ادغام وفقی تصمیمات در شبکه‌های آشکارسازی

قاسم میرجلیلی، محمد رضا عارف، محمد مهدی نایبی و مسعود تهریزی
دانشگاه مهندسی برق دانشگاه صنعتی خواجه نصیرالدین طوسی
دانشکده مهندسی، دانشگاه تربیت مدرس
دانشگاه مهندسی برق، دانشگاه صنعتی شریف
(دریافت مقال: ۱۲/۹/۷۷- دریافت نسخه نهایی: ۲۲/۹/۷۷)

چکیده - در شبکه‌های آشکارسازی با ادغام مناسب تصمیمات محیط آشکارسازی، تصمیم‌گیری بهینه می‌شود. بهینه‌ی تصمیمات به گونه‌ای است که احتمال طلا در تصمیم‌گیری بهینه کمینه شود. برای تحقیق بیان‌داده‌ای ادغام بهینه کارایی هر آشکارسازی را احتمال طلا در تصمیم‌گیری بهینه با هم می‌آوریم. در این مقاله، در عمل می‌کنیم است این آمارگرهای نامعلوم به یک مقدار بازگرهای روش‌های واقعی توصیف می‌شوند. در این مقاله یک روش بازگشتی برای تحقیق مکان توافق از این روش‌ها بر می‌گردد. از طرفی این روش‌ها بر نتایج پیشنهادی مطابقتی دارند.

Adaptive Decision Fusion in Detection Networks

G. Mirjally, M. R. Aref, M. M. Nayebi and M. Kahrizi

Department of Electrical Engineering, K. N. Toosi University of Technology
Department of Electrical Engineering, Tarbiat Modarres University
Department of Electrical Engineering, Sharif University of Technology

ABSTRACT - In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement an optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. However, these statistics are usually unknown or may vary with time. In this paper, we develop a recursive algorithm that adapts the fusion center. This approach is based on the time-averaging of local decisions and on using the analytic solutions that guarantee the asymptotic convergence. Also a simple method is proposed that enables the algorithm to track changes faster. Simulation results are presented to demonstrate the efficiency and convergence properties of the algorithm.

استناد

- استاد
- دانشیار
- استاد
- استاد

استقلال، سال ۱۳۷۹، شماره ۱، شهریور
به پایه‌ای همانند مشاهده‌های مختلف چندگانگی

اثر عملیات استفاده از روشهای چندگانگی زمانی که فراوانی در گرده‌های لمبافتی و به ویژه در سیستم‌های مربوط به رادار و سوانح بیشتر متفاوت است، تغییر در نکاتی از سیستم‌های آشکارسازی چندگانگی می‌کنند انتسابه‌های موجود، تنها در این روش،

چندین گردیدن با موجودیت جغرافیایی متواوست یک ناحیه مشترک از مشاهده‌های مشاهده‌های خود را از طریق خطوط ارتباطی به یک پردازنده مركب (رمز ایده‌ای) ارسال می‌کند که در آنجا پر اساس مشاهده‌های پردازشی مشاهده‌ها، آشکارسازی متمایز گردیده، در این روش برای رسیدن به یک مشاهده نیاز به کانال‌ها با بهره‌گیری از پادکست زیادی دارد که در برخی از موارد در ساختار مورد یا می‌تواند در ساختار مشابه و از دست داده‌های داده‌های استفاده برای این مشاهده، خاطرات کانال‌ها را بین در دو چرخه‌ای سیستم‌های مشابه،

میان مشاهده‌ها، باعث می‌شود تا اینگونه به‌عنوان یکی از مسایل مهم تحقیقاتی

به وقوع فرضیه، باعث می‌شود. بیان‌گری در مقابل صورت نوع دوم آشکارسازی می‌باشد. [1] در این مورد می‌تواند مشکلاتی از دهه 80 میلادی بی‌ثباتی آشکارسازی توزیعی و استفاده از چگونه‌ای آشکارسازی به عنوان یکی از مسایل مهم تحقیقاتی
مطرح شد [3-6]. در این روش، هر گروه‌ده همچنین یک آشکارساز محلی عمل می‌کند. به عبارت دیگر هر گروه‌ده با توجه به مشاهدات خود، یکی از دو فرضیه ممکن را تایید کرده و نتیجه را یک تصمیم دوگانه است، ارسال می‌کند. از انتخاب آشکارسازی توزیعي می‌توان به مواردی از قبیل: اندازه‌گیری‌های برای افزایش قابلیت اطمینان، افزایش سرعت آشکارسازی، مقاومت در برابر محوش‌گری، افزایش قابلیت اطمینان و تغییر آرایش امکان آشکارسازی و روشی چندین سیگنال و امکان استفاده از آشکارسازی‌ها به کامل‌ترین میزان این اشتراک‌ها که که در مصرف‌ها با توجه به مشاهده دریافتی این و با یک احتمال مشترک و یک احتمال آشکارسازی مشخص، تصمیمی تکمیل و توییت می‌کند. هدف اصلی، به دست آوردن پراوردی از احتمالات خلاصه‌ی هر یک از آشکارسازهای برای تحت‌تعقیب یک مزد زدن اطلاعات در مورد ماهیت مشاهده‌ها و یا احتمال آشکارسازهای ناجا می‌شود.

در ادامه، فرض استقلال شرطی مشاهده‌ها آشکارسازها تحت

dو در فرضیه را می‌پذیرم. به عبارت دیگر:

\[f(y_1, y_2, \ldots, y_N | H_1) = \prod_{j=1}^{N} f(y_j | H_1) \quad \text{for } i=0,1 \]

که در آن \(f = 0 \) همگی احتمال احتمال شرطی و \(N \) تعداد آشکارسازهای محلی است. همچنین می‌توانیم حداکثر خطا به

شکل 1 - ساختار یک شبکه آشکارسازی

در یک شبکه آشکارسازی، آشکارسازی به طور موازی به مزد

\[u_i \]

در یک شبکه آشکارسازی به طور موازی به مزد

\[u_i \]

در صورت انتقال و جویی سیگنال 1 و در غیر این صورت 0.1379

استقلال، سال 19، شماره 1، شهروند 1379
\[w_{j_0} = \log \left(\frac{P_{m_j}}{1 - P_{f_j}} \right) \quad j = 1, \ldots, N \]

در اینجا \(P_{m_j} \) و \(P_{f_j} \) به ترتیب احتمال هشدار غلط و احتمال از دست دادن آشکارسازی در زمان آشکارسازی نشان می‌دهد. نهایتاً می‌توان این مقدار را به عنوان میانگین از حاصل جمع وزن‌های تابعی \(w_{j_0} \) و \(w_{j_0} \) را به عنوان میانگین احتمالات خطاهای مربوط به این دو عامل به‌شمار آورد. همچنین \(P_{m_j} \) و \(P_{f_j} \) وزن تابع \(w_{j_0} \) تابعی از احتمالات پیشین فرضیه‌هاست. بنابراین پیشینه می‌تواند برای یک مرکز ادعای بی‌پوشی، احتمال پیشین هریک از فرضیه‌ها و همچنین احتمال از دست دادن آشکارسازی غلط که با یک مجموعه آمارگر مشاهده‌ای در حالت لازم به جمع‌بندی تایید یک‌شانه‌ای مطرح می‌شود. لازم به ذکر است که در حالت کلی، آشکارسازی آرایه شده یا در آن آشکارسازی‌گر است ممکن است اگر آنگونه شکوه پیش‌بینی شده باشد [1] با استفاده از روش‌های مکانیکی می‌توان تعداد تقریباً آشکارسازی‌ها را برای بررسی می‌تواند با یک کارایی مشخص، تعیین کرد. بنابراین در [2] برای مدل خاصی از سیگنال و نویز، منحنی‌های آرایه شده که کارایی شبکه‌ها را بررسی می‌تواند آشکارسازی‌ها نشان دهد.

\[P_{e} = P(0 \mid H_0)P_0 + P(1 \mid H_1)P_1 \]

که در آن \(P_0 \) احتمال پیشین فرضیه \(H_0 \) و \(P_1 \) احتمال نهایی است. در یک بخش بعدی ضمن معرفی، قاعده ادعای بی‌پوشی به منشأ وجود یافته تحقیق آن بررسی شده و لزوم به کارگیری روش‌های وقیف مورد تأکید قرار می‌گیرد. همچنین کارایی انجام شده در این زمینه معرفی می‌شود. بنابراین 21 پنج این ایجاد (اساسی، هدف‌گذاری، مورد نظر برای شبکه‌های تاپ، آشکارساز مقاله ارائه شده و تجربی) شبیه‌سازی‌های مورد انتظار قرار می‌گیرد. در بخش 4 راه‌حل برای نتایجی سرعت تطبیق الگوریتم ارائه شده و در بخش 5 ترویج ترمینال این الگوریتم به حالت کلی توضیح داده می‌شود. در بخش 6 پس از جمع‌بندی تایید، پیشنهاداتی مطرح می‌شود. لازم به ذکر است که در حالت کلی الگوریتم ارائه شده برای شبکه‌ها با الگوریسم مناسب به‌آموزش آگاهی شکوه و نسبت خاصی داشته باشد [2] با استفاده از روش‌های مکانیکی می‌توان تعداد تقریباً آشکارسازی‌ها را برای بررسی می‌تواند با یک کارایی مشخص، تعیین کرد. بنابراین در [2] برای مدل خاصی از سیگنال و نویز، منحنی‌های آرایه شده که کارایی شبکه‌ها را بررسی می‌تواند آشکارسازی‌ها نشان دهد.

\[u_0 = \begin{cases} 1, & \text{if } w_{j_0} + \sum_{j=1}^{N} w_{j_1} + (1 - u_0)w_{j_0} > 0 \\ 0, & \text{otherwise} \end{cases} \]

\[w_{j_0} = \log \left(\frac{P_{m_j}}{P_{f_j}} \right) \quad j = 1, \ldots, N \]

\[w_{j_1} = \log \left(\frac{1 - P_{m_j}}{P_{f_j}} \right) \quad j = 1, \ldots, N \]
معادله کمیته‌های مورد نظر را محاسبه می‌کنیم. در اینجا سه تصمیم‌گیری دو دویی و در نتیجه حالت مختلف وجود دارد. فرض کنید $u_1 = i, u_2 = j, u_3 = k$ باشد. با P_{ijk} نشان دهنده احتمال وقوع (9) در نتیجه استقلال شرطی تصمیمات محیطی داریم:

$$P_{ijk} = P(u_1 = i, u_2 = j, u_3 = k) = P(u_1 = i | H_1)P(u_2 = j | H_1)P(u_3 = k | H_1)P_1 + P(u_1 = i | H_0)P(u_2 = j | H_0)P(u_3 = k | H_0)(1 - P_1)$$

که در آن:

$$P(u_1 = i | H_1) = \begin{cases} 1 - P_{mi} & \text{if } i = 1 \\ P_{mi} & \text{if } i = 0 \end{cases}$$

$$P(u_1 = i | H_0) = \begin{cases} P_{fi} & \text{if } i = 1 \\ 1 - P_{fi} & \text{if } i = 0 \end{cases}$$

همانطور که دیده می‌شوید، احتمال وقوع هر حالت تابعی از مجموعه متغیر نامعلوم P_{mi} و P_{fi}، P_1 و P_2 می‌باشد. استفاده از طریقی استقلال معادله به شکل (9) داریم که فقط هفت تای آنها استقلال جبری دارند.

$$\Sigma^1_{i=0} \Sigma^1_{j=0} P_{ijk} = 1$$

در نتیجه دستگاهی مشتمل به هفت معادله غیرخطی مستقل و هفت متغیر داریم که با حل آن می‌توان نمادین‌های نامعلوم را پربررسی کردیم. حال این دستگاه‌های پیچیده‌ای است. با ترکیب جبری معادله‌های استقلال، به‌دست می‌آید معادله‌ها زیر را دست آورده‌ایم:

$$P(u_1 = 1) = (1 - P_{mi})P_1 + P_{fi}(1 - P_1)$$

$$P(u_1 = 1, u_2 = 1) = (1 - P_{mi})(1 - P_{mj})P_1 + P_{fi}P_{fj}(1 - P_1)$$

$$P(u_1 = 1, u_2 = 1, u_3 = 1) = (1 - P_{mi})(1 - P_{mj})(1 - P_{mk})P_1 + P_{fi}P_{fj}P_{fk}(1 - P_1)$$

برای دو دویی نماده‌های زیر را تعریف می‌کنیم:

$$\gamma_i = P(u_1 = 1)$$

$$\delta_{ij} = P(u_1 = 1, u_2 = 1)$$

3- ادغام وقایع تصمیمات در شیکاگو با سه آنکارساز

3-1- توصیف اگوریتم یک شبکه تصمیم‌گیری با سه آنکارساز محیطی را در نظر بگیرید.

هر آنکارساز از یک قاعده تصمیم‌گیری محیطی ارائه می‌کند. هدف، به دست آوردن پاسخ مناسب از انتخابات حالت داده‌ها بوده است، به همین‌نامعلوم P_1، P_2 و P_3 است. این مقدار را P_0 به دست آوردیم:

$$P_0 = P_{1-1}$$

برای انتخاب این کار ابتدا با روش از احتمال وقوع هو تشکیل توصیف کنیم و احتمالات مشترک آنها را به دست آورده و سپس به اساس تعهدات:

$$
\text{استدل، سال 19، شماره 1، شهریور 1379}
$$
با حل معادله‌های (13-الف) تا (13-ج) به طور همزمان و هدف جواب‌های نادرست و با توجه به نمادهای تعريفاً شده، جواب پیکتی زیر برای کمیته‌ای نامعلوم به دست می‌آید:

\[
P_i = 0.5 - \frac{X}{2 \sqrt{X^2 + 4}} \quad \text{(15)}
\]

\[
P_i = \gamma_i - \frac{P_i}{\sqrt{1 - P_i}} a_i \quad \text{(16)}
\]

\[
P_{ml} = 1 - \gamma_i - \frac{1}{\sqrt{P_i}} \quad \text{(17)}
\]

که در آن:

\[
X = \frac{(\gamma_i + 2P_i - \gamma_i P_{ml}) - (\gamma_i P_{ml} - \gamma_i P_k) + \frac{1}{2} P_{ml} + \frac{1}{2} P_k}{(\frac{1}{2} P_{ml} + \frac{1}{2} P_k) + \gamma_i + 2P_i - \gamma_i P_{ml}} \quad \text{(18)}
\]

\[
a_i = \frac{\frac{1}{2} P_{ml} + \frac{1}{2} P_k}{(\gamma_i - \gamma_i P_{ml})} \quad \text{(19)}
\]

\[
a_2 = \frac{\frac{1}{2} P_{ml} + \frac{1}{2} P_k}{(\gamma_i - \gamma_i P_{ml})} \quad \text{(20)}
\]

\[
a_3 = \frac{\frac{1}{2} P_{ml} + \frac{1}{2} P_k}{(\gamma_i - \gamma_i P_{ml})} \quad \text{(21)}
\]

بنابراین تمام کمیته‌ای نامعلوم را می‌توان به طور یکتا با دانست احتمالات \(\gamma_i \) و \(\gamma_i P_{ml} \) به دست آورد.

از طرفی بر اساس نظریه تقسیم‌بندی افتاقی \(\gamma_i P_{ml} \) می‌توان با توجه به احتمالات اخیر و توسط متوسط‌گری زمانی از تصمیمات محلی به دست آورد [15]. اگر \(\gamma_i P_{ml} \) دانسته‌باشد، \(\gamma_i P_k \) در لحظه \(k \) پایدار می‌باشد.

دیگر:

\[
(\gamma_i P_{ml}) = \frac{1}{k} \sum_{j=1}^{k} u_j \quad \text{(22)}
\]

که در آن \(u_j \) تایم‌بندی آن‌ها با برگردی توی معادله‌ای می‌توان با را به صورت بازگشتی نیز توصیف کرد:

\[
(\gamma_i P_k) = \frac{1}{k} u_k + \frac{k-1}{k} \gamma_i \quad \text{(23)}
\]

استناد، سال 19، شماره 1، شهریور 1379
کرده، در این صورت انتخاب مقادیر آماری می‌تواند ضریب به‌وجود بود.

احتمال انتخاب مقادیر آماری می‌تواند ضریب به‌وجود بود.

به همین ترتیب مشکلی نشان داده که:

\[E(\delta_i^k) = \frac{1}{k} \delta_i \]

\[Var(\delta_i^k) = \frac{1}{k} \delta_i (1-\delta_i) \]

\[E(\gamma^0) = \gamma \]

\[Var(\gamma^0) = \frac{1}{k} \gamma^0 (1-\gamma^0) \]

با توجه به این دو خصایص، باوردهای \(\delta_i \) و \(\gamma \) سازگار بوده و به طور مجانی به مقادیر واقع گامی \(\delta_i \) و \(\gamma \) همگرا می‌شوند.

(همگرايی انتقا (17)]. برای اساس و باید توجه به لینک طبق معادله‌های (15) تا (21) یک ارتباط یک به یک بین مقادیر \(\delta_i \) و \(\gamma \) و مقدار \(P_{m_{1}} \) و \(P_{m_{2}} \) و \(P_{m_{3}} \) و \(P_{m_{4}} \) و \(P_{m_{5}} \) و \(P_{m_{6}} \) و \(P_{m_{7}} \) و \(P_{m_{8}} \) و \(P_{m_{9}} \) و \(P_{m_{10}} \) و \(P_{m_{11}} \) این اساس و در نهایت با توجه به معادله‌های (6) تا (7)، همگرايی تصادفی و نزدیکی مقدار ادامه ایل می‌شود.

3-2- نتایج شیب‌سازی

در این قسمت، نتایج شیب‌سازی راک نمایانگر کارایی الگوریتم پیشنهادی است بررسی می‌شود. برای انجام شیب‌سازی یک شیبی که به آن کاربرد آن‌ها است، نتایج و مقدار ادامه ایل می‌شود.

\[P_{1}=0.6, P_{f_{1}}=0.09, P_{f_{2}}=0.06, P_{f_{3}}=0.03, \]

\[P_{m_{1}}=0.02, P_{m_{2}}=0.05, P_{m_{3}}=0.08 \]

همچنین مقادیر اولیه \(\theta_{0}, \theta_{1}, \delta_{i}, \gamma \) برای \(P_{f} \) انتخاب شده است.

واتح است که مقدار اولیه \(P_{f} \) باید اطمینان داشته که همگن جدیدی و سازگار باشد. اطمینان داشته که همگن جدیدی و سازگار باشد. در علوم مولکولی می‌توان بازمودن برای این مقادیر در نظر گرفت و حذف آنها را تعیین نکرد.
ب - همگرایی احتمالات خطای آشکارسازها

ج - همگرایی در وزن از وزن‌های مرکز ادامه به طور نمونه

د - همگرایی متوسط احتمال خطای نهایی

پیوسته تغییر می‌کند؛ در نتیجه ممکن است وزن‌ها تغییر کنند بدون آنکه قاعده‌ای موضع شود. به عبارت دیگر حساب‌سازی مرکز ادامه بهینه به وجود انحراف در وزن‌ها نسبت به مقدار واقعی‌اند کم است، در نتیجه همگرایی احتمال خطای سرعت از نظر وزن‌ها است.

۴ - افزایش سرعت تطبیق الگوریتم

برای بررسی سرعت پاسخ سیستم به تغییرات، مقدار P_1 را در شیب‌سازی بالا و در ۱۰۰۰۰ امین تکرار از $\frac{6}{7}$ به $\frac{4}{5}$ افزایش

۸

استناد، ماه ۱۴، شماره ۱، شهریور ۱۳۷۹
پ - تغییر P_1 اثر تغییر بر همگراپی احتمالات خطی آشکارسازها نداشته است.

الف - همگراپی آمیخته P_1

د - بزرگ شده تقسمی از شکل (3-ج)

ج - همگراپی آمیخته یا یک شبکه ایجاد گردید است.

شکل 3- همگراپی آمیخته کمیته در شبکه‌ای با سه آشکارساز وکی که P_1 تغییر کرده است.

به طوری که در معادله‌های (3) و (4) مقدار k مجدداً از 1 شروع به افزایش کند. به منظور انجام این کار به فرآیند برای کشف تغییرات نیاز است. در ادامه جزئیات این فرآیند را توضیح می‌دهیم. شاخص دیگری که باید در نظر گرفته شود، تأثیر ناشی از تغییر یک کمیت بر همگراپی سایر کمیته‌هاست. شکل (3-ب) نشان می‌دهد که تغییر P_1 اثر قابل توجهی بر پراوردگی و آمیختگی با دارد در این قسمت، روشن بی‌سیار ساده و اینکاری برای کشف تغییرات احتمالی در آمارگان ارائه می‌شود. این روشنی به ما کمک می‌کند تا سرعت پاسخ سیستم را افزایش دهیم. معادله (3-ج) نشان می‌دهد که P_1 تابعی از تمام احتمالات مورد نظر (P_1، P_1) است، بنابراین هرگونه تغییر در یکی از این احتمالات بر P_1 مقدار P_1 بر پراوردگی P_1 آمیختگی به عنوان مثال، شکل (3-ج) نشان می‌دهد تغییر P_1 وقتی که P_1 افزایش یافته است، همان طور که در شکل (3-د) دیده می‌شود، تغییر آمیختگی P_1 یک شبکه ایجاد گردید است. بنابراین اگر بنوان به نحوی وجود اینگونه شبیه را در منحنی P_1 کشف کرده، در واقع می‌توان یک به
این کلمات را در زیر می‌پیماید:

فرآیند کشف تغییرات و راه‌اندازی مجدد بر او را به‌دست می‌آورد.

قدم اولیه:

* شماره‌نامه را صفر کنید. مقدار مشابه برای T و R و G انتخاب کنید.

و گام‌های زیر را از R، دفعه تکرار الگوریتم اصلی (بخش 3-1) اجرای کنید.

* قدم‌های اصلی:

الف) اگر مقدار خالی مقدار قبلی آن پرگرایش شماره‌نامه افزایش و در صورتی که از مقدار قبلی آن کوچکتر است، شماره‌نامه را افزایش دهید.

ب) اگر مقدار خالی مقدار قبلی آن پرگرایش شماره‌نامه افزایش و در صورتی که از مقدار قبلی آن کوچکتر است، شماره‌نامه را کاهش دهید.

ت) اگر مقدار خالی مقدار قبلی آن پرگرایش شماره‌نامه افزایش و در صورتی که از مقدار قبلی آن کوچکتر است، شماره‌نامه را کاهش دهید.

ج) اگر مقدار خالی مقدار قبلی آن پرگرایش شماره‌نامه افزایش و در صورتی که از مقدار قبلی آن کوچکتر است، شماره‌نامه را کاهش دهید.

شکل (4) نتایج حاصل از کاربرد فراوانی با شیب‌سازی قبلی را به‌صورت پایه سیستم شناسی می‌دهد. در این شیب‌سازی با هر نمونه شیب‌سازی با چنین شیب‌سازی و با احتمالات

- 5 تکمیل الگوریتم به حالت کلی

در این بخش مسئله ادامه و فتقی تصمیمات در شیب‌سازی با شیب‌سازی در نظر گرفته می‌شود. در این حالت تعداد کمپیوتر

(1) نامعلوم (2N+1) است: Pmi و Pfi تابعی به یک مقدار

تویت شده‌اند. ممکن است که برای به‌دست آوردن این کمپیوتر دستیکم به (1) (2N+1) معادله جبری نیاز است. از معادله‌های (13-12-ب) و (12-ب) داریم:

\[P_{ij} = \frac{P_{0i} \delta_{ij} + P_{0f} P_{fi} \gamma_{ij} - \gamma_{ij} P_{0}}{(1 - \gamma_{ij}) P_{0}} \]

\[P_{mj} = 1 - \frac{P_{0i} \delta_{ij} - \gamma_{ij} P_{0}}{(1 - \gamma_{ij}) P_{0}} \]
در یک شبکه آشکارسازی برای تحقق مرکز ادغام بشینه، باید احتمالات خطای آشکارسازها و احتمال پیشین مربوط به فرضیه‌ها معلوم باشند. در عمل ممکن است این مقادیر نامعلوم و یا متغیر باشند. تحت چنین شرایطی و برای روش بسیاری از کاربردهای بیشتر، استفاده از روش‌های و فتق پیشنهاد می‌شود. در این مقاله، یک روش پذیرش
ب - همگرایی احتمال مشترک عقل آشکارسازها

الف - همگرایی P_1 و W_0

د - همگرایی احتمال خطای نهایی

ج - همگرایی احتمال از دست دادن آشکارسازی در آشکارسازها

شکل 5 - همگرایی کمیتهای مورد نظر در شبکه‌های با پنج آشکارساز و احتمالات مفروض در پخش 5

زاوردیکا سومهند. بسته کورنیم ارائه شده به معیار پهپنگ‌پی از w_0
سرعت است زیرا تناها چجوی که تفاوت می‌کند و نشان ثابت
است. می‌توان نشان داد که در این حالت [20]:

$$w_0 = \log \frac{p_1(c_{01} - c_{11})}{p_0(c_{10} - c_{00})}$$

(34)

که در آن r_0 مقیاس زبان ناشی از تأیید فرضیه H_0 است و تابع p_1 برقرار است. به قطع این مورد کورنیم عملاً واقعاً فرضیه H_0 برقرار است. به عبارت دیگر، نیز وجود دارد که هر کدام از دسته‌ای از
تحلیل جای کار دارد.

۱. نایبی، م.م، "آشنایی با رادار". دانشگاه تربیت مدرس، ۱۳۷۲.

۲. مریجی، ف. "آشنایی با رادار". دانشگاه تربیت مدرس، ۱۳۷۸.

۳. مریجی، ف. "آشنایی با رادار". دانشگاه تربیت مدرس، ۱۳۷۸.

<table>
<thead>
<tr>
<th>مرجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱. نایبی، م.م. "آشنایی با رادار". دانشگاه تربیت مدرس، ۱۳۷۲</td>
</tr>
<tr>
<td>۲. مریجی، ف. "آشنایی با رادار". دانشگاه تربیت مدرس، ۱۳۷۸</td>
</tr>
<tr>
<td>۳. مریجی، ف. "آشنایی با رادار". دانشگاه تربیت مدرس، ۱۳۷۸</td>
</tr>
</tbody>
</table>

