Investigation of 3-D Flow in a Chamber

A.R. Azimian and S. Mohammadi vand
Department of Mechanical Engineering, Isfahan University of Technology

ABSTRACT- Information about the flow conditions in a chamber is crucial in air conditioning problems. In conventional methods, the heating or cooling loads of the buildings are estimated through existing charts and no analysis of the flow structure is done. The numerical solution of flow equations provides a complete picture of the flow behaviour. This method requires the prior solution of Navier-Stokes equations. To model the Turbulence behaviour of the flow, the so called k-ε equations are also solved.

The predicted results are comparable with the existing numerical and experimental results and could be used in optimum design of indoor areas.
2- معادله‌های حاکم
برای حل این میدان جریان مغناطیسی از معادله بقا جرم و
معادله‌های مغناطیسی در جهت‌های θ، استفاده می‌شود. همچنین
معادله‌های k استاندارد برای مدل کردن انگشتان به کار می‌رود.
بدیهی است که این معادله‌ها را متسوی‌گیری کرده و جملات
نوشته‌ها را حسب مقادیر متوسط محل می‌کنیم. شکل نهایی
معادله‌ها به صورت است
\[
\frac{\partial}{\partial x_1} \left(\frac{\rho U_1 \phi}{\rho} \right) = \frac{\partial}{\partial x_1} \left(\frac{\rho U_1 \phi}{\rho} \right) + \text{سرعت و فنگ} \]
در این پوشه به دلیل این‌بار بود سرعت جریان زیر تغییرات خنثی

$G = \mu_1 \left\{ \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right\} + \left(\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} \right)^2 \frac{\rho_1}{\rho} \left(\frac{\partial \rho_1}{\partial x} + \frac{\partial \rho_1}{\partial y} + \frac{\partial \rho_1}{\partial z} \right) \}
\]
\[\mu_{\text{eff}} = \mu_1 + \mu \]
\[\mu_1 = \frac{k}{\rho} \]

3- روش حل معادله‌های جریان و شرایط مرزی
پس از تشکیل معادله‌های دیفرانسیل به معادله‌های جریان ساده، این
معادله‌ها به هم ویاگانه‌ای از رویه‌های تکراری حل شوند. در
اینجا از روش گوس - سایدل خط به هم انتساب کرده می‌شود که
سرعت همگرایی آن زیاد است. همگرایی در حالت ویژه حاصل
که برخی از آنها تجربی، پاره‌ای حل تحلیلی و تعدادی هم بررسی
عددی‌اند و در انجا به بعضاً از آنها اشاره می‌شود. در تاریخچه
بررسی حل عددی جریان‌های سی سه‌ای بکار رفته‌است. حاضر
یانت نظر و اسپیالی‌ها [1] است. در این حالت فرض شده که یک
جهت غلبه جریان وجود دارد و هیچ جریان برگشتی ایجاد
نیست و به دلیل عدم برگشت داده کار. تکنیک‌های [1] در
کار می‌دهد و بررسی جریان آرام در لایه مرزی ممکن
بررسی می‌شود. درکار دیگری لاندر و اسپیالی‌ها [2] برای حل جریان‌های
معگوش مدل دو معادله‌های k استاندارد را آرا به کردند. پرانت و
اسپیالی‌ها [2] جریان سیال و انتقال گرمایی در جریان‌های به
داخل ماسه را بررسی کردند. این بررسی شامل مواردی بود که
جریان‌های با تغییر سه‌بعدی را در یک میکروپدیده رود که
روش روش کار برای این اولیک احتمال برگشت جریان وجود دارد
رای به صورت پیوستی به جریان با استفاده می‌کنند. در
وانکا [4] روش چند شبکه برای پیش‌بینی گراینهای
دو و سه بعدی در حالات دام و آزمی‌اندازی کرده و سرعت جریان
حاصل از سرعت همگرایی ناشی از تغییر شبکه را نشان داد.
کریشی و فنگ [5] تحقیق جامعی را در مورد جریان‌های سه بعدی
داخلی با استفاده از مدلهای انتخابی ارائه دادند و جریان‌های با
هندها و مختلف برای شیب سابقه مصالحی مورد تهیه
مطبوع را بررسی کردند. در بررسی خاص برای حل معادله‌های
ناتوان استوکس سه بعدی در حالات مغناطیسی در داخل یک فضای
سه بعدی و با تغییر داده تغییر کاملاً سه بعدی برای جریان
سیال به طوری که هرگونه جریان برگشتی نیز در آن قابل پیش‌بینی
باشد می‌توان تصویر کامل و جامعی از رفتار جریان‌های هورودی
به یک اثربخش منجر تفاه نمود. بررسی جریان‌های غلاف و نواحی
تشکیل گردیده‌ها و تغییر آن در است. تأثیر چینین بررسی مکمل
شایانی‌ها در استفاده مطلوب و بهینه از فضایی مورد نظر می‌گذرد.
به طوری که اگر به‌خواهیم در آن فضا و سیال‌های قرار داشت، به مورد
جریان‌ها قرار داشت که فضای نخست یا خشک جریان در یک
به راحتی آن محل را مکانیابی کرد.
جدول ۱

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(\Gamma_\phi)</th>
<th>(S_\phi)</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

\[u = \mu_{\text{eff}} \left(\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu_{\text{eff}} \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu_{\text{eff}} \frac{\partial w}{\partial z} \right) \right) \]

\[v = \mu_{\text{eff}} \left(\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \left(\mu_{\text{eff}} \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu_{\text{eff}} \frac{\partial w}{\partial y} \right) \right) \]

\[w = \mu_{\text{eff}} \left(\frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial z} \right) + \frac{\partial}{\partial y} \left(\mu_{\text{eff}} \frac{\partial v}{\partial z} \right) + \frac{\partial}{\partial z} \left(\mu_{\text{eff}} \frac{\partial w}{\partial z} \right) \right) \]

\[k = \frac{\mu_{\text{eff}}}{\sigma_k} \]

\[\varepsilon = \frac{\mu_{\text{eff}}}{\sigma_e} \left(\frac{k}{c_\mu} (c_{\varepsilon G} - c_{\varepsilon \rho \varepsilon}) \right) \]

\[\begin{array}{c|c|c|c|c|c|c}
| c_\mu & c_{\varepsilon G} & c_{\varepsilon \rho \varepsilon} & \sigma_k & \sigma_e |
|---|---|---|---|---|
| /\varepsilon & 1/\varepsilon & 1/\varepsilon & 1/\varepsilon & 1/\varepsilon |
\end{array} \]

روی داده‌های تجربی تخمین می‌زنند. در اینجا از نتایج تجربی
کاتور [۶] استفاده می‌شود. شرط مرزی خروجی با فرض جریان
توسعه یافته، گرادیان صفر است. برای جریان توسعه پایه آن
قد از میدان جریان اصلی فاصله گرفته که تأثیر شرایط موجود
بر روی جریان خروجی به ححد قابل صرف نظر قرنده است. برای آن
حالت شکل و فیزیک مثلثه باید قابلیت ایجاد جریان توسعه یافته
را داشته باشد. برای مثال مساحت و زمان کافی در اختیار جریان
باشد. نتایج بدون مواجه شدن با مواد و تغییر جریان به حالت
توسعه یافته نشان می‌دهد که با ادامه شبکه در خروجی این کار عملی

\[\frac{\partial \phi}{\partial \eta} = 0 \] \((5) \)

می‌شود که مجهول محاسبه شده در دو تکرار مختلف به عدد ثابتی
رسیده باشد. بنابراین تفاوت نسبی مجهول در دو تکرار تساوی
دو طرف معادله می‌تواند معیار همخوانی باشد. برای افزایش
سرعت همگرایی قبل از محاسبه مجهولت در هر تکرار، ضریبی از
مجهولت در معادله‌های حاکم قرار می‌گیرد و سپس معمولاً حل
می‌شود شرایط مرزی مختلف به کار رفته شامل ورودی جریان،
خروجی جریان و دیوار صلب اند.

در ورودی کلی اطلاعات و مشخصات سیال باید معلوم باشند،
این اطلاعات شامل پرتوی سرعت، انرژی اغتشاشی و خواص
اولیه سیال اند. در این پرتوی پرتوی ورودی سرعت یکتایی
فرض می‌شود ولی جهت آن می‌تواند متغیر باشد. افزایش اغتشاش
k

\[\frac{\partial \phi}{\partial \eta} = 0 \] \((5) \)

و تا اتفاق آن که مقدار ورودی آنها معمولاً معلوم نیستند را از

استقلال، سال ۱۸، شماره ۲، فصل ۱۳۷۸

193
که در آن ϕ متغیر مجهول و η جهت خروج جریان است. اعمال شرط مرزی بروی دیوار صلب برای معادله‌های مختلط به صورت منتفاقی است. بر روی دیوار صلب تمام مولفه‌های سرعت صفر هستند.

4- نتایج

برنامه را برای هندسه‌های مختلف اجرا کرده و نتایج آن را با کارهای تجربی و عددي با حذف ای که اطلاعات مربوط به درستی بود مقایسه کرده‌ایم. این هندسه، انتخاب است به ابعاد $200 \times 200 \times 200$ (دیگری هروی و خروجی یکسان) که به ترتیب در وسط سقف و پایین دیوار عمومی قرار دارد که جهت تجربی و عددي آن در مرجع $[A]$ اراط شده است. برای به دست آوردن نتایج تجربی همان گونه که در مرجع $[A]$ آمده است انتخاب ابعاد کافی با صفحات چربی توسط ساکانتو ساخته شده و سرعت متوسط و توزیع چند کمیت از آن با دانست اولتراووکات گرفته شدند. نتایج برنامه حاصل در نتایج عددي و تجربی $[A]$ تطبیق خوبی را نشان می‌دهند که به عنوان محدودت صفحات مثال از آنها خودداری می‌شود. پس از مقایسه نتایج حاصل از اجرای برنامه، با نتایج مرجع $[A]$ و کسب آگاهی از صحت برنامه را برای هندسه‌های جدید اجرا کرده‌ایم.

دریچه ورودی به ابعاد $0.024\times0.076\times0.076$ (دیگری هروی و خروجی یکسان) که به ترتیب در صفحات 7 و 8 قرار دارد. ورودی هوا از دریچه ورودی یا سرعت برایند (با 0.0196 (م) به 0.012 و 0.03 در $w=3$ و $w=6$ است. میدان جریان را به صورت بردار سرعت استخراج دچره و عنوان تهمت در صفحات (x- دیگری) و (x- دیگری) به دو روش معکوس و روش معکوس است. نتایج مشابه در این تحقیقات و روش متفاوت داشته شده است. در این شکل هرچنین هجوم جریان برای پیش‌بینی به توجه ورودی هوا قابل تشخیص است.
شکل ۱- بردارهای سرعت در صفحه $z-x$

شکل (۲-ب) با $x = \frac{5333(m)}{5/6}$ وسط دریچه ورودی انتخاب شده است. ملاحظه کنید که در این صفحه در این مقطع دقیقاً شکل شده است. شکل (۲-ج) با $x = \frac{5/6}{m}$ که از دریچه ورودی عبور کرده و به وضوح و کامل قابل ملاحظه است. گردابهایی که در گوشته بسته چپ پایین در حال شکل‌گیری است با گردابهایی که در همین محل در شکل‌های (۲-الف) و (۲-ب) ملاحظه می‌شدا تفاوت دارد. علت تشکیل این گردابهای جدید وجود به گوشته بسته چپی در این مقطع از جریان از عنبر نکنه و با بازگشت خود این گردابه را به وجود می‌آورد. این گردابه در شکل (۲-ب) با $x = \frac{2/3}{m}$ کامل شده است. در این شکل همچنان حرکت منظم جریان در امتیاز گردابه و وجود دارد که گوشته بیشتر سمت چپ هم تحت تأثیر گردابه‌ای یا بیشتر قرار گرفته است. در شکل‌های (۲-ب) و (۲-ج) گریان هنوز تمام به حفظ گردابه را دارد ولی با تغییر شدت به مقطع دریچه با چپی در این مقطع این گردابه را به درون انتخاب شده به دوباره شرکتی قابل ملاحظه است. از این رو برخورد جریان که از یک دوبار شرکتی تا این مقطع در شکل (۲-ب) و (۲-ج) دارای آرایشی مانند شکل (۳-ب) است.

شمالی بر اثر مکش گردابه سمت راست، در دوباره تحت‌تنایی به علت
شکل 2- پدیده‌ای سرعت در صفحه $x-y$

شکل 3- پدیده‌ای سرعت در صفحه $y-z$
جایی جایی لازم در موقعیت دریچه‌ها، تغییر جهت و یا سرعت جریان و غیره... اثرات آنها بر روی میدان جریان بررسی کرد. در هر حال از نتایج چنین تحلیلی می‌توان در بهتر تهیه کردن انفجار کار، نشیمن، خواب، کارگاه‌های کوچک و بزرگ و یا درگیر فضاها به بهترین وجه ممکن استفاده کرد.

1. partially - parabolic

