تحلیل و ساخت آنتن ریز نوار با کوپلینگ روزنه ای به همراه یک لاپشای عایقی با استفاده از فرم بسته توابع گرین حوزه مکان

مسعود کوه‌پزشی، عباس‌علی حیدری، مزرهعی آخوندی و مسعود کیوانفر
دانشکده تجارت و مهندسی دانشگاه تربت مدرس
پژوهشگاه علمی و تکنولوژی
(درباکت مقاله: ۱۳۸۵/۸/۲۵ - دریافت نسخه نهایی: ۱۳۸۵/۹/۲۸)

چکیده - در این مقاله آنتن ریز نوار با کوپلینگ روزنه ای که یک لاپشای عایقی به نام روبینا ۱ نیز روی هادی آنتن قرار دارد، تحلیل می‌شود. برای تحلیل آنتن‌های روزنه‌ای در حوزه‌های مکان استفاده می‌شود و در آن هر در مؤلفه جریان الکتریکی روی هادی آنتن در نظر گرفته شده است. برای محاسبه توابع گرین حوزه مکان، از این فرم استفاده شده و در آن آمده تابع بسته بیشتری صورت گرفته است. این روش با داشتن دقت مناسب، ضررد محاسبات را بهینه می‌سازد. پس از محاسبه جریان‌های الکتریکی روی هادی آنتن، نماد تجزیه یا استفاده از شکل جریان‌های انتگرال‌های ممکن محسوب می‌شود. امیدانس ورودی آنتن با استفاده از توابع گرین الکتریکی روی خط آزادی و از روش GPOF به دست آمده است. ضمناً از آنچه که پارامترهای آنتن به عنوان پارامتر تاثیرگذار محاسبه شده‌اند، امکان پیش‌بینی بیشتری در نتایج ایجاد می‌شود. با مقایسه نتایج حاصل و تدوین نتایجی که قبل از انتشار نوشتار از درستی روش و بردبندی ها اطمینان حاصل شده است. همچنین تأثیر روبینا بر روی امیدانس ورودی آنتن و نماد تجزیه آن بررسی شده است.

Analysis of Aperture Coupled Microstrip Patch Antennas with a Superstrate Using the Space Domain Closed-Form Green’s Functions

M. Kahrizi, A. Heidary and M. Kyvanfar
Department of Electrical Engineering, Tarbiat Modares University Science and Technology Research Center

ABSTRACT- Analysis of aperture-coupled microstrip antennas with a superstrate using space domain
1- مقدمه

ساختن یک آنتن ریز نوار یا کولپینگ روزنه ای به هر راه یک لای عایق روی هاد آنتن در شکل (1) مشاهده می‌شود. این ساختن تجزیه برای نخستین بار توسط پوززارد Ef و با استفاده از شکاف دارای ای از عنوان روزنه کولپینگ پیشنهاد شد و سپس سولیوان و شوبارت [9] از رژیم مستقل برای بهبود باده کولپینگ استفاده کردند. اینان تست و چرخش دادن دو طرف صفحه زنیم قرار می‌گیرند و با تغییر اینکه نقاط دور، نشان دهنده و سپس تست می‌شود. با استفاده از یک خطا پژوهی نور مدار بسیار بهبود می‌یابد که با عدد نمایشگر ساخته و یک هادی مستقلی است و از طریق یک روزنه کولپینگ که در صفحه زنیم قرار دارد، تحریک می‌شود. مدارهای فعال مانند اسپیتلاورهای، تقویت‌کننده‌ها و ... در یک طرف صفحه زنیم ساخته می‌شوند و هادی آنتن در طرف دیگر صفحه زنیم قرار می‌گیرد. با تغییر اندازه زنیم و تنظیمی ای، با تغییر در سطح و روزنه کولپینگ و خط تجزیه، و در سطح زنیم و تغییر اندازه کولپینگ و خط تجزیه، با استفاده از این آنتن از ارزوی و می‌توان روزنه‌ها را با صفحه زنیم پیشبرد به چال

2- تحلیل تمام موج

برای تحلیل آنتن شکل (1) روش مدار زنیم و میان درجه‌بندی و ساخته‌ای آنتن استفاده می‌شود. با نوار ریز و قرار می‌گیرد. با تغییر در سطح و روزنه کولپینگ و خط تجزیه، با استفاده از این آنتن از ارزوی و می‌توان روزنه‌ها را با صفحه زنیم پیشبرد به چال

این‌ها

closed form Green’s functions is presented. Integral equations are derived from applying the boundary conditions on the radiating patch, across the aperture, and on the microstrip feedline. The computation of space domain Green’s functions is performed using the closed-form. The solution of the integral equations is based on the method of moments. The information about the input impedance of the antenna is extracted from the electric current distribution on the microstrip feedline using the matrix pencil technique. The radiation pattern is obtained from the electric current distribution on the antenna's patch utilizing the asymptotic forms of Sommerfeld integrals. The effect of considering a superstrate for different thicknesses and dielectric constants are examined. Numerical results are compared with other published and experimental results. The results show good agreement with previous data.

closed form Green’s functions is presented. Integral equations are derived from applying the boundary conditions on the radiating patch, across the aperture, and on the microstrip feedline. The computation of space domain Green’s functions is performed using the closed-form. The solution of the integral equations is based on the method of moments. The information about the input impedance of the antenna is extracted from the electric current distribution on the microstrip feedline using the matrix pencil technique. The radiation pattern is obtained from the electric current distribution on the antenna's patch utilizing the asymptotic forms of Sommerfeld integrals. The effect of considering a superstrate for different thicknesses and dielectric constants are examined. Numerical results are compared with other published and experimental results. The results show good agreement with previous data.

closed form Green’s functions is presented. Integral equations are derived from applying the boundary conditions on the radiating patch, across the aperture, and on the microstrip feedline. The computation of space domain Green’s functions is performed using the closed-form. The solution of the integral equations is based on the method of moments. The information about the input impedance of the antenna is extracted from the electric current distribution on the microstrip feedline using the matrix pencil technique. The radiation pattern is obtained from the electric current distribution on the antenna's patch utilizing the asymptotic forms of Sommerfeld integrals. The effect of considering a superstrate for different thicknesses and dielectric constants are examined. Numerical results are compared with other published and experimental results. The results show good agreement with previous data.
شکل 1- آتن ریز نوار با کوپلینگ روزنه ای به همراه یک روتا

\[E_y = -j \omega G_{yy} A * J_y + \frac{1}{j \omega} \frac{\partial}{\partial y} (G_{qe} * \nabla \cdot J) \]

\[H_x = \frac{1}{\mu} \left[\frac{\partial}{\partial x} (G_{xx} A * J_x + G_{xx} A * J_y) - \frac{\partial}{\partial z} G_{yy} A * J_y \right] \]

\[H_y = \frac{1}{\mu} \left[\frac{\partial}{\partial z} G_{xx} A * J_x - \frac{\partial}{\partial x} (G_{xx} A * J_x + G_{xx} A * J_y) \right] \]

\[M_s = 2 \times \overline{E}_x \]

به این ترتیب مستقیم می‌باشد که دو قسمت جداگانه تفسیر می‌شود (شکل 2): 1- مسئله a (\(\theta < \theta_c \))، که مانع تولید میدان در این ناحیه جریان مغناطیسی و جریان مغناطیسی \(M_s \) و جریان مچول \(\vec{H} \) روی هوا های آتن دارد. 2- مسئله b (\(\theta > \theta_c \))، که مانع تولید میدان در این ناحیه جریان مغناطیسی و جریان مچول \(M_s \) و جریان مچول \(\vec{H} \) روی هوا های آتن دارد.

\[\overline{E}_x = -j \omega G_{xx} A * J_x + \frac{1}{j \omega} \frac{\partial}{\partial x} (G_{qe} * \nabla \cdot J) \]
روشی و جریان الکتریکی روی خط تغذیه را به‌وسیله توابع پست با ضرایب مجهول به صورت زیر بیان می‌کنیم:

\[
\begin{bmatrix}
E_{x}^{a} \\
E_{y}^{a} \\
E_{z}^{a} \\
T_{x}^{a} \\
T_{y}^{a} \\
T_{z}^{a} \\
T_{xy}^{a} \\
T_{yx}^{a} \\
T_{yy}^{a} + T_{yz}^{a} \\
T_{zx}^{a} \\
T_{zy}^{a} \\
T_{yz}^{a} \\
T_{zy}^{a} \\
T_{zz}^{a} \\
T_{zz}^{a} \\
T_{xz}^{a} + T_{zy}^{a} \\
T_{xy}^{a} + T_{yx}^{a} + T_{yz}^{a} + T_{zy}^{a} + T_{zz}^{a} + T_{zz}^{a}
\end{bmatrix}
= \begin{bmatrix}
A & 1 & 0 \\
B & 0 & 1 \\
C & 0 & 0 \\
D & 1 & 1
\end{bmatrix}
\begin{bmatrix}
V_{x} \\
V_{y} \\
V_{z} \\
\nu_{x} \\
\nu_{y} \\
\nu_{z} \\
\nu_{xy} \\
\nu_{yx} \\
\nu_{yy} \\
\nu_{zx} \\
\nu_{zy} \\
\nu_{yz} \\
\nu_{zy} \\
\nu_{zz} \\
\nu_{xz} + \nu_{zy} \\
\nu_{xy} + \nu_{yx} + \nu_{yz} + \nu_{zy} + \nu_{zz} + \nu_{zz}
\end{bmatrix}
\]

(13)

شرايت مربوط به فرق مجموعه معادله‌های زیر را نتیجه می‌دهد:

\[
E_{x}^{0} (I_{x}^{P}) + E_{y}^{0} (I_{y}^{P}) + E_{z}^{0} (-M_{y}) = 0
\]

(6)

روی هادی آنن

\[
E_{y}^{0} (I_{x}^{P}) + E_{x}^{0} (I_{y}^{P}) + E_{y}^{0} (-M_{y}) = 0
\]

(7)

روی هادی آنن

\[
H_{y}^{0} (J_{x}^{P}) + H_{x}^{0} (J_{y}^{P}) + H_{y}^{0} (-M_{y})
= H_{y}^{0} (J_{x}^{P}) + H_{y}^{0} (M_{y})
\]

(8)

در محل روشنگر

\[
E_{x}^{b} (I_{x}^{P}) + E_{y}^{b} (M_{y}) + E_{x}^{inc} = 0
\]

(9)

روی خط ریز ترک

میدان الکتریکی ناشی از یک میکروولتن (سروی) است که خط ریز تورک را تحریک می‌کند. در حالی که خط R، M و C توان چینی عبارتی را به معادله‌های (6) و (7) افزوده، به منظور اعمال روشهای معادله بیان می‌شود.

در رابطه فوق بالاترین a و f به ترتیب نشان دهنده حساسیت کوپل‌بندی بین جریان‌های روی آنتن، روزنه و خط تغذیه می‌شود و زیرین‌ترین a و (f) به ترتیب نشان‌دهنده حساسیت کوپل‌بندی بین جریان‌های روی آنتن، روزنه و خط تغذیه می‌شود. عناصر ماتریس بر اساس قواعد مذکور را می‌شود.

1376

استقلال، سال 14، شماره 2، اسفند
شکل ２- توابع rooftop مثلثی برای بست جریان‌ها در روش ممان

شکل ３- شکل بسته توابع گیر در حوزه مکان

به منظور محاسبه نشانی سیستم‌های روابط (14) و (15) (22)، ابتدا آزم است توابع گیر را محاسبه کنیم. پس از محاسبه توابع گیر، می‌باید نشانی از هر توزیع جریان توسط لنگرال مشابه لنگرال کالوپوش به دست باشد.

در توابع گیر حوزه طبقه بندی شده به شکل به شکل می‌شود. اما در روشه ممان حوزه طبقه بندی ذخیره داخلی روز دانش بیشتری تعریف می‌شود و به دلیل نوسانات بودن تابع لنگرال و وجود قطعیات در مسئله لنگرالتکریزی محاسبه این لنگرالها و تغییر و مشکل است در روشه حوزه مکان ضریب‌های داخلی روز دانش محدودیت تعریف می‌شود. اما توابع گیر حوزه مکان را با این استفاده از توابع گیر حوزه طبقه بندی و وسیله لنگرال سامفولد (5) به صورت زیر محاسبه کنیم:

\[
G = \frac{1}{2\pi} \int_{c} H^{(x)}(k\rho) G(k\rho) k\rho dk\rho
\] (24)

با توجه به توابع گیر حوزه مکان و حوزه طبقه بندی می‌تواند و \(G\) نتایج هنگام (11) نوع دوم داشته باشد. این لنگرال را به جز در حالات \(H^{(x)}\) خاص نمی‌توان به صورت تحلیل محاسبه کرد و بنابراین برای محاسبه این لنگرال‌ها نیاز مشکلات روش حوزه طبقی وجود دارد. از طرف دیگر نتایج توابع \(G\) را با جمله از جملات تمامی مختلط بیان کنیم. آن‌گونه که نتایج لنگرال (22) را از دست‌داده با استفاده از رابطه

\[
\left[Z_{xy}^{a} \right]_{ij} = \left< J_{i}^{y}, E_{x}^{a}(J_{j}^{x},y) > patch \right)
\] (14)

\[
\left[Z_{yx}^{a} \right]_{ij} = \left< J_{i}^{y}, E_{y}^{a}(J_{j}^{x},y) > patch \right)
\] (15)

\[
\left[T_{xy}^{a} \right]_{ij} = \left< M_{ij}, H_{y}^{a}(J_{j}^{x},y) > slot \right)
\] (16)

\[
\left[T_{xy}^{a} \right]_{ij} = -\left< J_{x}^{y}, E_{x}^{a}(M_{ij}) > patch \right)
\] (17)

\[
\left[Y_{yy}^{a} \right]_{ij} = -\left< M_{ij}, H_{y}^{b}(M_{ij}) > slot \right)
\] (18)

\[
\left[T_{xy}^{f} \right]_{ij} = -\left< M_{ij}, H_{y}^{b}(J_{j}^{y}) > slot \right)
\] (19)

\[
\left[T_{xy}^{f} \right]_{ij} = \left< J_{i}, E_{x}^{b}(M_{ij}) > feed \right)
\] (20)

\[
\left[Z_{xy}^{f} \right]_{ij} = \left< J_{i}, E_{x}^{b}(J_{j}^{y}) > feed \right)
\] (21)

\[
\left[V_{xy}^{f} \right]_{ij} = \left< J_{i}, E_{x}^{inc} > feed \right)
\] (22)

با توجه به قضیه هم پاسخی، بعضی از زیر ماتریس‌های را می‌توان از توابع لنگرال بی‌گیری به دست آورد و به این ترتیب از حجم محاسبات کاستن:

\[
\begin{bmatrix}
Z_{xy}^{a} \\
T_{xy}^{a} \\
Y_{yy}^{b}
\end{bmatrix} =
\begin{bmatrix}
Z_{xy}^{a} \\
T_{xy}^{a} \\
T_{xy}^{f}
\end{bmatrix} =
\begin{bmatrix}
Z_{xy}^{a} \\
T_{xy}^{a} \\
T_{xy}^{f}
\end{bmatrix}
\] (23)

با محاسبه ماتریس ضرایب در محاسبه ماتریس (13) و حکایت این دستگاه معادلات ماتریسی، دانسته پیش‌بازی جریان‌ها به دست می‌آید. به منظور حل معادله ماتریسی (13) این ماتریس ضرایب توسط روش تجزیه LU به کم ماتریس سالمی تبدیل شده است و سپس روش جایگزینی برگشتی برای محاسبه برد ضرایب عملکرد است. این روش دارای سرعت و دقت کافی برای حل معادله‌های ماتریسی ز ورگ است.

فصل ۶، شماره ۲، استاند ۱۴۷۶
این پژوهش به توصیف گروه‌های طبقه‌بندی شده برای تصویر برداری از جملات نمایان است. این برای اندازه‌گیری و سنجش بافت و سایر میزان‌ها و نرخ‌های آن است. نتایج مربوط به بررسی‌های اجرایی نشان می‌دهد که این مدل می‌تواند به بهبود ساختار زیربانکی کمک کند.

\[
\mathcal{G} \approx \frac{1}{k} \sum_{m=1}^{N_m} a_m e^{-b_m k_G}
\]

(26)

به هنگام محاسبه‌ی رابطه‌ی زیربنای چند رابطه‌ی فوق در \(\rho \) به‌طور کلی: \(E \) تابع گرایش برداشت‌های زیربنایی غیر سالم می‌شود. این امر می‌تواند به دلیل خطا خاصی در محاسبه‌ی دیگر \((\rho^2 - b_m)^{1/6} \) به خویش پرقد یابد.

\[
\mathcal{G} \approx \frac{1}{k} \sum_{m=1}^{N_m} a_m e^{-b_m k_G}
\]

(27)

به هنگام محاسبه‌ی زیربنای چند رابطه‌ی فوق در \(\rho \) به‌طور کلی: \(E \) تابع گرایش برداشت‌های زیربنایی غیر سالم می‌شود. این امر می‌تواند به دلیل خطا خاصی در محاسبه‌ی دیگر \((\rho^2 - b_m)^{1/6} \) به خویش پرقد یابد.

\[
\mathcal{G} \approx \frac{1}{k} \sum_{m=1}^{N_m} a_m e^{-b_m k_G}
\]

(28)

و با توجه به اینکه تابع \(\mathcal{G} \) می‌تواند به صورت زیر بنای کمیتی می‌شود:

\[
\mathcal{G} \approx \frac{1}{k} \sum_{m=1}^{N_m} a_m e^{-b_m k_G}
\]

(29)

به‌طور کلی: \(\mathcal{G} \) می‌تواند به صورت زیر بنای کمیتی می‌شود:

\[
\mathcal{G} \approx \frac{1}{k} \sum_{m=1}^{N_m} a_m e^{-b_m k_G}
\]

(30)
\[
E = \sum_{x} \sum_{y} (x, y) G_{E}^{x}(x, y) + J(x, y) G_{E}^{y}(x, y)
\]
(37)

\[
S_n(f) = \int \frac{f(k_{B})}{H_{n}(k_{B}
\rho)} e^{-\frac{\rho}{\sigma}} d\rho
\]
(31)

\[
u = \frac{(k_{x} - k_{y})/5}{2}
\]
(32)

\[
G_{E}^{x} = -\omega G_{A}^{x} + \frac{\partial}{\partial \omega} (V, G_{A}^{x})
\]
(33)

\[
G_{E}^{x} = (G_{E}^{x} \cos \phi + G_{E}^{y} \sin \phi) \cos \theta - G_{E}^{y} \sin \theta
\]
(34)

\[
G_{E}^{x} = -G_{E}^{x} \sin \phi + G_{E}^{y} \cos \phi
\]
(35)

\[
G_{E}^{x} \cos \phi + G_{E}^{y} \sin \phi \frac{\partial}{\partial \omega} (V, G_{A}^{x})
\]
(36)

\[
S_n(f) = \frac{f(k_{B})}{H_{n}(k_{B}
\rho)} e^{-\frac{\rho}{\sigma}} d\rho
\]
(31)

\[
u = \frac{(k_{x} - k_{y})/5}{2}
\]
(32)

\[
G_{E}^{x} = (G_{E}^{x} \cos \phi + G_{E}^{y} \sin \phi) \cos \theta - G_{E}^{y} \sin \theta
\]
(34)

\[
G_{E}^{x} = G_{E}^{x} \sin \phi + G_{E}^{y} \cos \phi
\]
(35)

\[
G_{E}^{x} \cos \phi + G_{E}^{y} \sin \phi \frac{\partial}{\partial \omega} (V, G_{A}^{x})
\]
(36)

\[
S_n(f) = \frac{f(k_{B})}{H_{n}(k_{B}
\rho)} e^{-\frac{\rho}{\sigma}} d\rho
\]
(31)

\[
u = \frac{(k_{x} - k_{y})/5}{2}
\]
(32)

\[
G_{E}^{x} = (G_{E}^{x} \cos \phi + G_{E}^{y} \sin \phi) \cos \theta - G_{E}^{y} \sin \theta
\]
(34)

\[
G_{E}^{x} = G_{E}^{x} \sin \phi + G_{E}^{y} \cos \phi
\]
(35)

\[
G_{E}^{x} \cos \phi + G_{E}^{y} \sin \phi \frac{\partial}{\partial \omega} (V, G_{A}^{x})
\]
(36)

\[
S_n(f) = \frac{f(k_{B})}{H_{n}(k_{B}
\rho)} e^{-\frac{\rho}{\sigma}} d\rho
\]
(31)
شکل 4- تغییرات ضریب انعکاس آنتن شکافی مثلث (1) بر حسب

\[\theta = 0/40 \text{cm} \times 0/10 \text{cm} \]

\[d_f = 0/20 \text{cm} \quad \varepsilon_f = 0/2/0 \text{cm} \]

شکل (5) دانه جریان‌های روي آنتن را نشان می‌دهد. جداکردن اخلاک نتایج این روش با نتایج مرجع [2/5] درصد احتمالاً با تغییر محل تحریکی می‌توان تأثیر جابجایی روزنه تحریک را

پرسی کرد.

مثال 3- برای بررسی تأثیر روتا بر روی آمپانس وردی آنتن را

\[d_0 = 0/1 \text{cm} \quad b = 0/1 \text{cm} \quad a = 0/1 \text{cm} \]

\[d_1 = 0/1 \text{cm} \quad \varepsilon_f = 1/3 \text{cm} \quad w_f = 0/17 \text{cm} \]

\[d_f = 0/19 \text{cm} \quad d = 0/14 \text{cm} \quad \varepsilon_f = 0/2 \text{cm} \quad w_f = 0/3 \text{cm} \]

در دو مرحله تحلیل میکرسم. در مرحله اول آن را بدست آوردی (\(\varepsilon_f = 1/17 \text{cm} \)) و در مرحله بعد آن را به روتا (\(\varepsilon_f = 1/17 \text{cm} \)) تحلیل میکنیم. شکل (6) را برای این دو مقدار \(\varepsilon_f \) بر حسب فرکانس نشان می‌دهد. در این شکل پدیده جالی مشاهده می‌شود. فرکانس تنها

\[\text{کد در آن تطبیق آمپانس وجود دارد} \]

با اضافه کردن یک لاپیه عایقی روی آنتن و در ازای آن کاهش پهنای باند

تغییر می‌یابد.

\[b = 0/1 \text{cm} \quad a = 0/1 \text{cm} \]

\[w_f = 0/11 \text{cm} \quad w_f = 0/13 \text{cm} \quad d_f = 0/15 \text{cm} \]

\[d_1 = 0/14 \text{cm} \quad d = 0/17 \text{cm} \quad \varepsilon_f = 0/4 \text{cm} \]

\[\varepsilon_f = 0/4 \text{cm} \quad \varepsilon_f = 0/4 \text{cm} \]

برای کار در باند X طراحی و ساخته شده است. خط تغییر آنتن با استفاده از دستگاه تحلیل کننده مداد انتباکس چگری شده و شکل

\[(7) \]

آن را به همراه نتایج که از محاسبه کامپیوتری به دست آمده،

استناد: 16، شماره 2، اسفند 1376

112
ضخامت این لایه نیز می‌تواند فرکانس تشدید و پهنای باند آنتن را تغییر دهد.

مثال ۶- نماد تشعشعی آنتن مثال ۳ را برای پرسی اثر روی تغییرات آنتن نام نام نماد تشعشعی محاسبه می‌کنیم و شکل (۱۰) نتایج آن را نشان می‌دهد.

در این شکل |E| max مقدار برای حالتی است که رویت و وجود ندارد. از شکل (۱۰) مشاهده می‌شود با افزایش α نمودار رویت عدد افزایش می‌یابد.

نمونه ۷- نتایج تجربی و نظری برای آنتن مثال ۴

|w| = 0/7 cm |d| = 0/6 cm a = 0/8 cm
|w| = 0/1 cm |d| = 0/1 cm a = 0/2 cm

لاهی، تغییرات اندوزه ضریب انرکاس آنتن بر حسب فرکانس محاسبه شده است و شکل (۹) آن را نشان می‌دهند.

به منظور داشتن یک مثال جزئی از این قضیه، می‌توانیم آنتن را به‌دست آوریم و حس و تغییرات آنتن نیز کاملاً به شکل دیده باید. نتایج آنتن را به‌طور کلی، می‌توان با اضافه کردن یک لایه ماکزیم به آنتن، فرکانس کار آن را به‌رنگ تغییر دادانی sh.

استقرار، سال ۱۴، شماره ۱۲اسفند ۱۳۷۶
شکل ۱۰- تأثیر ثابت علیه روند بر روی نماد تشخیصی آنن مثال (۶) \(\theta \) در صفحه ۳۰۰ (ب) در صفحه ۲۷۰-۲۷۰ \(\phi \) در صفحه ۶۹-۷۰

۶- نتیجه گیری

در این مقاله از روش ممان تمام موج حوزه مکان و شکل بسته توای گنگ حوزه مکان (برای انرژی سرعت محاسبات) برای تحلیل آنن ریز نوار با کوپلینگ روزنه ای به همراه یک ناهماره ای به عایق و ساختارهای مشابه استفاده شده است. نتایج به خوبی با روش ممان واز اهرام به تأیید می‌رسد.

واژه‌نامه:

1- superstrate
2- Spatial domain full wave moment method
3- radiation pattern
4- Generalized pencil of functions
5- substrate
6- scan
7- active array
8- LU decomposition
9- back substitution
10- Sommerfeld
11- Hankel
12- direct terms
13- surface waves
14- quasi static
15- steepest descent

مراجع

6. Hua, Y. and Sarkar, T. K., "Generalized Pencil of Function Method for Extracting Poles of an Em-
