)(m - i + 1) - j + 1 \]

\[\Delta_i = a_{ij}k \]

\[\Psi_i = L_i^j L_i^k \]

\[w = \sum_{t=1}^{M} \Delta_i a_{i} b_{i} c_{i} \psi_i (L_i L_i L_i \psi_i) = \langle N \rangle \{ A \} \]

\[\begin{align*}
 &k \rangle^T = \sum \langle (i + a - 1)(j + b - 1)(k + c - 1) L_i^{-1} L_i^{-1} L_i^{-1}, \\
 & \quad (j + b - 1)(j + b - 1) L_i^{-1} L_i^{-1}, \\
 & \quad (k + c - 1)(k + c - 1) L_i^{-1} L_i^{-1}
\end{align*} \]

\[w = \sum_{t=1}^{M} \Delta_i a_{i} b_{i} c_{i} \psi_i (L_i L_i L_i \psi_i) = \langle N \rangle \{ A \} \]

\[k = \sum_{i=1}^{M} \{ B \} \Delta_i = [B] \{ A \} \]

\[\text{که در آن } \{ B \} \text{ از مقایسه معادله (17) با معادله } \psi_i \text{ خودش مشخص می‌شود.} \]

5-7 تعیین ماتریس سختی و بردار تیروباکس، معادلات (12) و (17) در معادله (13)، معادله مزرور به صورت زیر در می‌آید:

\[\Pi = \frac{1}{2} \{ A \} ^T \left(\sum A \{ B \} ^T [D] \{ B \} dA \right) \{ A \} \]

\[- \{ A \} ^T \sum A \{ N \} ^T p dA \]

پای اعمال اصل مینیمم انرژی پتانسیل کل درایه‌های ماتریس سختی

استقلال، سال 16، شماره 2، اسفند 1374
جدول ۲ - ضریب \(\alpha \) و برای کمیت \(\beta \) در مرکز صفحه شکل (۷) تحت بار گسترده یکنواخت

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۰۰۱۰۰۷۴</td>
<td>۰/۱۰۴۱</td>
</tr>
<tr>
<td>۰/۴۰۰۱۰۰۰۵۷۷</td>
<td>۰/۰۰۰۴۱۷</td>
</tr>
<tr>
<td>۰/۴۲۰۰۷۷</td>
<td>۰/۱۰۴۱</td>
</tr>
<tr>
<td>۰/۰۰۰۴۱۷</td>
<td>۰/۱۰۴۱</td>
</tr>
</tbody>
</table>

جدول ۳ - ضریب \(\alpha \) برای کمیت \(w \) در مرکز صفحه شکل (۷) تحت بار متمرکز در مرکز

<table>
<thead>
<tr>
<th>(w)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۰۰۴۱۷</td>
<td>۰/۴۵۴۱</td>
</tr>
<tr>
<td>۰/۰۰۰۴۱۷</td>
<td>۰/۴۵۴۱</td>
</tr>
<tr>
<td>۰/۱۰۹۷</td>
<td>۰/۳۹۷۷</td>
</tr>
</tbody>
</table>

رشت به ترتیب عبارتند از:

\[w = \frac{M_y}{D} \]

\[(M_y)_{\text{max}} = \beta M_y \]

\[\beta = \frac{a}{2} \]

ابن کمیات به روی موجود و بدون دردسترسی مختلف بسته تابع \(w \) و محاسبه شده نشده که مقدار آنها در جدول (۲) موجودند.

ماشین‌های نیز در همان مرجع [۱] موجود است و این مورد تغییر می‌شود. مقدار \(\beta \) به ترتیب \(\frac{a}{2} \) و \(\frac{1}{2} \) است. مقدار \(\alpha \) به ترتیب \(\frac{a}{2} \) و \(\frac{1}{2} \) است.

مکان در زیر ناحیه یکنواخت \(w \) در مرکز یکنواخت \(M_y \) و \(M_x \) می‌شود. ضریب \(\alpha \) برای حالت مرجع [۱] و جدول موجود در جدول (۹) داده شده است. حالت مرجع [۱] به روش آنچه ای به کمک سری‌های فوریه انجام شده است. چنانچه حل دقیق مسیره به روش آنلاین انجام شود ضریب دقیق \(\alpha \) مساوی \(۵۷۷ / ۶۰۰ \) خواهد بود که این جواب در مرجع [۱۲] نیز ذکر شده است. اکنون همان صفحه مبهم مثلثی شکل (۳) تحت بار یکنواخت \(M_y \) در نظر می‌گیریم. حالت دیقیق این صفحه موجود است [۱۳] و به طوری که جایی چانه‌ای در مکان صفحه و نیز در نسبت \(M_y \) در گوشه می‌ست.
جدول 4- ضرایب α و β برای کمیت‌های جابجایی در مرکز و لگر خمیشی M_y در گوشه‌نماست راست

<table>
<thead>
<tr>
<th>ضریب</th>
<th>درجه ثانی (0)</th>
<th>(2)</th>
<th>(3)</th>
<th>حل دقت</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>$0/037037$</td>
<td>$0/037037$</td>
<td>$0/037037$</td>
<td>$0/037037$</td>
</tr>
<tr>
<td>β</td>
<td>$0/037037$</td>
<td>$0/037037$</td>
<td>$0/037037$</td>
<td>$0/037037$</td>
</tr>
</tbody>
</table>

توجه است که ضریب α با تقریب دور جابه‌جایی در مرکز O به روش انتزی محاسبه شد. اگر همین ضریب با دو نویسندگانی داده شده در مرجع [1] یک دوم و سه چهارم از α موجود است، محاسبه شده است. مقدار α به جواب دقیق مرجع [2] همین مقدار را به دست می‌دهد.

توضیح است که برای بار P می‌باشد $M = \beta p a^2$ مثلث نوشتاری شوند مقادیر β و α برای روش تفاضل محدود (1) و هم برای روش موجود در جدول (3) و (4) ثبت شده‌اند.

در مرجع [2] تغییر مکان‌هایی که در صفحه تحت شکل 7 ثبت شده‌اند. بار یک‌نواخت که در مرکز اتفاق می‌افتد به روش انتزی با تقریب اول تابع جابه‌جایی محاسبه شد. این مقدار و نیز مقداری که به روش موجود ارزیابی شد. در بچو (2) مساحته می‌شود.

سالم 3- صفحه مثال ارزیابی‌های معادل‌پذیری با لغزش فلزی تحت بار یک‌نواخت p (شکل 5). در این صفحه به روش آمیزه‌ای از دو مرجع (1) موجود است. تغییر مکان w لگر خمیشی M_y محور تیم‌ندازه‌زناقیه (1) و لگر خمیشی M_y محور x' محور x' با عضوبات β و α مشخص می‌شوند. مقادیر β و α به‌هیال نقاط $M_y = \beta p a^2$ و $\beta = \alpha p a^2$ در جدول (8) قرار شده‌اند. هنین کمیتی به روش موجود محاسبه شده و در جدول ارائه شده‌است. لازم به

استناد: سال 1466، شماره 2، اسفند 1376

58
جدول ۵ - ضرایب \(\beta \) در یک مسیر دو سیستم

<table>
<thead>
<tr>
<th>کمیت و درجه تابع</th>
<th>ضریب ((\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M= \beta P, \beta \alpha T)</td>
<td>(M₁)</td>
</tr>
<tr>
<td>(M= \beta P \alpha T)</td>
<td>(M₂)</td>
</tr>
<tr>
<td>(M= \beta P, \beta \alpha T)</td>
<td>(M₃)</td>
</tr>
<tr>
<td>(M= \beta P \alpha T)</td>
<td>(M₄)</td>
</tr>
</tbody>
</table>

جدول ۶ - ضرایب \(\beta \) در یک مسیر دو سیستم

<table>
<thead>
<tr>
<th>کمیت و درجه تابع</th>
<th>ضریب ((\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M= \beta P, \beta \alpha T)</td>
<td>(M₁)</td>
</tr>
<tr>
<td>(M= \beta P \alpha T)</td>
<td>(M₂)</td>
</tr>
<tr>
<td>(M= \beta P, \beta \alpha T)</td>
<td>(M₃)</td>
</tr>
<tr>
<td>(M= \beta P \alpha T)</td>
<td>(M₄)</td>
</tr>
</tbody>
</table>
جدول 7- ضریب α برای کمیت w در مرکز صفحه شکل (4)

<table>
<thead>
<tr>
<th>ضریب w در درجه تابع</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0/00018$</td>
<td>$0/00018$</td>
</tr>
<tr>
<td>$0/00018$</td>
<td>$0/00018$</td>
</tr>
<tr>
<td>$0/00018$</td>
<td>$0/00018$</td>
</tr>
</tbody>
</table>

جدول 8- ضریب β_1 و β_2 برای کمیت w در سطح بacket (15) تحت پریگریت یکنواخت

<table>
<thead>
<tr>
<th>ضریب w در درجه تابع</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0/0846$</td>
<td>$0/0846$</td>
</tr>
<tr>
<td>$0/0846$</td>
<td>$0/0846$</td>
</tr>
<tr>
<td>$0/0846$</td>
<td>$0/0846$</td>
</tr>
</tbody>
</table>

جدول 9- ضریب α برای صفحه شکل (5)

<table>
<thead>
<tr>
<th>ضریب w در درجه تابع</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0/00124$</td>
<td>$0/00124$</td>
</tr>
<tr>
<td>$0/00124$</td>
<td>$0/00124$</td>
</tr>
<tr>
<td>$0/00124$</td>
<td>$0/00124$</td>
</tr>
</tbody>
</table>

این مقادیر در جدول (2) و (3) به طور دقیق به دست آمدهان. در جدول (2) برای پارامتره هنگامی که مرتبه تابع میدان w از یا پیشتر باشد و در جدول (3) برای لگار خمشی یکنواخت در ابعاد هنگامی که مرتبه تابع w صفر با پیشتر باشد به ضرایب دقیق α می‌رسیم و این نتایج با دقت در معادلات (23) و (24) قابل رؤیت است.

نتایج روید جووی وجود برای حالت مثال ویژه ژیلوی بلوی بحث

$w = \frac{\sqrt{2}}{\pi} L_1 L_2 L_3 (L_x + L_y + L_z)$

$w = \frac{M_a^*}{D}$

مدیر تغییر مکان در مرکز این مثلث برای دو حالت پریگریت به ترتیب عبارت از:

استقلال، سال 16، شماره 12، اسکندر 1376

60
حل موجود اگرچه برای صفحات اینترنتی پیگیری انجام شده، اما به همین سادگی می‌تواند برای صفحات ارتوپویک نیز توسط داده شود. برای این منظور کافی است در معادله (8) ماتریس شروع ساخته‌ای ساده اینترنتی اعتبار شود. اگر محورهای x و y بر محورهای اصلی ماده اینترنتی اعتبار شود، ماتریس سختی اصلی انتخاب می‌شود.

جواب‌های 1 مورد سوال پیش‌بینی شده.

تمام جداول همگرایی حل را با افزایش جمله ای تابع میدان w کاملاً به صورت هموار، نشان می‌دهند. در حقیقت با توجه به اینکه به جمله ای با کار رفته در تابع w جمله ای با کامل هستند انتظار یک همگرایی هموار انتظاری به جست و می‌توان مطمئن بود روش موجود قادر به حل هر نوع صفحه یکنواخت مثلثی با شرایط مرزی و بارگذاری است.

مراجع