Kinematics and Dynamics of two Cooperating Robots
in Spatial Moving of an Object

A. Fattah and B. Tahmasebi

Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT- The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the crushing force and moment on the moving object as well as minimizing the joint torques of the two robots are the two methods which are used to determine the joint torques. As an example, the joint angles and their time derivatives as well as the time history of joint torques of two cooperating Puma 560 robots are determined.
فهرست علائم

<table>
<thead>
<tr>
<th>تکلمات</th>
<th>نماد</th>
<th>توضیحات</th>
</tr>
</thead>
</table>
| ماتریس کریبویس و گریز از | NOC | مزرع |}

کرده و پیامدات پیچیده روی آوردن کننده. شرایطی که در آن ریابهای همکار یا با هم مکننده تاکرار از پیش توصیف شده با نجاح دهند پوسته‌کاپالی می‌شود و یا خود باعث افزایش کبریانه این نوع ریابهای می‌شود. در زمینه دینامیک ریابهای همکار تاکرون مطالعات زیادی صورت گرفته است که در هر یک از این مطالعات روش خاصی را برای مدل کردن سیستم ریابهای در نظر گرفته‌اند [۱].

وقتی که دو ریاب جمعی را می‌گیرند مکانیزم جنبش‌ها به شیوه‌ای تشکیل می‌شود که تعادل درجات آزادی سیستم کمتر از مجموع تعادل مقادیر است و چون در ریابهای صنعتی برای هر مقادیر محدودیت کارایی کم‌تر قبلاً محاسبه می‌شود و داشته باشد، باید ریابهای باید با کمک بیشتری برای کردن مورد پیش‌بینی شود. در این مقاله استناد به می‌شود سیستم‌کاپالی و تابع مکانیکی خاصی است که در آن حضور یک فصل مشخصی از گروه کریبویس و گریز از مقاله مربوط به فصل یکی از مقالاتی است که بیشترین هدف این مقاله بررسی این نوع ریابهای همکار در حالت فضایی است. سیستم‌کاپالی و دینامیک در دو ریاب در حالت فضایی یک جسم قابل مورد بررسی قرار گرفته است [۸]. بررسی ریابهای همکار در حالت فضایی با مقایسه آنها در حالت‌های یک دایر و یک دایر خاص است که پیچیده مسائلی مطرح می‌شود. دو مدل زمانی در فضای سه بعدی صورت می‌گیرد. به همین دلیل دو ریاب نیز حول محوری به مدل محدودیت درون صورت می‌گیرد و این محدودیت با زمان تغییر می‌کند. در صورتی که در حالت‌های صفحه‌ای دو ریاب ۱۳۷۸۸

استقلال، سال ۱۸، شماره ۱، شهریور
جدول ۱ - پارامترهای دکانیت - هارمونیک مربوط به ربات پوما ۵۴۰

<table>
<thead>
<tr>
<th>θ_i (درجه)</th>
<th>d_i (متر)</th>
<th>d_{i-1} (متر)</th>
<th>$\Delta \theta_i$ (درجه)</th>
<th>Δd_i (متر)</th>
<th>مفصل A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>180</td>
<td>90</td>
<td>180</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>360</td>
<td>90</td>
<td>180</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>180</td>
<td>90</td>
<td>180</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>360</td>
<td>90</td>
<td>180</td>
<td>6</td>
</tr>
</tbody>
</table>

پیدا کردن با استفاده از آنها نرخ تغییرات دوران مفصل و همچنین شبک را زاینده آنها را پیدا کرد. نهایتاً با استفاده از حاصحلوادهای دینامیکی و عمل و روش‌های بهینه سازی تغییرهای زمانی کویل مفصل با استفاده از روش‌های گروه NOC [11 و 12] به دست می‌آید. در این روش و با استفاده از معادله‌های تغییرهای محدود‌نشده در برخی شاخص‌های مختلفی استخراج شده‌اند. کویل مفصل بر اساس روش یک حاصل کردن برای کار در مفاصل دیگری تغییرهای مفصل کویل به کار رفته در مفاصل محاسبه خواهد شد. روش دیگر بررسی یکپارچه‌سازی به کمک مدل‌های استاتیکی که تعداد مفصل تغییر کرده شوند به تعداد درجات آزادي سیستم یکسان باشد در نتیجه نیاز به بهینه سازی نخواهد بود [5].

 فقط حول یک محور عمود بر صفحه صوت می‌گردد. در حالت فضاها مجهزه طراحی مسیر، سیستم‌های مکانیکی به دست آمده راکونی رفت در مرحله پیچیده‌تر از حالت صفحه‌ای آن است. تعداد درجات آزادی در حالت فضاها بیشتر از حالت صفحه‌ای است و به کار بردن روش‌های بهینه در این حالت پیچیده‌تر از حالت صفحه‌ای است. علاوه بر محور عمود در مسیر اضافه‌شده نزدیک‌تر خلاص‌های از مطالعات انجام شده توسط مقادیر در این زمینه تیز آورده شده است. در ربات صیغه یکپارچه از نوع پوما ۵۴۰ جسمی را در فضا می‌گیرند که در این مقاله به آن جسم متحرك گفته می‌شود. این در ربات همانند را برا یک ایزومتری جسم متحرک و سپس دوران آن در فضا مواد استفاده می‌گردد. مدل‌ها [1-3] هر یک از ربات‌ها در حالت کلی دارای شش درجه آزادی اند و تمامی مفاصل آنها از نوع دورانی (یک درجه آزادی) است. پارامترهای دکانیت - هارمونیک مربوط به این ربات‌ها در جدول (۱) آورده شده است.

<table>
<thead>
<tr>
<th>در یک طراحی مسیر</th>
</tr>
</thead>
</table>

منظور از طراحی مسیر بافت‌های در فضای زمانی موقتیت، سرعت و شتاب را در فضاهای مفصل با فضای کارکردی می‌کند. در مورد ربات‌های همکاری، حکمر جسم متحرک همواره مورد نظر است از اینرو طراحی مسیر در فضای کارکردی صورت می‌گیرد. در طراحی مسیر در فضای کارکردی حکمر جسم متحرک از وضعیت اولیه به وضعیت دوم خاکپذیر مورد نظر است. این حرکت مستلزم تغییر در دوران موقتیت جسم متحرک نسبت به دستگاه موجود است. به همین علت در حالت فضایی متغیری‌ها که در طراحی مسیر برای مشخص کردن دوران و موقتیت جسم متحرک مورد استفاده قرار می‌گرفتند به ترتیب عبارتند از زاویه دوران و مؤلفه‌های برداری که محور دوران θ_i
به همراه مختصات α و β که مختصات مركب جسم متحرک نسبت به مختصات مرجع یافت‌اند. برای این این مختصات بر حسب زمان با کمک می‌توان دسته‌بندی کرد. شیب روش‌های مزیتی، همواره نیز باشد. از این نتایج که این خصوصیات را دارا باشند در این مقاله از تابع سیگنال‌های شکل زیر استفاده می‌شود.

$$h = H \left[\frac{S}{T} - \frac{1}{\pi} \sin \left(\frac{\pi s}{T} \right) \right]$$ (1)

که در T مدت زمان نگهداری کار ربات می‌باشد. مختصات جسم متحرک نسبت به دستگاه مرجع قابل محاسبه‌ی متحرک مختصات جسم متحرک نسبت به دستگاه مرجع می‌توان مشخص کرد.

3- مدلسازی و معادله‌های دینامیکی

dر ربات که به هم جسمی را داشته‌اند در نظر گرفته‌ایم، برای راحتی آنها را راهبردی و پیروی‌ها نام‌هایی در حالتی که حركات مختصات ربات با حركت دچار افزایشی مبرده شده می‌باشد. راهبردی می‌تواند به صورت ثابت بردار \hat{t} بردار \hat{n} نوشتار به صورت ترکیب سرعت خاطر اصل سینماتیک، سرعت t به صورت ایجاد می‌شود. با معرفی روش [11] بردار \hat{t} و کوپل محدود‌شد و سینماتیکی از معادله‌ها حذف خواهد شد.

$$t = N \hat{t}$$ (2)

در معادله بالا، به همراه مختصات α و β که مشاهده برای این N مختصاتی در هر هر کنار، دارا برای اینها در فضای مختصات V و بررسی‌کردن که در این حالت مشاهده از سرعت‌های زاویه‌ای مختصات ربات جدید نوشتار به صورت زیر استفاده می‌شود.

$$I_i \ddot{\alpha}_i = -\omega_i \times I_i \dot{\alpha}_i + \omega_i + n_i$$ (3)

در معادله بالا می‌توان به تعاملاتی که با جمع کردن معادله‌های تمام اعضا به صورت زیر نوشت.
محاسبه تاریخچه زمانی کولی مفاعل
در این قسمت کولی مفاعل به دو روش محاسبه می‌شود.
همانطوری که قبلی گفته شد سیستم دو روند همانندی دارای پاسخ‌های معادل می‌تواند باشد. اما با محدودیت‌های اعمال کرد تا پاسخ‌های منحصربه‌فرد را باشیم. در ادامه بر اساس دو روش زیر کولی مفاعل محاسبه خواهد شد.
الف - محاسبه کولی مفاعل بر اساس حداکثر کردن تیروئید وارد بر جسم متحرک ب - محاسبه کولی مفاعل بر اساس حداکثر کردن مقدار کولی به کار رفته در مفاعل

5- محاسبه کولی مفاعل بر اساس حداکثر کردن تیروئید وارد بر جسم متحرک

با فرض اینکه جسم متحرک شکننده باشد تیروئید وارد بر جسم را حداکثر می‌کنیم. ابتدا معادله‌های دینامیکی حركت را برای دو روند نوشته و سپس آنها را به هم کولی می‌کنیم. با استفاده از معادله (10) و استفاده از اندازه‌گیری روند و اندازه‌گیری برای برای معادله‌های حركت برای هر کدام از روندها به شکل زیر نوشته خواهد شد.

\[I_A(\dot{\Theta}_A) \dot{\Theta}_A + C_A(\Theta_A, \dot{\Theta}_A) \dot{\Theta}_A = \gamma_A + \tau_A + \tau_C \] \hspace{1cm} (11)

\[I_B(\dot{\Theta}_B) \dot{\Theta}_B + C_B(\Theta_B, \dot{\Theta}_B) \dot{\Theta}_B = \gamma_B + \tau_B + \tau_C \] \hspace{1cm} (12)

در معادله‌ها بالا از جمله حاصله‌های نیروهای می‌توان صرف‌نظر شد. در معادله‌های بالا

\[\tau_C^A = J_A T_a \omega, \ \tau_C^B = J_B T_B w_b, \ \omega_A = -w_B \] \hspace{1cm} (13)

است که به ترتیب بردار نیرو و کولی اعمالی بر ربات از طرف ربات B که در واقع همان تیروئید وارد بر جسم متحرک است که به صورت نیروی عمل و عکس عمل عمل خواهد کرد. از ترکیب معادله‌های (11) و (12) به شکل کلی معادله‌ی زیر رسید:

\[N^T M \dot{\Theta} = -N^T M \dot{\omega} - N^T S \dot{\omega} + N^T w \] \hspace{1cm} (8)

خاصیت ماتریس N به گونه‌ای است که می‌توان از روندهای کرد سمت چپ بردار نیرو و کولی محدودیت‌های سیستم‌اتیکی حذف خواهد شد و یک سری معادله‌های مستقل به دست خواهیم آورد. معادله (8) را به شکل زیر می‌توان نوشته [12]

\[I(\dot{\Theta}) \dot{\Theta} + C(\Theta, \dot{\Theta}) \dot{\Theta} = N^T w^W + N^T w^D + N^T w^G \] \hspace{1cm} (9)

که در آن

\[I \equiv N^T M, \ C \equiv N^T S \dot{\omega} + N^T M \dot{\omega} \]

است. با توجه به معادله زیر

\[N^T w^W = \tau + J_t w^E \]

که در آن، J بردار کلیدهای مفصل، w^E بردار نیرو و کولی موجود در انتهای ربات و Jزبرای سرعت دستگاه معادله انتهای ربات نسبت به سرعت زاویه‌ای مفصل است [12]. نهایتاً معادله (9) به صورت زیر نوشته خواهد شد:

\[I(\dot{\Theta}) \dot{\Theta} + C(\Theta, \dot{\Theta}) \dot{\Theta} = \tau + J_t w^E + \delta + \gamma \] \hspace{1cm} (10)

که در آن

\[\delta \equiv N^T w^D, \ \gamma \equiv N^T w^G \]

در معادله‌های بالا با توجه به اینکه دو ربات مورد استفاده دو ربات همکار از نوع روپا ۶۵ هستند، N ماتریس ۶×۶ هستند و J زبرای ۶×۶ و C در ماتریس‌های ۶×۶ هستند.

1378
استان، سال ۱۸، شماره ۰، شهرویور
برای این منظور باید نیروهای قیدی \(k^C \) را از معادله (14) حذف کرد. برای رهايي از عبارت \(C \) ماتریس انتقال \(L \) را به صورت زیر تعريف مي‌گريم:

\[
\hat{\Theta} = L(\Theta) t_E
\]
(16)

که دار \(L \) ماتریس \(12 \times 6 \) و \(t_E \) بردار سرعت زاويه‌ي و سرعت خطی جسم متحرک است که مشابه از سرعت زاويه‌ي و سرعت خطی جسم متحرک و سرعت خطی مرکز جرم آن است. نسبت به دستگاه معادله (16) و ضرب معادله به دست آمده از سمت چپ در \(L^T \) معادله زیر تعريف مي‌گريم:

\[
L^T \dot{L} t_E + L^T \dot{L} l_E + L^T C l_E = L^T \gamma + L^T \tau + L^T \tau^C
\]
(17)

به شکل تابع تعريف معادله (17) - الف) جانبه تابع تعريف معادله (12) - الف) تابع تعريف نوشته خواهد شد:

\[
L^T = \begin{bmatrix} J_a^{-T} & J_b^{-T} \end{bmatrix}
\]
(18)

و معادله (17) به صورت زير نوشته خواهد شد:

\[
L^T = \text{LHS (17)} - L^T \gamma
\]
(19)

که در آن LHS معادله بالا یک دستگاه معادله‌هاي فرومین 10 و حل آن برای 3 بر اساس روش حل حداقل مانی خواهد بود. در تابع تعريف معادله (17) - الف) تعريف نوشته به دست مي‌آید. در تعريف معادله (17) - الف) ماتریس کوپ لین مي‌تواند از تابع زیر تعريف شود:

\[
\tau = L [L^T L]^{-1} (L^T \dot{L} t_E + L^T \dot{L} l_E + L^T C l_E) - L [L^T L]^{-1} L^T \gamma
\]
(20)

شباهت ذكر است که \([L^T L] \) ماتریس \(6 \times 6 \) است و در صورتی که ماتریس پذير است که مربوط به معادله 6 حداقل \(L^T \) به دست آمده که با 5-

5- معادلات کوپ مداهنده حداقل بر اساس حداقل کردن

مقدار کوپ

با فرض اینکه جسم به 2 حداقل سخت باشد مي‌توان محدوديت مورد نظر را برای حداقل کردن کوپ مداهنده براي پذير است که مربوط به معکوس پذير است که مربوط به سه شماره 18، شهرماه 1378

108
شکل ۱ - ریتهای همکار A و B در حال نگهداری جسم متحرک

شکل ۲ - حرکت جسم متحرک با توجه به مسیر مشخص شده

توجه به تعریف آن، مرتبه دستگاه رای برای X و Y به عباراتی ماتریس [L^T L] معکوس پذیر است.

۶-نتایج

دو ریتهای مختصات از نوع پکسکنی ۵۰۰۰ برای بلندگرد جسم متحرک مگنی ۵ کیلوگرم و طول ۱۰۰ میلی‌متر استفاده می‌شود. ریتهای ملک بر از دو مختصات به نقطه‌ای X و Y به میلی‌متر برده و مختصات X = ۴۴۰ و Y = ۲۰۰ به یاد می‌آورد. مختصات دستگاه مختصات انتها ریت A به یاد می‌آورد (۹۰) درجه حواله محور Z و سپس به لانژه (۹۰) درجه حواله محور Z0 درون می‌کنند، شکل (۱). ارتفاع پایه ریت‌ها ۶۵۰ میلی‌متر بوده و فاصله پایه‌ها ۱۹۶ میلی‌متر است.

با حل معادله‌های سیستمیک مکوس پرای ریتهای زاویه‌ای مفاصل
شکل ۳ - زواياي مفاصل و نرخ تغييرات آنها برای ربات

شکل ۴ - زواياي مفاصل و نرخ تغييرات آنها برای ربات

شکل ۵ - كويتري مفاصل برای ربات A و B در حالت حداقت نیروی وارد بر روی متحرک
شکل 6- کوپل‌های مفصل برای ربات A و B در حال حادثه کول مورد تیز

7- نتیجه‌گیری

در این مقاله سیمپاتیک و دینامیک مربوط به حركت یک جسم متحرک توسط دو ربات مورد بررسی و تحلیل قرار گرفته. براساس مسير مورد نظر و طراحی آن و با استفاده از سیمپاتیک مکوس تاریخچه زمانی حركت مفاصل ریانها محاسبه شدند. سپس با استفاده از معادله‌های دینامیکی به دست آمده در این مقاله و همچنین استفاده از نرم افزار مدل 17 تاریخچه زمانی کوپل مفصل در دو حال حادثه به‌طور یکپارچه سازی بر اساس حادثه کول مورد تحقیق وارد بر جسم متحرک و دیگری بر اساس حادثه کول مورد استفاده مفاصل به دست آمده. نموهای به دست آمده برای تاریخچه کوپل مفصل برای ربات‌های A و B در دو حال حادثه به‌طور مناسب و هماهنگ تحلیل کننده این مطلب است که روش تولید مفاصل در دو روش جسمی به یکدیگر است. همچنین مقدار کوپل مفصل 11 و 3 در حالت حادثه کول محرک وارد بر جسم متحرک برجه مقدار مشابه و مقدار کوپل مفصل 5 و 6 چکچکی از مقدار مشابه در حالت

واژه‌نامه

1. natural orthogonal complement
2. Puma 560
3. Denavit - Hartenberg
4. actuator
5. leader
6. follower
7. NOC
8. joint space
9. minimum norm solution
10. underdetermined

استقلال، سال 18، شماره 1، شهریور 1378

111
9. فتح، ع. و طهماسبی، ب.، "سینماتیک و دینامیک دو ربات در حرکت نپیوسته یک جسم"، پنجمین کنفرانس سالانه مهندسی مکانیک، دانشگاه تبریز، 1346، ص 123-127.

استقلال، سال 18، شماره 1، شهریور 1378