The Solution of Laminar Incompressible Flow Equations with Free Surfaces in Curvilinear Coordinates

M. Golafshani and A. H. Shooshtari
Department of Mechanical Engineering, Sharif University of Technology

ABSTRACT- In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms are approximated with an accurate nonmonotonicity preserving upwind scheme. Free surfaces are first approximated by lines of constant slope and then convected using the volume-of-fluid (VOF) technique. A number of problems, both with and without free surfaces, have been solved to demonstrate the ease and usefulness of the scheme. Accuracy of the results thus obtained is assessed by comparison with other numerical as well as analytical results in the literature.
پایگاه مرجع ایمنی صنعتی، سازمان ملی ایمنی کار

1. مقدمه

در این مقاله، هدف ارائه روشی برای شناسایی نهادهای تراکم نایب‌دیده حمل و نقل اتومبیلی و مزاحمت‌آمیز است. شبیه سازی یافته‌ها به واسطه یک نرم‌افزار مشابه سیستم‌های موجود در دانشگاه‌ها و شرکت‌های مرتبط با صنعت مشابه سیستم‌های موجود در دانشگاه‌ها و شرکت‌های مرتبط با صنعت نیاز داشت. با توجه به این بحث، برای بهینه‌سازی سیستم‌های موجود در صنعت، نرم‌افزار استفاده می‌شود.
به سیار مطلق و یا از شیوه خواهد بود. چراکه استفاده از این روش‌ها
باشت می‌شود که الگورتم حفظ معادله‌ها و نحوه اعمال شرایط
مرزی وابسته به یک مسئله و هندسه خاص باشد. لذا برای تبدیل
رقت اجزای در هندسه‌های پیچیده از حل معادله‌ها محاسبات
مختصات محاسبه افزایش دارد و در تجربه معادله‌های حاکم به
این مختصات اندازه‌گیری می‌شود. در حالی که پیچیده‌گیری سیار زیاد
در مسائل جریان به همراه سطح از ابعاد بیشتر است که برای حل
عده‌ای چنین جریان‌هایی روش‌ها و تکنیک‌های مناسبات با آن‌ها برای
سایر انواع جریان مرسوم استفاده از مدل‌گرایی بحث درباره
هر یک از این روش‌ها بیشتر می‌شود. محاسبات و معاوضه آن‌ها بحث
پیش‌کار مفصل است که در جوار این بحث‌ها، شیوه‌پیمایی حاکم است. یکی از
روش‌های حل مسائل سطح‌های شیوه‌پیمایی و حصیر تکنیک روش‌های
اسملت و در از این روش‌ها است که خود به سه روش اصلی تقسیم می‌شود:

1- روش‌های اولری
2- روش‌های لگانزی
3- روش‌های ترکیبی (اویلری - لگانزی)

به یک از این روش‌ها دوی‌سایاب و محاسبه تکسیم به کار است
که بررسی آن بکه مفهوم و علت‌گونه‌ای را می‌طلبی. روش‌های
اویلری خود به زیر گروه‌های دیگری تقسیم می‌شود اما آن‌ها که در
مقاله حاکم مورد توجه قرار گرفته است روش اویلری در شیوه‌پیمایی
این است که به دو پیش‌درنگ تقسیم می‌شود:

1- روش ردیابی سطحی
2- روش ردیابی حجمی

در روش ردیابی سطحی، سطح واصله توسط تعدادی نقاط
نشانه که بروی سطح واصله قرار می‌گیرد مشخص می‌شود. سطح
واصله در قافله بین این نقطه توسط مختصات محاسبه حاصل از میان‌ینی
معمی می‌شود. در روش ردیابی حجمی اطلاعات در سطح محل
سطح واصله ذخیره می‌شود. بلکه سطح واصله در هنگام نیاز
پاژاسی می‌شود. از این نظر سطح واصله به صورت سطح به سطح
و براساس یک کامپیوتری مشابه به‌کار می‌رود. یکی از روش‌های
جدید ردیابی حجمی، روش کسر حجمی و یا روش واقع است. در
این روش کامپیوتری مشابه (که مورد نیاز روش‌های ردیابی
حجمی) از دست‌آورده با استفاده از شیوه‌پیمایی و دو محاسبات
در هنگام حضور سطح آزاد، معادله سومی نیز به دو معادله‌ای
اضافه می‌شود که این معادله‌ها عبارت است از:

\[
\frac{\partial V}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} = -\frac{1}{\rho} \nabla p + \mathbf{g} + \nu \nabla^2 \mathbf{V} \\
\n\mathrm{div} \mathbf{V} = \nabla \cdot \mathbf{V} = 0
\]

در هنگام حضور سطح آزاد، معادله سومی نیز به دو معادله‌ای
اضافه می‌شود که این معادله‌ها عبارت است از
می‌آید:

\[
J = \sqrt{g} = \sqrt{\det |g_{ij}|} = x_\xi y_\eta - x_\eta y_\xi
\]

و همچنین روابط متریک زیر برقرار است [6]:

\[
\xi_x = \frac{y_\eta}{J}, \quad \eta_x = -\frac{y_\xi}{J}
\]

\[
\xi_\eta = -\frac{x_\eta}{J}, \quad \eta_\eta = \frac{x_\xi}{J}
\]

معادله کلی جایی‌گری - دیفرانژ را برای کمیت اسکالر دلخواه در نظر بگیرید:

\[
\rho \frac{\partial \phi}{\partial t} + (V \cdot \nabla)\phi = \nabla \cdot (\Gamma \nabla \phi) + S\phi
\]

حال با استفاده از معادله‌های زنجیره‌ای مشتق‌های و معادله‌های متریک، شکل انتقال پایانی این معادله در مختصات منحنی خط به صورت زیر خواهد بود:

\[
\frac{\partial}{\partial t} (\rho J \phi) + \frac{\partial}{\partial \xi} (\rho G_{\xi} \phi) + \frac{\partial}{\partial \eta} (\rho G_{\eta} \phi) = \frac{\partial}{\partial \xi} \left[\Gamma_{\xi} \left(g_{11} \frac{\partial \phi}{\partial \xi} - g_{11} \frac{\partial \phi}{\partial \eta} \right) \right] + J S_{\phi}
\]

\[
\text{که در معادله بالا:}
\]

\[
G_{\xi} = y_\eta u - x_\eta v
\]

\[
G_{\eta} = x_\xi v - y_\xi u
\]

در مختصات منحنی خط دو بعدی اعضاً تانسور متریک کورنت ۱ به صورت زیر معرفی می‌شود [5]:

\[
\frac{g_{11}}{x_\xi y_\eta + y_\xi y_\eta} = \frac{g_{11}}{x_\xi y_\eta + y_\xi y_\eta} = \frac{g_{12}}{x_\xi y_\eta + y_\xi y_\eta} = \frac{g_{22}}{x_\xi y_\eta + y_\xi y_\eta} = 1
\]

و همچنین اعضاً تانسور متریک کورنت ۱ به صورت زیر تعریف می‌شود:
اجرایی (یعنی مولفه‌های سرعت و فشار) منطقی بر یکدیگر و در مراکز حجم‌هایی کنترل انتخاب نشدهان. به این نوع شبکه، شبکه تلقیه‌گذاری گفته می‌شود. جنین اولین بارها برای نمونه تعیین فشار و مولفه‌های سرعت باعث انفعال میدان فشار و سرعت و ایجاد میدان صفحه شترنگی می‌شود. بنا براین از این‌گونه از فن خاص استفاده شود. روش مورد استفاده برای یک عددی از انفعال‌های پایه میدان فشار و سرعت روش شبیه‌سازی را نشان می‌دهد. چنین دارایی است که می‌توان با استفاده از نمودار این نوع شبکه تلقیه‌گذاری گرفته شود. حالت تیز این نوع مولفه‌های سرعت باعث انفعال میدان فشار و سرعت و ایجاد میدان صفحه شترنگی می‌شود.

\[
\frac{\partial}{\partial t} (\rho u) + \frac{\partial}{\partial x} (\rho u u) + \frac{\partial}{\partial y} (\rho u v) = -\frac{\partial}{\partial x} (\rho y) + \frac{\partial}{\partial y} (\rho y y) + \rho J + \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} \right) \bigg|_{x=x_{1}} - \frac{\partial}{\partial y} \left(\mu \frac{\partial v}{\partial x} - \frac{\partial v}{\partial x} \right) \bigg|_{x=x_{2}}
\]

\[
\frac{\partial}{\partial t} (\rho v) + \frac{\partial}{\partial x} (\rho u v) + \frac{\partial}{\partial y} (\rho v y) = -\frac{\partial}{\partial x} (\rho y) + \frac{\partial}{\partial y} (\rho y y) + \rho J + \frac{\partial}{\partial x} \left(\mu \frac{\partial v}{\partial x} - \frac{\partial v}{\partial x} \right) \bigg|_{x=x_{1}} - \frac{\partial}{\partial y} \left(\mu \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} \right) \bigg|_{x=x_{2}}
\]

و صورت انتقال یافته معادله پیوستگی به شکل زیر

\[
\frac{\partial}{\partial x} (G_{x}) + \frac{\partial}{\partial y} (G_{y}) = 0
\]

و همچنین معادلة (3) به صورت زیر نوشته می‌شود:

\[
\frac{\partial}{\partial t} (JF) + \frac{\partial}{\partial x} (G_{x} F) + \frac{\partial}{\partial y} (G_{y} F) = 0
\]

4- گسته‌سازی معادله‌های مویت و پیوستگی در این قسمت به روش گسته‌سازی مورد استفاده هستند. عبارتی از نظر جریان روش مورد استفاده برای گسته‌سازی معادله‌ها، روش حجم محدود است. بررسی این روش می‌شود. یک بقایی داشته باشد این روش می‌تواند با بررسی دقیق هر گسته‌سازی می‌تواند نتایج قوی‌تری را در تجربه‌های مقایسه‌ای معادله‌های می‌تواند. در مقاله حاضر تحقیق ذخیره‌سازی می‌تواند به یک مورد ارضا می‌کند. در مقاله حاضر تحقیق ذخیره‌سازی می‌تواند به یک مورد ارضا می‌کند.

بتایواین می‌توان ساخت کسته‌سازی سرعت را با صورت زیر نوشت:

\[
\phi = \phi_{e} + \phi_{p}
\]

\[
\phi_{e} = \frac{pe}{P_{e} + eE}
\]

\[
\phi_{p} = \frac{eE}{P_{e} + eE}
\]

که در معادله (17) مقادیر متغیر \(\phi_{p} \) در مراکز \(\phi_{e} \) و \(P + E \) ضرایب وزنی بوده که به صورت زیر تعیین می‌شود.

بتایواین می‌توان ساخت کسته‌سازی سرعت را با صورت زیر نوشت:
در تعیین عبارت جایگذاری برای محاسبه جمله‌هایی که داخل عکس قرار دارند نیاز به تعیین مقدار سرعت بروز و جریان حجم کنتون انجام است. محاسبه این مقدار با استفاده از الگوهای مختلفی انجام می‌شود.

\[
\rho \frac{\partial V_p}{\partial t} \left[\frac{u_{\theta}^{+1} - u_{\theta}^{0}}{g_{cn}^{+1}} \right] + \rho \left[G_{e}^{+1} - G_{w}^{+1} - G_{e}^{+1} < u_{\theta}^{+1} > - G_{w}^{+1} < u_{\theta}^{+1} > \right]
\]

\[
= - \left[F_{e}^{+1} (y_{e})_{e} - F_{w}^{+1} (y_{w})_{w} \right]
\]

\[
+ \left[p_{e}^{+1} (y_{e})_{e} - p_{w}^{+1} (y_{w})_{w} \right] + \rho \frac{\partial V_{px}}{\partial x}
\]

\[
+ \mu \left[\frac{1}{\delta V_{e}} \left[g_{\gamma e}^{+1} (u_{\theta}^{+1} - u_{\theta}^{+1}) - g_{\gamma e} (u_{\theta}^{+1} - u_{\theta}^{+1}) \right] \right]
\]

\[
- \frac{1}{\delta V_{w}} \left[g_{\gamma w}^{+1} (u_{\theta}^{+1} - u_{\theta}^{+1}) - g_{\gamma w} (u_{\theta}^{+1} - u_{\theta}^{+1}) \right]
\]

\[
+ \mu \left[\frac{1}{\delta V_{n}} \left[g_{\gamma n}^{+1} (u_{\theta}^{+1} - u_{\theta}^{+1}) - g_{\gamma n} (u_{\theta}^{+1} - u_{\theta}^{+1}) \right] \right]
\]

\[
- \frac{1}{\delta V_{s}} \left[g_{\gamma s}^{+1} (u_{\theta}^{+1} - u_{\theta}^{+1}) - g_{\gamma s} (u_{\theta}^{+1} - u_{\theta}^{+1}) \right]
\]

\[
(19)
\]
که در آن آن δu^+ و δu^- به صورت زیر تعریف می‌شوند:

$$\delta u^+ = (Vu)_e \cdot (\delta r_{EE})$$

$$\delta u^- = (Vu)_{ee} \cdot (\delta r_{EE})$$

به صورت مشابه در نقطه محاسبه و پردازش نیز به صورت زیر تعریف می‌شود:

$$\delta r_{EE} = (x_e - x_E) i + (y_e - y_E) j$$

مدیر مدل‌نگر سرعت پروپوک چهار جداره مقدار δr_{EE} در معادله (34) داده شده است و مقدار $\delta u^{(v)E}$ به صورت مشابه در نکات معادله آمده می‌باشد.

در معادله‌های بالا H_p و H_n شرایط تمام عبارتها به جزگرایی فشار و همگنی سرعت در گذاره زمانی قبل هستند. همچنین سرعت در گذاره زمانی قبل منتقل صفر است و نیز در هر دو D_p و D_n نیز نیز ضرایب مستقیم به هندسه شیب و حجم‌های کنترل بستگی دارند و مقدار آنها در مرجع [5] تعیین شده است.

5- روش حل ضمنی معادله‌های پراساس روش گام زمانی مجازی

با رجوع به معادله‌های (34) و (35) ملاحظه می‌شود که این معادله‌ها به شکل ضمنی گسترش دارند. به عبارت دیگر تمام مقادیر سرعت و فشار که در عبارت دیفیوزن جابجایی و گردیدن فشار ظاهر شده در گذاره از $n+1$ باید مورد استفاده قرار گیرد. حال چنان‌چه میدان سرعت و فشار در گذاره زمانی $n+1$ ممیز یا به نظر می‌رسد، آنگاه

$$<u_E> = u_E + \delta u$$

و

$$\delta u = \begin{cases} \text{sign}(\delta u^+) \text{Min} \{ |\delta u^+|, |\delta u^-| \} & \text{IF } \delta u^+ \cdot \delta u^- > 0 \\ \text{IF } \delta u^+ \cdot \delta u^- < 0 \end{cases}$$
یکی از این آنگا که معادله‌های معادله‌های قدرت تغییر جریان در آنها است. در مقاله حاضر برای حل ضمیمه معادله‌ها روش زمان مجازی استفاده شده است این روش در حقیقت روشی است که برای برداشت قیده‌های ناشی از وجود لزجت در مسیرهای زمانی با سطح آزاد توسط مراجع ۱۷ آزاد شده است. اساس روش زمان مجازی اضافه کردن عبارت مشتق معادله‌های سرعت نسبت به زمان مجازی به معادله‌های مومنتم است در نتیجه مشاهده‌ها به شکل زیر نوشته می‌شوند:

\[
\begin{align*}
A_E p'_E + A_N p'_N + A_P p'_P + A_W p'_W + A_S p'_S &= \rho/\tau \left(G_e^* - G_w^* + G_n^* - G_s^* \right) + d N. \\
A_P &= -(A_E + A_N + A_W + A_S)
\end{align*}
\] (۴۱)

در نتیجه برای بسته آوردن \(p^d \) باز عدد معادله بیشتر (۴۲) حالت شود با در نظر گرفتن روشهای مناسب ویژه‌پیشیند که مقدار می‌باشد. در نتیجه است یکی از نشرت‌های بودن نشانه برای دسته \(b_{NO} \) و \(b_{NO} \) است و به صورت زیر تعیین می‌شود:

\[
\begin{align*}
b_{NO} &= \frac{g_{II}'}{J_c} (P'_{nc} - P'_{se}) - \frac{g_{II}'}{J_w} (P'_{nw} - P'_{sw}) \\
&\quad + \frac{g_{II}'}{J_n} (P'_{nc} - P'_{nw}) - \frac{g_{II}'}{J_s} (P'_{se} - P'_{sw})
\end{align*}
\] (۴۳)

در نتیجه می‌توان با استفاده از معادله بیشتر (44) حالت شود با در نظر گرفتن روشهای مناسب ویژه‌پیشیند که مقدار زیر به دست می‌آید:

\[
G_e^* = \tau (H_e)^k + \tau (D_e)^l (P_{se} - P_{ne}) + \tau (D_e)^l (P_{se} - P_{ne}) + (1 - \frac{\tau}{\delta t}) G_e^* + \tau G_e^*/\delta t
\] (۴۴)

\[
G_n^* = \tau (H_n)^k + \tau (D_n)^l (P_{sw} - P_{en}) + \tau (D_n)^l (P_{sw} - P_{en}) + (1 - \frac{\tau}{\delta t}) G_n^* + \tau G_n^*/\delta t
\] (۴۵)

که در آن:

\[
\begin{align*}
\frac{u_{k+1}^h - u_{k}^h}{\tau} &= \left(H_{e+k}^p + \left[(D_{e+k})_w (p_{k+1}^w - p_{k}^w) + (D_{e+k})_n (p_{k+1}^n - p_{k}^n) + (1 - \frac{\tau}{\delta t}) u_{k}^h + \frac{\tau u_{k}^h}{\delta t} \right]
\end{align*}
\] (۴۶)

\[
\begin{align*}
\frac{u_{k+1}^h - u_{k}^h}{\tau} &= \left(H_{e+k}^n + \left[(D_{e+k})_w (p_{k+1}^w - p_{k}^w) + (D_{e+k})_n (p_{k+1}^n - p_{k}^n) + (1 - \frac{\tau}{\delta t}) u_{k}^h + \frac{\tau u_{k}^h}{\delta t} \right]
\end{align*}
\] (۴۷)

که در آن \(K \) که شیب زمانی مجزایی است. در نتیجه برای بسته آوردن \(p^d \) باز عدد معادله بیشتر (42) حالت شود با در نظر گرفتن روشهای مناسب ویژه‌پیشیند که مقدار زیر به دست می‌آید:

\[
(G_{e+k+1}^k - G_{e+k+1}^k) + (G_{n+k+1}^k - G_{n+k+1}^k) = 0
\] (۴۸)

در نتیجه برای بسته آوردن \(p^d \) باز عدد معادله بیشتر (42) حالت شود با در نظر گرفتن روشهای مناسب ویژه‌پیشیند که مقدار زیر به دست می‌آید:

\[
(G_{e+k+1}^k - G_{e+k+1}^k) + (G_{n+k+1}^k - G_{n+k+1}^k) = 0
\] (۴۸)

گروهی جز معادله‌های مومنتم و پوستگی که در معادله‌ها حدود زمانی مشیابه روش مرجع [۶] است. ابتدا از معادله‌های ویژه معادله‌های سرعت برای میانه می‌باشد:

\[
\begin{align*}
\nu_p^* = \tau (H_e)^k + \tau \left((D_e)_w (p_{se} - p_{ne}) + (D_e)_n (p_{se} - p_{ne}) + (1 - \frac{\tau}{\delta t}) u_{k}^h + \frac{\tau u_{k}^h}{\delta t} \right)
\end{align*}
\] (۴۹)
منحنی الخط ارائه شده در این قسمت هدف ارائه روشی برای حل عددي این معادلات است. روش گوناگونی برای حل این معادلات در مختلف اینکارن ارائه شده است که با میان آنها می‌توان به روش سلول‌های دهنده-گردن‌های ۱۲ که توسط مرحله (۱) مورد استفاده قرار گرفته است آشنا کرد. همچنین مرحله (۸) روش دیگری را نشان می‌دهد که این روش نیاز به نتایج وتعیین روش‌های مختلف است. این روش برای روشن کردن زنجیره اتصال بین سلول‌های سطحی (سلول‌های دهنده) به سطح آزاد از منابع آنها باید مورد استفاده قرار گیرد. این روش به عنوان یک جنبه مهم ایجاد شبکه پیچیده کریستالی سرعت برای ایجاد زنجیره اتصال بین سلول‌های سطحی است. روش دیگری که در مقاله محدود اشاره هم می‌شود و آنچه که با محدودیت در به کارگیری این روش می‌توان به نظر برسد، به شرح زیر دنیزه نتایج خود را بدین طور که این روش به نظر که این پارامتر خط در داخل سلول مورد نظر جای گیرد. سطح سطحی مورد استفاده (۱۳) مرحله توضیح واضح و دقیق در زمره تحیات مفاد سطح آزاد شده به شرح زیر بوده است که کاهش می‌باشد. این روش به شرح زیر نشان می‌دهد:

\[
\text{u}_{\text{p}} = \rho \left[(D_u)_{(\text{w})} P_{w} - (D_u)_{(\text{c})} P_{c} \right] + \tau \left[(D_u)_{(\text{w})} P_{f} - (D_u)_{(\text{c})} P_{f} \right]
\]

(۷۷)

و مقدار \(\rho\) نیز به صورت مشابه به دست می‌آید، حال مقدار در کامیون زمانی \(K\) می‌باشد.

\[
p^{k+1} = p^k + P^k u^{k+1} = u^k + u^k v^{k+1} = u^k + v^k
\]

(۷۸)

در صورتی که اختلال بین متغیرهای گام زمانی مجزای \(k\) اول قابل ملاحظه باشد عملیات تکرار پرای به دست آوردن \(k\) مقدار متغیرهای دیگر در گام زمانی مجزای بعدی ادامه می‌یابد. این مقدار در هر از جمله گام زمانی بعدی انجام می‌پذیرد. با این توجه داشته در آغاز هر \(g\) گام زمانی نهایی حاصل \(u^k, v^k, P^k\) و \(w^k\) برای راه اندازی مقداری \(u, v, P\) هستند. در واقع گام زمانی مجزای ۳ لاژ می‌تواند به همراه این که این گام زمانی با پایین‌ترین قرار گرفتن می‌باشد. به دلیل چنین نسبت به پارامتر و همچنین شبب آن مشخص باید می‌توان اضطراب خود را از پارامتر راه اندازی مقداری به پارامتر \(P^k\) برای این کار باید از هر سطح دهنده مورد نظر استفاده کرد. بنابراین \(u\) در مقدار (۶) می‌باشد می‌توان این

\[
\text{p}_{\text{c}} = \text{p}_{\text{w}} - \text{p}_{\text{f}}
\]

(۷۹)

در هر سطح آزاد در سطح آزاد مورد استفاده می‌باشد. این روش به نظر در برابر می‌توانید بوده است.

6- روش حل سطح آزاد و روش حل معادله انتقال کسر

\[
(H_G)_{(c)} = (H_{(c)}) - (H_{(c)})_{n}
\]

(۷۰)

\[
(D_{(c)})_{(c)} = \frac{g_{(c)}}{\rho_{(c)}} + \frac{g_{(c)}}{\rho_{(c)}}
\]

(۷۱)

\[
(D_{(c)})_{(n)} = \frac{g_{(n)}}{\rho_{(n)}} + \frac{g_{(n)}}{\rho_{(n)}}
\]

(۷۲)
که مخرج کسر اندازه بردار گرادیان F است. حال اگر دهند معادله سطح آزاد در داخل سیال مورد نظر باشد، مقادیر شیب این پاره‌ای از معادله زیر محاسبه می‌شود:

\[p = \frac{n_x}{n_y} \]

که در آن \(n_x \) و \(n_y \) مولفه‌های بردار یکه عمود بر سطح آزاد است. پس از تعیین شیب پاره‌ای (p) با داده عرض از مبدأ آن (q) تعیین شود. برای تعیین عرض از مبدأ پاره‌ای قرار گرفته در هر سیال از کسر حجمی سیال استفاده می‌شود. اما پیش از تعیین عرض از مبدأ، پایان سیال قرار گرفته باشد و سیال قرار گرفته گذاشته شود به پاره‌ای عمود بر حده سیال به عنوان این می‌شود. به این ترتیب که این بردار همواره بر سطح آزاد عمود بوده و جهت آن نیز سمت گاز با سمت سیال افقی است. بنابراین با داشتن این پاره‌ای بردار قرار گرفته سطح معنی‌دار است. پایان پاره‌ای عمود بر هر سیال راسته یازده آن به صورت اگر این پاره‌ای از سمت راست آن قرار گیرد و بررسی اگر جهت این پاره‌ای از سمت راست پاره‌ای عرض از سمت چپ به سمت پاره‌ای عرض از سیال می‌کند، در سمت چپ پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کند در سمت چپ به سمت پاره‌ای عرض از سیال می‌کن

\[(\nabla F)_p = \frac{\nabla F}{n_x} + \frac{\nabla F}{n_y} \]

که در آن P = (VF)_p مختصات به سول F است. گرادیان‌های (VF)_p، (VF)_x و (VF)_y رأس‌های حجمی کنترل رابط قطعی و مناسب با عکس فاصله‌ی نتیجه‌ی آن \((\nabla F)_p \) و \((\nabla F)_x \) و \((\nabla F)_y \) از معادله‌ای مشابه معادله (26) استفاده می‌شود. ضربای وزنی \(\omega \) در معادله بالا نسبت عکس با فاصله عمودی رأس‌های حجم کنترل تا پاره‌ای خط نمایانگر سطح آزاد دارد. به این ترتیب می‌توان از رأس‌های حجم کنترل که به پاره‌ای عمود بر این تأثیر تعیین کنند، نتیجه در محاسبه گرادیان F خواهد داشت. از اینجا که تا این مرحله معادله پاره‌ای خط نمایانگر سطح آزاد و معنی نسبت لذا، امکان تعیین فاصله نتیجه‌ی واضح بر رأس‌های حجم کنترل تا این پاره‌ای خط و در نتیجه محاسبه ضربای وزنی فوق و وجود دارد. بنابراین انتخاب محاسبات این پاره‌ای به‌صورت 2/1 انتخاب شده، و گرادیان F و در نتیجه شیب سطح آزاد تعیین می‌شود و با تعیین معادله پاره‌ای خط نمایانگر سطح آزاد بر دوی ضربای وزنی ریخت فاصله نتیجه واقع بر گوشه‌های حجم کنترل تا سطح آزاد محاسبه شده و معادله پاره‌ای خط به دست می‌آید و این عمل می‌توان انجام دست کردن مشکل موارد مکان آمده تغییر تکن. با تعیین گرادیان F بردار یکه عمود بر سطح آزاد از معادله 27 تعیین می‌شود:

\[n_p = \frac{\nabla F}{p} \]

استدل، ص ۱۷، شماره ۳، اسفند ۱۳۷۷

118
شکل 2- 14 وضعیت ممکن برای سطح آزاد در یک سولو دلخواه. سطح تیره نشان دهنده مایع و سطح روسن نشان دهنده گاز است

شکل 3- تصویر سطح جاروب شده (مستطیل هاشور خورده)

\[F_{p}^{n+1} = F_{p}^{n} - \frac{1}{\Delta V_{p}} \left[(\Delta V_{l})_{c} - (\Delta V_{l})_{w} - (\Delta V_{l})_{n} - (\Delta V_{l})_{s} \right] \]

در معادله بالا (\(\Delta V_{l})_{c}\) و (\(\Delta V_{l})_{n}\) و (\(\Delta V_{l})_{s}\) نمایانگر حجم مایع در خارج شده از وجه‌های شرقی و شمالی از سولو \(P\) در یک گام زمانی \(\Delta t\) و (\(\Delta V_{l})_{w}\) نمایانگر حجم مایع داخل شده از وجه‌های غربی و جنوبی سولو \(P\) در یک گام زمانی و (\(\Delta V_{l})_{w}\) نمایانگر حجم سولو \(P\) است. یک سولو دلخواه دارا در نظر گرفته بررسی آتکه این سولو دلخواه بر از مایع یا

استقلال، سال ۱۷، شماره ۲، اسفند ۱۳۷۷
که در آن η مولفه‌های بردار عمود بر پروژه شرکتی سطح S_E و S_{x_E} و S_{y_E} می‌باشد.

و در صورتی که η_{x_E} برای S_E کمتر از مقدار اصلی سطح آزاد است، می‌تواند به شکل زیر تعریف شود:

$$P_{surf} = P_a$$

که P_{surf} فشار برونی سطح آزاد است. حاصل برای آنکه

$$P_{surf} = \frac{1}{\eta} P_{int} + \eta P_{surf} = P_{ij}$$

که در آن P_{ij} مقدار تصحیح فشار در سطح x_i و y_j مقدار فشار در سطح x_i و y_j می‌باشد.

الف - جریان لازم در حفره مربع شکل

در این مسئله سیال در حفره مربع شکل $L = 1$ واحد در حالت مکانیکی دارای صفحه با مساحت A می‌باشد. در برابر جریان U شروع به حرکت می‌کند. تحت اثر حرکت صفحه تاپی شده توسط مانند x_i می‌باشد. در مدل η که جریان توسط مانند x_i تولید می‌شود، گروه مدل نسبتی x_i دارای حادثه P_{surf} می‌باشد.

$\eta = \frac{1}{\eta} P_{int} + \eta P_{surf} = P_{ij}$

با استفاده از شکل‌کارتنی U و η با مقدار P_{surf} می‌باشد. در اعتیاد و ادامه، می‌باشد. در

استقلال، سال 17، شماره 2، اسفند 1377

120
شکل (۴-ج) پروپیل مولفه افکت سرعت در امتداد خط کلایم
گذرندگی از مرکز حفره (۴۰۰-۴۰۰) R
A کار حاضر (روش درجه دوم)، B کار حاضر (روش درجه اول فروژریان)، C نتایج از مرجع [۱۰]

برای حل معادله‌های جابجایی جریان از دو روش درجه اول و درجه دوم استفاده شده است. چشمانه از شکل‌های (۴-ج) و (۴-د) ملاحظه می‌شود که نتیجه دوم در مقایسه با روش درجه اول بسیار مطلوبتر است همین مسئله برای عدد رینولدز ۴۰۰ با استفاده از شبکه منحنی الخط نیز شده است که نتایج به دست آمده برای سرعت و فشار و مقایسه آن با نتایج مرجع [۱۰] نشان داده شده است. در شکل (۴-الف) خطوط جریان در شکل (۴-ب) خطوط هم فشار در داخل حفره و در شکل‌های (۴-ج) و (۴-د) نیز پروپیل مولفه عمودی و افکت سرعت در امتداد خط کلایم گذرندگی از مرکز حفره ارائه شده است.

شکل (۴-ب) خطوط فشار ثابت برای جریان
حریقه مرعی (۴۰۰)
R

شکل (۴-الف) خطوط جریان برای حرکت سیال در
حریقه مرعی (۴۰۰)
R
شکل (۵ - ب) خطوط جریان بازی جریان حفره موری با استفاده از شبکه منحنی خط (R=۴۰۰)

نتایج آن در شکلهای (۵) ارائه شده است. شبکه مورد استفاده در شک (۵ - اف) نشان داده شده و در شک‌های (۵ - ب) و (۵ - ج) به ترتیب خطوط جریان و خطوط فشار ثابت برای این جریان آورده شده‌اند. در شک‌های (۵ - د) و (۵ - ه) مقایسه بین نتایج حاصل از حل در شبکه منحنی الخط و شبکه کارتنیز و نتایج مرجع [۱۰] ارائه شده است.

شکل (۶ - د) خطوط فشار ثابت برای جریان حفره موری با استفاده از شبکه منحنی الخط (R=۴۰۰)

نتایج حل در شبکه کارتنیز به نتایج مرجع [۱۰] نزدیک است.
شکل (5 - α) پدیده مولفه عمودی سرعت در امتداد خط افقی
گذشته از مرکز حفره (R = 0)
کار حاضر (با استفاده از شکلهای منحنی الخط)، B کار حاضر (با استفاده از شکلهای کارتنرین)، C نتایج از مرجع [1]

شکل (6 - B) خطوط جریان پرای حرکت سیال در حفره روزی شکل (R = 0)
با استفاده از یک شکلهای 200 به دست آمده ارائه شده است.

شکل (6 - ج) خطوط فشار ثابت با یک جریان حفره روزی شکل (R = 0)
می‌شود تطیب تابع، بسیار خوب است.

ج - گاهی‌جا از یک دایره در میدان سرعت یکنواخت در این مسئله یک میدان یکنواخت با زاویه 90 درصد به افق در نظر گرفته می‌شود (1 = α) و تغییر محل یک دایره در این میدان یکنواخت با روش می‌شود. شکلهای مورد استفاده در این مسئله در شکلهای (6 - B) و (6 - ج) را از مرجع [1] نشان داده است. مقایسه تابع با نتایج برون [1] نشان داده است. همانطور که مشاهده
یک شکل منحنی الحضارت است. در حوزه میزان تغییر مساحت
کمتر از ۳۰٪ می‌شود. در حال حاضر میزان تغییر مساحت کمتر از ۳۰٪
درصد محسوب‌شده است که به‌طور قابل قبول است. در شکل (۷)
مختصات حاشیه‌ای دارنده نشان داده شده است. خطوط
کمینگان دهندهٔ مکانی مورد اندازه‌گیری دارنده، خطوط ترگنگر نشان
دهندهٔ مکان محاسبه شده است.

د - سد شکسته
در این مسئله بک ستون سیال به ارتفاع ۳ واحد و عرض
واحد در نظر گرفته شده است که بین دو دیواره در حال سکون
قرار دارد. در زمان صفر دیواره سمت راست انتهای یک مدت
مانند نیروی جاذبه به حکمت در آسد و درک‌بروی که در
تأثیر نیروی جاذبه به حکمت در آسد و یک شرایط به حکمت
می‌کند. نتایج حاصل از حل این مسئله در زمان‌های مختلف در
شکل (۸) ارائه شده است. در حیث این مسئله از شکل (۸)
استفاده شده است و گام زمانی ۱۰۰/۳۰/۱۵ انتخاب شده است
و شتاب جاذبه نیز برای واحد (۱ m/۸) در نظر گرفته شده
است. برای این مسئله نتایج تجربی نیز ارائه شده است که در

استقلال، سال ۱۷، شماره ۴، استثنایی ۱۳۷۷
شکل ۷- مراحل مختلف جایگاه یک دایره در یک میدان سرعت یکنواخت تحت زاویه ۵۰° با استفاده از شبکه منحنی خط نامتقارن به همراه شبکه مورد استفاده.

استقلال، سال ۱۶، شماره ۲، اسفند ۱۳۷۷

۱۲۵
شکل (۸-الف) شکل میدان سد شکسته

شکل (۸-ب) مقایسه تأثیر کار حاضر با تأثیر تجربی برای مسئله سد شکسته

Kar حاضر (A) نتایج تجربی از مرجع (1)
شکل 9 - توقف ناگهانی یک ستون سیال با سرعت اولیه 1 m/s

خوب آن با تناوب دیگر محفظان و همچنین انعطاف پذیری استفاده از مختصات منحنی الخط برای حل مسائل پیچیده از کاربردی بیشتر است.

روش‌هایی سطح آزاد، روش‌های نسبتاً جدیدی هستند که برای رسیدن به یک روش مطلوب با قدرت حل مسائل پیچیده کاربردی نیاز به بروز یافته بیشتر است.
1. collocated grid
2. pseudo time step
3. VOF: volume of fluids
4. interfaces
5. interface tracking
6. surface tracking
7. volume tracking
8. momentum weighted interpolation method
9. covariant metric tensor
10. checker board field
11. first order upwind
12. minimum slope limiter
13. donor-acceptor cells
14. FLAIR

5. Shoshtri, J., "حل معادلات جریان تراکم نانوزرین همکار با سطح آزاد در محورهای مختصات منحنی الخط" پایان نامه کارشناسی ارشد، دانشگاه صنعتی شریف، تهران، 1372.