طراحی و ساخت مدار بهبود یافته خشکی سازی کیفیت مدار رزونانس برای تبیین دامنه پالس‌های خروجی مدولاتور در فرستنده‌های رادار

حسین فرازی‌فرد، زریر قاسمی و حسین مقبلی
دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

چکیده - در مدولاتورهای فرستنده‌های رادار به مدار نیاز دارد که علاوه بر افزایش دامنه آنتن، می‌تواند پرداخته به درست پلاریزاسیون نور نوایش داشته باشد. در این مقاله یک مدار برای این منظور به‌کار گرفته شده است. در این مقاله، بررسی عملکرد مدار و تاثیر آن در عملکرد رادار نیز انجام شده است.

Design and Realization of an Improved De-Q-ing Circuit for Regulation of Modulator Output Pulse Amplitudes in a Radar Transmitter

H. Farzanehfard, Z. Ghassemi and H. Moghbeli
Department of Electrical and Computer Engineering, Isfahan University of Technology

ABSTRACT- In order to achieve better regulation in pulse amplitudes produced in radar transmitter modulators, De-Q-ing method is used and new circuits are proposed to improve regulation [1,2]. In this
فهرست علام

<table>
<thead>
<tr>
<th>نشان</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>مقاومت کننده و قویترین کننده</td>
</tr>
<tr>
<td>COMP</td>
<td>قویترین کننده و مقاومت کننده</td>
</tr>
<tr>
<td>& AMP</td>
<td>کننده و قویترین کننده</td>
</tr>
<tr>
<td>HVDC</td>
<td>قویترین کننده و مقاومت کننده</td>
</tr>
<tr>
<td>HVDVDR</td>
<td>کننده و قویترین کننده</td>
</tr>
<tr>
<td>K</td>
<td>کننده و قویترین کننده</td>
</tr>
<tr>
<td>Le</td>
<td>کننده و قویترین کننده</td>
</tr>
<tr>
<td>Lc</td>
<td>کننده و قویترین کننده</td>
</tr>
<tr>
<td>NCE</td>
<td>مقاومت کننده و قویترین کننده</td>
</tr>
</tbody>
</table>

عکس/نمودار

1- مقدمه

دولاتور پالس یا پلاتر در دستگاههای گوناگونی مانند سیستم‌های ولتاژ افزایشی تجهیزات ترکیبی و سیستم‌های رادار وظیفه ولتاژ پالسی انتقال به عهده دارد که در این مقاله چاپ شده است.

و کاربرد آن در سیستم‌های رادار و سیستم‌های مود توزیع می‌گردد. در رادارهای پالس امواج الکترومغناطیسی در مدت زمان کم به سه شکل (1) تشکیل دهنده است، یا از رشد و تلاش شکل دهنده پالس (P.F.N) به سطح مورد نظر انتقال می‌شود.

2- انتقال آرزوی جریان، انتقال از چکو شارژ به منبع تغذیه، آزمایش‌های ترکیبی و آزمایش‌های شیک شکل دهنده پالس (P.F.N) به سطح مورد نظر انتقال می‌شود.

به یک مکانیک ولتاژ پالس است که تولید کننده با نوای بالا و پهنای پالسی که به طور مناسب در زمان کوتاه قابل کنترل به صورت سریالی یا راننده در این مقاله چاپ شده است.

[1] به تفصیل توضیح داده شده است.

نتیجه دانش پالسی ولتاژ خروجی در دولاتورهای رادارهای MTI به دلیل تنها آنها در ضریب بهره رادار از اهمیت ویژه‌ای برخوردار است که یکی از روشهای تثبیت دامنه پالسی ولتاژ در مقابل تغییرات ولتاژ تغذیه و حالت‌های مختلف استفاده از روش نتایج ریزی کیفیت مدار روشنفکری است. در روشهای معمول از این دیدگاه شده در چکو شارژ به سطح مکانیک ولتاژ پالسی یکی مکانیک شده است.
شکل 1- مدار تنظیم خشی سازی کیفیت مدار رزونانس با پرگشت انرژی به منبع

سطح ولتاژ خروجی منبع تغذیه، \(V_{DC} \), به گونه‌ای انتخاب می‌شود که در بسترین شرایط (هگامگی که ولتاژ خروجی \(V_{DC} \) کاهش یافته است) ولتاژ لازم برای عملکرد صحیح مدولاتور بدون تداخل به پرتاب برابری با ولتاژ شارژ \(V_{FN} \) و ولتاژ شارژ \(V_{FN} \) با هم برابر باشد. ولتاژ شارژ \(V_{FN} \) مطلوب در صورت \(K > 0 \) و \(K = 1 \) (اگر ولتاژ سایه‌ای مدار رزونانس (SCR) به منبع انتقال الکتریکی، ولتاژ برعکس ولتاژ شارژ \(V_{FN} \) به دست می‌آید.

\[
V_{N} = V_{DC} (1+K/100) \quad \text{(1)}
\]

\[
V_{N} = V_{DC} (2-K/100) \quad \text{(2)}
\]

همانطور که در شکل 1(1) و 1(2) مشاهده می‌شود در این مدار انجام عمل سوپرچینگ در سطح ولتاژ یا برابر از چرخ شارژ با سپریکت ثانویه و نسبت تبدیل \(N_{PP} \) و \(N_{FP} \) از یک ترانس اوایل به نام ترانس کلیمی به نسبت تبدیل \(N_{PP} \) استفاده شده است. این امر برای محاسبه \(N_{PP} \) و \(N_{FP} \) ضروری می‌باشد. به این ترتیب که میزان کیفیت مدار رزونانس (SCR) به منبع انتقال الکتریکی، از یک ترانس اوایل به نام ترانس کلیمی به نسبت تبدیل \(N_{PP} \) استفاده شده است. این امر برای محاسبه \(N_{PP} \) و \(N_{FP} \) ضروری می‌باشد.

\[
\alpha_{min} = \cos^{-1} \left(\frac{K}{K+100} \right) \quad \text{(3)}
\]

بدین ترتیب برای داشتن یک خروجی منظم شده (با فرض \(K \) تغییرات مجاز تغییری تغییری، با استفاده از تغییرات سیالی کیفیت مدار رزونانس مثل حداقل در زاویه آتش \(\alpha_{min} \) روش شده.

- ۳- طراحی و تعیین حداقل زاویه آتش تریستور مدار خشی سازی کیفیت مدار رزونانس

به منظور تعیین دامنه ولتاژ ولتاژ و ولتاژ چیزگی از وابستگی آنها به تغییرات ولتاژ تغییری، پس از رساندن ولتاژ مورد نظر، تریستور خشی سایزی کیفیت مدار رزونانس آتش می‌شود. بنابراین زاویه آتش این تریستور تابعی از دو دقت تغییرات ولتاژ و ولتاژ تغییری است. اگر \(K \), درصد تغییرات موازی ولتاژ تغییری مقدار اندازه‌گیری تغییری مدار رزونانس باشد،

\[
V_{FN} = \frac{V_{DC}}{2} \quad \text{و} \quad \frac{1}{2} \cdot V_{DC}
\]

در صورت بازه مستقیم بودن تریستور و بعد از آتش کردن تریستور خشی سایزی کیفیت مدار رزونانس، شارژ قطع خواهد شد. به همین منظور نسبت تبدیل چرخ شارژ و حساسیت تریستور ساختمان به منبع AC به دست می‌آید.

\[
V_{FN} = \frac{V_{DC}}{2} \quad \text{و} \quad \frac{1}{2} \cdot V_{DC}
\]

- ۴- انتخاب نسبت تبدیل برای چرخ شارژ و ترانسформ‌تور اضافه ولتاژ

در صورت بازه مستقیم بودن تریستور و بعد از آتش کردن تریستور خشی سایزی کیفیت مدار رزونانس، شارژ قطع خواهد شد. به همین منظور نسبت تبدیل چرخ شارژ و حساسیت تریستور ساختمان به منبع AC

\[
V_{FN} = \frac{V_{DC}}{2} \quad \text{و} \quad \frac{1}{2} \cdot V_{DC}
\]
زاویه پرتو 1340 است و رابطه بالا به شکل زیر ساده می‌شود:

\[\frac{N_{\text{ce}}}{N_{\text{cx}}} \leq 1 \]

با توجه به رابطه (11) امکان برگشت انرژی از چرخ شارژ به
DC وجود دارد که با یکی از طریق‌های انتخاب صفحه تبدیل چرخ شارژ و ترانسформ‌های افزاینده، این امکان را به وجود آورد. در صفحه‌های بعدی رابطه حداکثر و حداکثر ولتاژ تغذیه با نسبت تبدیل‌های چرخ شارژ و ترانسفورم‌های افزاینده در
صفرت برقراری رابطه (11) مطرح می‌شود.

5- تعیین حداکثر و حداقل ولتاژ
در صورتی که مقدار حداکثر و حداقل ولتاژ به رابطه PFN
فرض شود، باید ولتاژ تغذیه ثابت رابطه زیر بین
V\text{Nh}
و V\text{Nt}
حداقل و حداکثر سطح ولتاژ شارژ PFN برقرار خواهد بود.

\[V_{\text{Nh}} = 2V_{\text{DC}} \]

\[V_{\text{Nh}} = V_{\text{DC}}(1-\cos \alpha |_{\min}) \]

\[\frac{V_{\text{Nh}}}{V_{\text{Nt}}} = \frac{1}{1-\cos \alpha |_{\min}} \]

در صورتی که حداکثر زاویه آتش تریستور خصیصی کفیت مدار
زنوناتس در شروع خشونت سازی کفیت مدار زنوناتس قرار گرفته، به
چرخ شارژ و ترانسفورم‌های افزاینده با نسبت تبدیل
پنای تعیین چراپ مانند ولتاژ تغذیه به شکل زیر ساده می‌شود:

\[V_{\text{Ak}} = V_{\text{Nh}} - V_{\text{c}} \]

در لحظه روشن شدن تریستور خشونت سازی کفیت مدار زنوناتس، ولتاژ تغذیه ترانسفورم‌های افزاینده و ولتاژ تغذیه چرخ شارژ از
معادله‌های زیر به‌دلیل PFN برقرار خواهد بود.

\[V_{\text{Nh}} = \frac{V_{\text{DC}}}{N_{\text{ce}}} \cos \alpha \]

\[V_{\text{Nh}} = V_{\text{DC}}(1-\cos \alpha |_{\min}) \]

با چاپ‌گذاری از روابط (5) و (6) در معادله (4) و با
توجه به رابطه (3) و (7) محدوده انتخاب
مخصوص
\[\frac{N_{\text{ce}}}{N_{\text{cx}}} \rightarrow \alpha \leq 180^\circ - \cos^{-1} \left(\frac{V_{\text{Nh}}}{V_{\text{Nt}}} \right) \]

\[\alpha_{\min} = 180^\circ - \cos^{-1} \left(\frac{N_{\text{ce}}}{N_{\text{cx}}} \right) \]

به رابطه (6)
\[\frac{N_{\text{ce}}}{N_{\text{cx}}} \geq \frac{1}{1 + \frac{K_{\text{sa}}}{K + 100}} \]

از طرفی طبق تعريف نسخه‌های‌پایه‌پای که PFN
برقرار باشد با رابطه (11) به‌عنوان یک رابطه
تغییرات برای ولتاژ خط تغذیه به‌دلیل آن توجه

\[K_{\text{sa}} \leq \frac{N_{\text{ce}}}{N_{\text{cx}}} \]

با فرض 5% تغییرات مجاز برای ولتاژ تغذیه و با توجه به
رابطه (3)، حداقل زاویه آتش تریستور خشونت سازی کفیت مدار

\[V_{\text{Nh}} \leq 2V_{\text{DC}} \]
در صورتی که مدار مبدل الکترونیکی چوک شارژ که در این حالت همانند پک ترانس است به‌جای آن قرار داده شود مدل الکترونیکی مدار به صورت شکل (2) تبدیل می‌شود.

تابع \(I_{1}(L_i) \) با توجه به مدار مبدل که در شکل (2) نشان داده شده است از برابر قرار دادن ارتفاع زاویه در سلسلهای پراکنده با تغییرات ارتفاع زاویه‌های محاسبه می‌شود. به عبارتی در لحظه‌های تحت شرایط سطحی تغییرات مدار روان‌سازی آن شامل می‌شود. اگر جریان در چوک شارژ \(I_{1} \) فرض شود، ارتفاع زاویه می‌شود. در جریان شارژ یک‌جانبه \(I_{1} \) و در دیگر سلسلهای پراکنده \(I_{1} \) است. ارتفاع چوک شارژ به میزان تغییری گردانده شده اما ارتفاع موجود در سلسلهای پراکنده باعث افزایش شارژ PFI و عدم قطع سوپریم شارژ PFI می‌شود.

\[
V_{N_1} \leq V_{h_1}(1-\cos \alpha) \left| \min \right.
\]

\[
V_{b} \leq \frac{2}{V_{1}} \left| \min \right.
\]

\[
(15)
\]

در صورتی که شارژ مطلوب PFI کوچک از \(V_{h_1} \) انتخاب شود، راندمان سیستم کاهش می‌یابد. پت‌اپراتر به منظور بهبود راندمان سیستم، می‌تواند تغییری DC به کناره‌ای طراحی و ساخته شده به شکل PFI به اندازه مطلوب شارژ، شود در این حالت رابطه (15) به تساوی تبدیل می‌شود.

\[
6-\text{تأثیر اندازه‌گیری چوک پراکنده چوک شارژ با سیمپل ثانویه به تنظیم ولتاژ}
\]

در تنظیم ادغام، اجراً هنگام تغییرهای در ولتاژ شارژ نیز در اثر تغییرات ولتاژ نقش تغییری دارد. در تنظیم به‌روز شدن خشونت گذاری کیفیت مدار روان‌سازی، به سنبهای ولتاژ با دامنه ثابت بر می‌کنیم امکان پذیر است. اما در روش بردی شده در این صورت، به علت کوچکی ناافز و تغییرات ولتاژ، تغییرات ولتاژ PFI اندازه‌گیری Tابعی از مقادیر اندازه‌گیری سلف پراکنده است.

\[
\Delta V_N = f(L_1)
\]

\[
(16)
\]

که در این رابطه، \(L_1 \) اندازه‌گیری پراکنده در طرف اویه چوک شارژ است.

\[
\Delta V_N = \frac{I_{1}V}{CN_{v}V_{n}}
\]

\[
(17)
\]

\[
(18)
\]

\[
22
\]

\[
1378
\]

استقلال، سال 18، شماره 2، اسفند 1378
\[\omega_d = \frac{V_L}{C_N} \]

که \(I_d \) در رابطه با لایه جریان اولیه چرخ شارژ در شرایط خشی سازی کیفیت مدار رزونانس است.

\[t_d = \sqrt{\frac{L_i}{C_N}} \cdot \tan^{-1} \left[\frac{V_i}{L_i} \cdot \tan(\alpha) \right] \]

(22)

واژه‌گزاری \(C_N \) برای بررسی پریداری مدار شارژ، \(T \) و سایر پارامترها در رابطه (22) با توجه به اینکه نسبت مقدار اندوکتانتی پراکنده به اندوکتانتی چرخ شارژ مقدار کوچکی است، در دو کیفیت هم‌سازی که زمان از باید تخلیه انرژی سلفه‌ای پراکنده دردسر کوچکی از زمان لازمه برای شارژ است. مقدار رزونانس (PFN) فاکتور مورد استفاده در مالکیت اندوکتانتی مفساط کننده است، ضریب در رابطه (22) برای تخمین انرژی ذخیره شده در چرخ شارژ در مدت محاسبه زمان‌های کیفیت مدار رزونانس به معنی تغذیه به زمان \(t_q \) به‌صورت در صورتی که جریان چرخ در مدت زمان‌های کیفیت مدار رزونانس با \(i_d(t) \) نمایش داده شود، رابطه آن به‌صورت زیر می‌باشد:

\[i_d(t) = \left(\frac{V_{DC}}{L_i} \right) \left(\frac{N_{source}}{N_{pf}} \right) t + I_i \]

(22)

\[i_q = 2 \cdot \left(\frac{T}{\pi} \right) \left(\frac{N_{source}}{N_{pf}} \sin(\alpha) \right) \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)

\[T \]

(22)

\[i_q \left|_{max} = \frac{T}{\pi} \right. \]

(25)
ولتاز در مدار خشی سازی کیفیت مدار رزنونسان است، پس ترتیب
نریزی موردنظر با استناد این مقادیر آن را انتخاب کنید. بنابراین مقدار
ژر مباسه می‌شود.

\[
\frac{\text{V}_{\text{DC}}}{\text{N}_r} \text{ PRF}
\]

که پایه مدتها نریزی موردنظر با استناد این مقادیر تغییر می‌کند، به طوری که در این مدت انجام خشی سازی کیفیت مدار رزنونسان، این مقادیر متوسط جریان از رابطه

\[
\frac{\text{N}_r \text{L}}{r} \text{ PRF}
\]

عملی پرداخته می‌شود. [5] \]

-پنجاپیم شکل (1) دانشجوی روابط بین آماده مدار

-پنجر واحدی ولتاژ

-پنجاپیم شکل (1) دانشجوی روابط بین آماده مدار

-پنجاپیم شکل (1) دانشجوی روابط بین آماده مدار

-پنجم واحدی ولتاژ

-پنجم واحدی ولتاژ
شکل 3- ترکیب شیب‌سازی رایانه‌ای بالس‌های همزمان مدار خروجی سازی کیفیت مدار رژیم‌های بی‌اموزی‌های آن
سپس بروز خطای در فاکتور مقیاس یا نسبت مقسم می‌شود. پیدایش کرون و اندورکانس داخل مقسم ولتاژ از دیگر عوامل موثر در خطا اندازه‌گیری ولتاژ [4].

در مقسم‌های ولتاژ فاکتور مقیاس کل بایستی با خطای کمتری 2، درصد معلوم و شناخته شود. پاسخ زمانی (T_2) مربوط به یک مقسم، از ولتاژ حاصله وقیم که ورودی به مقسم ولتاژ پلای واحد باشد محاسبه می‌شود. در شکل (1) پاسخ پله‌ای یک مقسم ولتاژ نشان‌داده شده است. پاسخ زمانی (T_2) طبق رابطه (2) از جمع جبری مساحت‌های نشان‌داده شده در شکل (2) محاسبه می‌شود.

\[T_2 = t_1 - t_2 + t_3 - t_4 + t_5 + \ldots \]

در مدار پالس موجود به منظور نمونه‌برداری از ولتاژ و PFN پالس‌های خروجی پالس از مقسوم‌های مقاومتی استفاده شده است. هر چند استفاده از مقسوم‌های دیگر یا نوع خازنی و مقاومتی-خازنی نیز امکان‌پذیر است. اما در این حالت مقدار متوسط سیگنال حذف می‌شود و بنابراین استفاده از مقسوم‌های مقاومتی استفاده شده است [6].

مثلاً برای نمونه‌برداری از پاسخ شکل نمونه‌برداری پیوسته است. در صورت برگر انتخاب کردن آنها از سطح ولتاژ بطور درونی، مشاهده شده. در کلیه شکل موج‌های نشان داده شده در این مقاله توسط از آزمون‌های عملی از مقسوم‌های مقاومتی شامل یک طبقه اندی و چند طبقه برجسته ضرورت استفاده شده است.
\[P_t = \frac{1}{T} L_C \cdot I_p \cdot \sin^2 \alpha \cdot f \quad (30) \]

با توجه به مدار تشان داده شده در شکل (1) در صورتی که مقاومت چرخ پاکخورا بحساب بررسی شده وجود دارد نیاز به تغییر
\[R_{EQ} \] در فرض شور متوسط توان تلفات در آن در طی زمان خاتمی که در نظر گرفته می‌شود

\[P_L = \left[\frac{N_{L} \cdot R_{EQ}}{V_{DC}} \left(1 - \frac{1}{2} \right) - V_{DC} \cdot R_{EQ} \right] f \quad (31) \]

با جایگذاری این در رابطه بالا بررسی پارامترهای مدار رزنانس و درصد ولتاژ شکه، تلفات انرژی بهصورت زیر پیامد می‌شود:

\[P_L = \frac{N_{L} \cdot R_{EQ} \cdot V_{DC}}{2 \cdot V_{DC}} \left(\frac{1}{2} \right) - \frac{V_{DC} \cdot R_{EQ}}{2 \cdot V_{DC}} \quad (32) \]

\[P_t = \frac{1}{T} \int_{0}^{t'} V_{DC} \cdot I_p \cdot \sin \omega t \cdot dt = K \cdot f \cdot V_{DC} \cdot I_p / 2 \quad (29) \]

با توجه به شکل موج جریان چرخ در طی زمان خاتمی که مدار رزنانس متوسط توان برگردانده شده به معنی زیر می‌باشد:

\[\text{شکل ۵- نمایش جریان چرخ شارژ} \]

\[\text{به‌دست می‌آید} \]

\[\text{مراجع در مکانیک قابل قبول است. این مدل‌نویسی برای امکان مکتوبی‌کردن با ولتاژ کار ۱۵ تا ۱۵ کیلو ولت طراحی شده که برای این منظور نیاز به ترانسформر پالس در خروجی آن است. مقادیر اندوکاتر چرخ شارژ برای ۵/۰ متری، امیده‌تولید مشخصه شبکه شامل داده، پلاره ۵۰ اهم، ظرفیت کل خاکستری یک کارته رفعش در اولیه آن آن است. منبع تغییرهای که در این مدل‌نویسی توسط بر قدر فاز ۲/۰ ولت تغییری می‌شود که از طریق اتصالسنجی و ترانس افزایده ولتاژ لازم برای پکسوسازی فرآم و سپس برای یک هش متوسط می‌شود و توسط یک الکتریکی مسئول برای تغییرهای پالس به کار برده می‌شود. جداکردها سطح ولتاژ خروجی منبع تغییرهای پابلار ۷/۵ کیلو ولت مورد محاسبه درصد افزایش راکمند

\[\text{ملاحظه: راکمند با توجه به مقدار متوسط آن‌زی اخذ شده از منبع و انرژی ورودانه شده به معنی احتمال تلفات انرژی در چرخ، تریستورد و ماده‌های استابت و ترانس افزایده انجام می‌شود. با توجه به شکل موج جریان اخذ شده از منبع تغییرهای شکل (5) است و از رابطه زیر به‌دست می‌آید:} \]

\[P_t = \frac{1}{T} \int_{0}^{t'} V_{DC} \cdot I_p \cdot \sin \omega t \cdot dt = K \cdot f \cdot V_{DC} \cdot I_p / 2 \quad (29) \]

با توجه به شکل موج جریان چرخ در طی زمان خاتمی که مدار رزنانس متوسط توان برگردانده شده به معنی زیر می‌باشد:
علائم بر تلاقی بالا بایستی تلاقی سوپریچینگ در هنگام روشن شدن و خاموش شدن تریسترها را از نظر قرار داد با توجه به حداکثر فرکانس مدار که در حدود 800 Hz است و به این نظر گرفته تلاقی در مدار خشک سازی کیفیت مدار رزونانس درصد افزایش راندمان مصرفی زیر محاسبه می‌شود.

\[\Delta \eta = \frac{100}{P_f - P_{loss}} \times \frac{100}{P_f} \times \frac{\Delta P}{P_f} \]

به توجه به مشخصات مدل‌‌بردار موجود درصد افزایش راندمان برای \(K = \frac{V_N}{V_{DC}} \cdot \frac{4}{9} \) محاسبه شده است.

\[P_s = \frac{15}{4} \frac{NLC_l V_{DC}}{f} \]

\[\gamma = \frac{I_n}{I_{DC}} \]

\[11-11 \]
اثری که خلاصه‌هاي آن در رفتار مدار شارژ اجاق شوهد. در نمونه ساخته شده با استفاده از تحقیق شبه‌سازی و از طریق آزمایش چندین مدار ساخته‌شده مدار اصلی طراحی شد.

شکل موج ولتاژ دو سر دیود برگشت انرژی در شکل (7-الف) نشان داده شده است. از آنجاکه در طرح اصلی، نمونه‌برداری از ولتاژ ذخیره دو سر این دیود به علت بالا بودن سطح ولتاژ نامناسب بود، نیاز به ایجاد نمونه‌برداری از یک باطری HVPC و رابطه گنجایش بین ولتاژ ذخیره منبع متفاوتی از یک ایجاد 12 ولتاژ با ناهاره پک ترانس که استفاده شد. همان‌طور که در شکل (7-الف) دیده می‌شود در مدت زمانی که این دیود روشن است ولتاژی در حدود 7/2 ولت در دو سر آن ایجاد خواهد شد و در حالتی که قطع می‌باشد ولتاژ مکوس پرگزی در سر آن قرار خواهد گرفت. به علت وجود جریان‌های زیاد این دیود در مدار پایین بودن سطح جریان دیود به‌کار رفته دانسته شد. خواهد شد که کاهش برای هنگامی که یک مدار پایینی برای تعمیر شده‌باشد مدار و ولتاژ در عملکرد مدار بسیار مهم است و با پایینی به‌صورت دقیق انتخاب شود و به عمل و وجود تغییرات بزرگ در ولتاژ فیلتر کردن موج نمونه‌برداری شده قبل از استفاده آن به مدار مقابله کننده ضروری است.

13- پیشنهادات

در پایان پیشنهاد می‌شود به گزارش سویچ‌های نیمه‌هادی در مدولارها به جای سویچ دیسگار بررسی شده تا حضور با توجه به تغییر هادی‌های مناسب، سطح ولتاژ دیود را نابود ساخته بود. ذخیره سویچ از این دیود به بهبود اتصال شده لاک است طراحی و ساخت ترانسستورهایی پلاسکه با دانسته که آن شرایط سیستم مدار خواهیم داشت که علت آن نشان مدار شارژ ایجاد شده و به هنگامی که
1. pulse modulator
2. radio frequency tune
3. moving target indicator
4. De-Q-ing
5. pulse forming network
6. clamp transformer

مراجع

