شناسایی سیستم‌های خطی بر مبنای پاسخ فرکانسی نویزی آنها

مسعود سبحانی* و احمدضا تاشی*

دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
پژوهشکده علوم و تکنولوژی زیری، دانشگاه صنعتی اصفهان

(دریافت مقاله: 17/11/87 - دریافت نسخه نهایی: 17/11/87)

چکیده - در این مقاله الگوریتم جدیدی برای شناسایی سیستم‌های خطی بررسی پاسخ فرکانسی آنها ارائه شده است. در این روش، ابتدا با داشتن مقدار انتقال و فاز تابع انتقال سیستم در عناصر وحداتی از فرکانس، یک دستگاه معادله‌ها خطي تشكيل مي‌شود که جنبه‌جویی داده‌ها بدون خط (نوریزاتور، کریه) باشد و درجه مخرج تابع انتقال و مخرج تابع مشخص باشد. یک جوامع منحصربندی نهایی و دقیق حاصل می‌شود. در ایین صورت برای هر درجه انتخابی برای مخرج و مخرج، یک تابع انتقال قابل قبول برای آن درجه حاصل می‌شود. در حالتی که داده‌ها دارای نویز فرکانسی به این درجه مشخصی باشند، مجموعه طبقه‌بندی یک قابل قبول می‌شود که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً داده‌های مشاهده باید طبقه کرده و یک تعریف نهایی جدید تحت عنوان کمترین مجموعه مربوط فاصله در صورتی یافته شود که کمترین مجموعه‌ای از داده‌های مشاهده که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً داده‌های مشاهده باید طبقه کرده و یک تعریف نهایی جدید تحت عنوان کمترین مجموعه مربوط فاصله در صورتی یافته شود که کمترین مجموعه‌ای از داده‌های مشاهده که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً داده‌های مشاهده باید طبقه کرده و یک تعریف نهایی جدید تحت عنوان کمترین مجموعه مربوط فاصله در صورتی یافته شود که کمترین مجموعه‌ای از داده‌های مشاهده که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً داده‌های مشاهده باید طبقه کرده و یک تعریف نهایی جدید تحت عنوان کمترین مجموعه مربوط فاصله در صورتی یافته شود که کمترین مجموعه‌ای از داده‌های مشاهده که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً داده‌های مشاهده باید طبقه کرده و یک تعریف نهایی جدید تحت عنوان کمترین مجموعه مربوط فاصله در صورتی یافته شود که کمترین مجموعه‌ای از داده‌های مشاهده که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً داده‌های مشاهده باید طبقه کرده و یک تعریف نهایی جدید تحت عنوان کمترین مجموعه مربوط فاصله در صورتی یافته شود که کمترین مجموعه‌ای از داده‌های مشاهده که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً داده‌های مشاهده باید طبقه کرده و یک تعریف نهایی جدید تحت عنوان کمترین مجموعه مربوط فاصله در صورتی یافته شود که کمترین مجموعه‌ای از داده‌های مشاهده که هر کدام از اعضای آن درجه یک خط طیف نویزی مجزاست کاملاً

System Identification Based on Frequency Response Noisy Data

M. Sobhani and A. A. Tabesh

Department of Mechanical Engineering, Isfahan University of Technology
Sub sea Science & Technology Research Center, Isfahan University of Technology

ABSTRACT- In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of the numerator and denominator are selected correctly. If the data is corrupted with (bounded) noise, then the answer is no longer

157

استلال: سال 19، شماره: 1، شهریور 1379
unique and an acceptable transfer function is one that has a frequency response with a noise bound that covers the noisy data. To find one of these acceptable results, a new performance index is defined as "the least squares distance in the coefficient space". By minimizing this index, an initial transfer function is obtained which passes optimally through the noisy data. Then, using the so-called dynamic programming technique, the noise is reduced in such a way that at each step the resulting transfer function is pushed toward one of the acceptable noise-free systems. An illustrative example shows the effectiveness of the proposed algorithm.
دست آورد. ویتیلین [22] شناسی داده است که به علت قبضه بودن نابین هزینه هیچ گونه تجمیعی در مورد همکاران گروهی که در روشنی وقت وجود ندارند. ضمناً در هیچ کدام از آنها مسئله مهم وجود نیز اندازه‌گیری و اثر آن بر روی نتایج حاصل از تغییرات گفته است. این موضوع که در عمل از اهمیت فراوانی برخورد است، به ترتیبی در دوره میان‌دیده مورد توجه خاص محققان فار نگرفته است. در یک روش، فرض بر آن است که مشخصات نویز اندازه‌گیری (از مبنای متوسط و واریانس) از پیش معلوم است و از تکینی حداکثر احتمال وقوع برای یک هنگامی جواب ثابت به است [12]. در واقع دیگر، اقدام نیز محدود فرض کرده و با استفاده از پاساژ‌های مال کافی، تابع تقریبی به دست می‌آید [5]. با و رامان [1] با توجه داشته‌اند واقعاً حاصل و موهمیت انتقال (به جای اندازه‌گیری) به گروهی است که در مقابل نیروی اندازه‌گیری می‌آموزیم. روشنی اخیر بر پایه تخمین آگاهی تاثیر نیز اندازه‌گیری و سپس استفاده از این اطلاعات در تخمین تابع انتقال سیستم [6] است.

در این مقاله روی دیگر بررسی تبدیل معادله معادله تقریب تابع انتقال به یک دستگاه معمول تعریف شده که با حل این مشکل می‌توان ضرایب مجهول صورت و مخرج نتایج انتقال تقریبی سیستم را ممکن‌سازیم با جوزا به‌صورت p_0 در این مقاله از α, β ضرایب به‌صورت $\beta_0, \beta_1, \beta_2, \beta_3$ مجهول اند. توجه شود که این معادله از نظر ضرایب دارای ابهام است زیرا به و باید رفع این ابهام، فرض می‌کنیم که β_0 پاک‌تر باشد تا امکان حصول جواب‌های صحیح را فراهم کند.

همان گونه که در یک (1) ذکر شده در حال مسئله با و روشنی مختلفی تاکنون ارائه شده‌اند که همگی مربوط به گروه‌های تکرارهای گروه‌های نمونه. و جمهوری تماشا انسام این روشهای در تعریف تابع هزینه به شکل کلی زیر است:

$$J(s, \alpha, \beta, \tilde{\alpha}, \tilde{\beta}, \Omega) = E[H, E],$$

$$E = \{ \left(V_m, N(\alpha, \Omega), D(\beta, \Omega), N(\alpha, \Omega), D(\beta, \Omega) \right) \}$$

که در آن $\tilde{\beta}$ ضرایب به دست آمده از مرحله قبل گروه‌های با تعریف به‌صورت مهمی که تاکنون توابع هزینه ممکن که تاکنون در فضاهای $1, 2, \infty$ پیشنهاد شده‌اند را می‌توان به صورت زیر انتقال واقعی (پیدا نویز) سیستم را دارد.

ساختار سیستم به این ترتیب است که صورت مسئله و فرمولیدی آن در یک (3) آورده شده است. در بخش (3) روش
با تعریف بردار ضرایب مجهول

\[x = [\alpha_0, \alpha_1, ..., \alpha_m, \beta_0, \beta_1, ..., \beta_n] \] \in \mathbb{R}^{m+n+1} \times 1 = \mathbb{R}^{r \times 1} \]

معادله (1) را می‌توان به شکل ماتریسی زیر بازنویسی کرد:

\[Qx = c \] \tag{10} \]

که در آن

\[c = [\omega_1^n H(\omega_1), \omega_2^n H(\omega_2), ..., \omega_p^n H(\omega_p)] \] \in \mathbb{R}^{r \times 1} \]

و

\[\omega_1, \omega_2, ..., \omega_p \] مدل‌های مختلف به صورت زیر است:

\[Q = \begin{bmatrix}
1 & \omega_1 & \omega_1^2 & \cdots & \omega_1^n \\
1 & \omega_2 & \omega_2^2 & \cdots & \omega_2^n \\
1 & \omega_p & \omega_p^2 & \cdots & \omega_p^n
\end{bmatrix} \]

\tag{11} \]

برای ساده‌تر شدن تحلیل می‌توان با تفکیک بخش‌های حقيقی و مختلط و ادغام آنها، معادله (11) را به یک دستگاه معادله‌ای به شکلِ Q=QR+jQ1 تبدیل کرد. در این مثال، به تعریف (10) نشان داده می‌شود که هر دو بخش حقيقی و موجود شده به معادله‌ای به شکل (11) هستند.

\[Qx = c \Rightarrow c = QR + jQ1 \]

\tag{12} \]

با توجه به حقيقی بودن بردار x و ترکیب معادله‌ای به شکل (11) به دست می‌آید، می‌توان آن را به دستگاه معادله‌های زیر بیان کرد:

\[A = \begin{bmatrix} Q_R \\ Q_I \end{bmatrix} \in \mathbb{R}^{2p \times 2p}, \quad b = \begin{bmatrix} c_R \\ c_I \end{bmatrix} \in \mathbb{R}^{2p \times 1} \] \tag{13} \]

نوشت:

\[J = \min_{\alpha, \beta} \left\{ \left\| W(\omega) \left(H(\omega) - G(\omega, \alpha, \beta) \right) \right\|_q^q, \quad q = 1, 2, \infty \right\} \]

\tag{14} \]

که در آن \(W(\omega) \) یک تابع وزنی است. از ترم‌های بالا، تنر و یا پیش از بقیه مورد استفاده قرار گرفته است که تابع هزینه مربوط به این دارای شکل کلی زیر است:

\[J = \min_{\alpha, \beta} \sum_{k=1}^{p} \left\{ W^2(\omega_k, \alpha(k-1), \beta(k-1)) \right\} \]

\tag{15} \]

برای تابع هزینه بالا، توان وزنی W مختلط اپی‌شتریانده، از سمت راست

\[W(\omega, \alpha(k-1), \beta(k-1)) = 1/ \left| H(\omega)D(\omega, \alpha(k-1), \beta(k-1)) \right|^2 \]

\tag{16} \]

\[W(\omega, \alpha(k-1), \beta(k-1)) = 1/ \left| H(\omega)D(\omega, \alpha(k-1), \beta(k-1)) \right|^2 \]

\tag{17} \]

در ادامه، به روش برای تعیین هموی سپسیمها براساس پیشنهاد شناسی یک تابع هزینه جدید ارائه و نشان داده می‌شود که چنانچه داده‌ها شامل خط (نوزد انتزاعات گیری) باشد، می‌توان توسط برنامه نویسی پویا اقامت به کاهش اثر نوزیده کرد.

3- الگوریتم تعیین هموی سپسیمها

در این روش، با تبدیل مثلثی تعیین تابع انتقال کسری به یک دستگاه معادله‌ای خطی معادله و مجهول، سعی در پایین‌ترین پاسخ برای این دستگاه می‌شود. برای این کار در معادله (1) با جایگذاری

\[\omega_i = \omega_0^i; \quad p = \sum_{i=1}^{p} \omega_i \]

\tag{18} \]

با مساوی‌تر قرار دادن می‌توان نوشت:

\[\sum_{k=0}^{n} \omega_k(\omega_0^i)^k - H(\omega_0^i) \sum_{k=0}^{n-1} \beta_k (\omega_0^i)^k = (\omega_0^i)^n H(\omega_0^i) \]

\tag{19} \]

استناد، شماره 19، شماره 1379
خود x بخوردار است. این مسئله انگیزه‌ای برای استفاده از روش‌های معنی‌دار (LSD) به‌جای روش‌های معنی‌دار (LSE) در حل دستگاه ایجاد می‌کند که در زیر توضیح داده می‌شود.

μ-رده، برای تقریب مجموع مربعات فاصله در این روش، با ازداده نیاز مناسبی از مسئله خطی خانه‌گیری می‌باشد. تابع معیار به‌جای انتخاب می‌شود که میزان دور بودن پاسخ تقریبی از مجموع جواب‌های قابل قبول را مشخص کند. به منظور تنبیه ای‌ده هر روش، ابتدا این مسئله برای یک تابع انتقال درجه یک پاسخ تقریبی دو مدل ایجاد است. $G(s)$ یک دارای این فضای تابع k باعث می‌شود تا به معنی بهترین مناسبی تعریف و مسئله دوالتکنیک در پردازش مزبور شود.

با فرض آنکه اطلاعات در ضرایب این پاسخ فرکانسی سیستم معلوم باشند، به‌ارائه راه‌حل از معادله (12) می‌توان چهار خط (واگذاری) در ضرایب (اکس) به دست آید. مشخصات ضرایب در صفحه $A-x$ به دست می‌آید، نشانگر k، مجموعه اندازه‌گیری‌های واحدی را به‌عنوان ضرایب خطی واقعی در صفحه $A-x$ به دست می‌آورد. این نشانگر در اثر نیز اندازه‌گیری و با عدم تطبیق اطلاعات پاسخ فرکانسی با دو جواب انتقال سیستم اکس، شکل (1) و (2) از آن نتیجه می‌گیرد. به نظر می‌رسد ضرایب تابع انتقال سیستم، با جواب انتق...
شکل ۱- نمایش خطوط در فضای پارامتری (صفحه a-k) در حالت داده‌های بدون تویز

که باستانی آن را کمی‌نگرد. در حالت کلی برای یک نقطه ضایب ۲
بعدی، سطح S در شکل (۱۹) به یک نقطه صفحه ۱۹ تبدیل می‌شود.
در این شرایط، باشد فاصله نقطه ای به مختصات X با یک نقطه
صفحه R جایگزین نشان می‌شود. برای این کار
چنانچه در معادله (۴) در صفحه R از ماتریس A و
را به شرایط
معادله مربوط به سطح P (k=1,2,...,2p) را به صورت
راه‌سوزی ان گاه معادله (۱۴) برای حالت کلی به

\[J = \frac{1}{2} \sum_{k=1}^{2p} d_k^2 = \frac{1}{2} \sum_{k=1}^{2p} \left(\frac{\sum_{i=1}^{r} a_{ki}x_i}{\sum_{i=1}^{r} a_{ki}^2} b_k^2 \right) \]

(۱۵)

که با تعریف
می‌توان نوشت:

\[\Phi_k^T A \Phi_k = \begin{bmatrix} a_{k1} & a_{k2} & \ldots & a_{kr} \end{bmatrix} \begin{bmatrix} x_1 & x_2 & \ldots & x_r \end{bmatrix} = b_k \]
جثجته سیستم واقعی خطی و لی با ساختار نامشخص باشد و داده‌ها نیز بدون نویز باید گیری باشد، آن‌گاه حج گزارم معادله (22) به‌طور یک‌تایی نتایج تابع انتقال را (برای توزیع صوت و مکان انتخاب خود) برای سیستم) می‌دهد در صورتی که داده‌ها دارای نویز باشند، از روش زیر می‌توان برای کاهش اثر نویز استفاده کرد.

\[J(x) = \frac{1}{2} \sum_{k=1}^{2p} \left(\frac{\phi_k^T x - b_k}{\phi_k^T \phi_k} \right)^2 \]

(16)

\[\frac{\partial J}{\partial x_i} = \frac{1}{2} \sum_{k=1}^{2p} \left(\frac{\phi_k^T x - b_k}{\phi_k^T \phi_k} \right) \phi_k = \frac{2p}{k=1} \left(\frac{\phi_k^T x - b_k}{\phi_k^T \phi_k} \right) \phi_k = 0 \]

\[i = 1, 2, ..., r \]

(17)

حال با توجه به نسبت‌های زیر:

\[\frac{2p}{k=1} \sum_{k=1}^{2p} \frac{a_{ik} \phi_k^T x}{\phi_k^T \phi_k} = \frac{2p}{k=1} \sum_{k=1}^{2p} \frac{a_{ik} \phi_k^T x}{\phi_k^T \phi_k} = \frac{2p}{k=1} \sum_{k=1}^{2p} \frac{a_{ik} a_{kj}}{\phi_k^T \phi_k} \]

\[k = 1, 2, ..., r \]

(18)

معادله (17) را می‌توان به صورت زیر نوشت:

\[\sum_{j=1}^{r} \left(\sum_{k=1}^{2p} \frac{a_{ik} a_{kj}}{\phi_k^T \phi_k} \right) \frac{2p}{k=1} \sum_{k=1}^{2p} \frac{a_{ik} b_k}{\phi_k^T \phi_k} = 0 \]

\[i = 1, 2, ..., r \]

(19)

که با تعیین

\[g_{ij} \triangleq \sum_{k=1}^{2p} \frac{a_{ik} a_{kj}}{\phi_k^T \phi_k} \]

\[i, j = 1, 2, ..., r \]

(20)

\[h_i \triangleq \sum_{k=1}^{2p} \frac{a_{ik} b_k}{\phi_k^T \phi_k} \]

\[i = 1, 2, ..., r \]

(21)

معادله (19) به معادله زیر تبدیل می‌شود:

\[\sum_{j=1}^{r} g_{ij} x_j = h_i \]

\[i = 1, 2, ..., r \]

(22)

معادله اخیر تشکیل یک دستگاه مجزه را می‌دهد که به سادگی قابل حل است. از جمله این مجزه‌ها، مختصات را مربوط به نقطه از فضای ضرایب به دست می‌آید که کمترین مجموع مربوطات قابل را از فضای صفحه دارد. لازم به ذکر است که
شکل 3- طیف نویزی داده‌های اندازه‌گیری نازک به همراه تابع انتقال واقعی سیستم

\[\hat{g}(\omega_i) = \mu_i \left(\frac{g_N(\omega_i)}{1+e} + (1-\mu_i) \frac{g_N(\omega_i)}{1-e} \right) \quad (26) \]

که در این معادله‌ها، \(g(\omega_i) \) و \(\hat{g}(\omega_i) \) مقادیر جدید اندازه‌گیری نازک و فاصله از اعداد تصادفی اند که با تابع چگالی احتمال یکنوخواهی در فاصله

\[\lambda_3 = 1 \]

\[\mu_3 = 0 \]

\[\mu_2 = 1 \]

\[\mu_1 = 0 \]

\[\frac{g_N(\omega)}{1+e} \]

\[\frac{g_N(\omega)}{1-e} \]

\[\Psi_N(\omega) \]

\[\Psi(\omega) \]

\[\Psi_N(\omega) \]

\[\Psi(\omega) \]

\[\lambda_4 = 0 \]

\[\lambda_2 = 0 \]

\[\lambda_1 = 1 \]

\[\lambda_3 = 0 \]

\[\lambda_3 = 1 \]

\[\lambda_2 = 1 \]

\[\lambda_1 = 0 \]

\[\lambda_4 = 0 \]

\[\lambda_2 = 1 \]

\[\lambda_1 = 0 \]

\[\lambda_4 = 0 \]

\[\lambda_3 = 1 \]

\[\lambda_2 = 0 \]

\[\lambda_1 = 1 \]

\[\lambda_3 = 0 \]

\[\lambda_2 = 0 \]

\[\lambda_1 = 1 \]

\[\lambda_4 = 0 \]

\[\lambda_3 = 1 \]

\[\lambda_2 = 0 \]

\[\lambda_1 = 1 \]

\[\lambda_4 = 0 \]

\[\lambda_3 = 1 \]

\[\lambda_2 = 0 \]

\[\lambda_1 = 1 \]

\[\lambda_4 = 0 \]

\[\lambda_3 = 1 \]

\[\lambda_2 = 0 \]

\[\lambda_1 = 1 \]

\[\lambda_4 = 0 \]
اعضای مجموعه جوابهای قابلقبول به صورت زیر است:

مرحله ۱ - درجه صورت و مخرج تابع انتقال را انتخاب کنید.

مرحله ۲ - از استفاده از اطلاعات پاسخ فرکانسی، معادله (۱۳) را تشكیل دهید.

مرحله ۳ - با تعیین $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki}}{k!} \Phi_k$ برای $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \alpha_k}{k!}$، $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \beta_k}{k!}$، و $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \gamma_k}{k!}$ برای $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ را انتخاب کنید.

مرحله ۴ - برآورد حداقل خطای نسبی $\text{کاهش} = \frac{\text{کاهش}}{\text{کاهش}}$ و $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$.

و با الهام از $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$، $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$، و $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ برای $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ را انتخاب کنید.

مرحله ۵ - وضعیت تصادفی $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ را با استفاده از معادله‌های (۲۵) و (۲۶) تعیین و در هر بابرکسی اندازه و جدید به دست آورید. سپس بر مبنای مجموعه اطلاعات جدید، از معادله (۲۲) را انتخاب کنید.

جامعه پاسخ جدید دارا (۴) کمتری نسبت به مرحله قبل بود. آن را به عنوان یک پاسخ مناسب (نسبت به مرحله قبل) نگهداری و مراحل بالا را برای انتخاب جدید (۲۵) و (۲۶) تکرار کنید.

مرحله ۶ - برآورد $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ برای $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$، و $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ برای $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ را دست آمده در انتخاب (۴) گام دو در دامن نظر گرفت.

در استفاده از الگوریتم بالا ناتوان می‌باشد. البته با پایین‌ترین بردار:

الف - در میزان نشان داد که الگوریتم بالا به مدت یک عضو از مجموعه جوابهای قابلقبول پیوسته، همگی خواهد بود. برای این کار، با فرض اینکه $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ به دست آمده را به عنوان تقریب مناسب از یکی از عناصر مجموعه جوابهای قابلقبول در نظر گرفت.

ج - تجربه عملی نشان می‌دهد که جانشین پس از انجام جنگرملحه از الگوریتم سرعت تغییرات کاهش پایین می‌شود. می‌توان با کاهش اندازه کاهش جدیدی را با استفاده از $\Phi_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ به مرحله آن الگوریتم به دست آورده و انتخاب $\delta_i \alpha_k \Delta \sum_{k=1}^{2p} \frac{a_{ki} \delta_k}{k!}$ و جدید را بر مبنای این کاهش انجام داد. لیکن اگر عملی اکثر می‌باشد که بهترین جواب‌های پاسخی می‌باشد که در انتخاب سرعت تنزلی موتیر است. نتیجه
انتقال سیستم واقعی یک سیستم به صورت یک‌دایی باشد.

\[
G(s) = \frac{5(s+0.8)}{s^2 + 0.8s + 4} = \frac{5(s+0.8)}{s + 0.4\pm 1.96}\]

(35)

پایه‌های فکرکاسی سیستم بالا یا پایین 20 فکرکاسی که با فاصله لگاریتمی مسایل در بازه [0.001, 0.01] رادیان بر ثانیه قرار دارند، به دست آورده و از آن به عنوان داده‌های بدون نویز استفاده می‌شوند.

جدول (1). نتایج حاصل از مدل سیستم باقاعده (2) برای درجات مختلف صورت و متغیر در جدول (2) داده شده‌اند. با توجه به این جدول مشخص می‌شود که چنانچه درجات انتخابی صحت بالا، جواب دقیق حاصل می‌شود. ضمناً چنانچه درجات بالاتری انتخابی اخراج نشود به نحوی که اخلاق درجه‌بندی صورت و متغیر همچنان صحت اخراج شده باشد، عدادی صفر و قابل اندازه به دست می‌آید که دقیقاً یک‌گانگی را حذف می‌کند (سیستم دوم جدول 2). پایه‌های فکرکاسی جوابها در این موضوع در شکل (2) آورده شده است.

با بالارفته چنانچه درجات انتخابی نامناسب باشند، جواب حاصل غیردقیق خواهد بود (سطح سوم جدول 2 و نیز شکل 5).

حال داده‌های مسئله را با نمره‌بندی حداکثر حداکثر به نسبی ±5% می‌تواند محدود و معیّن در فکرکاسی روش پوشیده.

و - در بخش 4 ارائه در مقاله انتخاب داده‌های که اکنون استفاده از این روش برای شناسایی مسئله‌های ناباید و/یا غیر کنیم با وجود داده‌ها. همچنین حس مسئله که قبلاً ذکر شده، باید برای سیستم‌های خصوصی داده‌های تایپیتری نیز می‌توان به راحتی از این روش استفاده کرد. بنابراین مورد سیستم‌های غیرخطی با توجه به
جدول 1 - داده‌های منطقه

<table>
<thead>
<tr>
<th>پایگاه فرکانسی بدون نویز</th>
<th>پایگاه فرکانسی نویز‌دار</th>
<th>فرکانسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Psi(\omega)$ اندازه فاز</td>
<td>$\theta(\omega)$ اندازه فاز</td>
<td>$\Psi_N(\omega)$ اندازه فاز</td>
</tr>
<tr>
<td>1.0001e+000</td>
<td>6.0157e-001</td>
<td>9.9882e-001</td>
</tr>
<tr>
<td>1.0002e+000</td>
<td>8.6526e-001</td>
<td>9.9705e-001</td>
</tr>
<tr>
<td>1.0004e+000</td>
<td>1.2445e+000</td>
<td>9.5053e+000</td>
</tr>
<tr>
<td>1.0009e+000</td>
<td>1.7895e+000</td>
<td>9.9652e-001</td>
</tr>
<tr>
<td>1.0019e+000</td>
<td>2.5725e+000</td>
<td>9.7271e-001</td>
</tr>
<tr>
<td>1.0038e+000</td>
<td>3.6957e+000</td>
<td>1.0507e+000</td>
</tr>
<tr>
<td>1.0079e+000</td>
<td>5.3018e+000</td>
<td>9.9471e+000</td>
</tr>
<tr>
<td>1.0164e-000</td>
<td>7.5845e+000</td>
<td>1.0362e+000</td>
</tr>
<tr>
<td>1.0339e+000</td>
<td>1.0788e+001</td>
<td>1.0614e+001</td>
</tr>
<tr>
<td>1.0700e+000</td>
<td>1.5169e+001</td>
<td>1.0525e+000</td>
</tr>
<tr>
<td>1.1444e+000</td>
<td>2.0866e+001</td>
<td>1.1378e+000</td>
</tr>
<tr>
<td>1.2987e+000</td>
<td>2.7569e+001</td>
<td>1.3343e+000</td>
</tr>
<tr>
<td>1.6280e+000</td>
<td>3.3939e+001</td>
<td>1.6937e+000</td>
</tr>
<tr>
<td>2.4092e+000</td>
<td>3.6344e+001</td>
<td>2.3827e+000</td>
</tr>
<tr>
<td>4.8062e+000</td>
<td>2.0156e+001</td>
<td>4.9206e+000</td>
</tr>
<tr>
<td>5.2118e+000</td>
<td>-5.6825e+001</td>
<td>5.4635e+000</td>
</tr>
<tr>
<td>2.2230e+000</td>
<td>-8.3150e+001</td>
<td>2.1562e+000</td>
</tr>
<tr>
<td>1.2408e+000</td>
<td>-8.8104e+001</td>
<td>1.2884e+000</td>
</tr>
<tr>
<td>7.8316e-001</td>
<td>-8.9414e+001</td>
<td>7.5789e-001</td>
</tr>
<tr>
<td>5.2069e-001</td>
<td>-8.9810e+001</td>
<td>5.1622e-001</td>
</tr>
</tbody>
</table>

جدول 2 - تابع برای سیستم $(s+0.4\pm j1.95)/((s+0.8)^2+0.8s+4)$ در حالات داده‌های بدون نویز

<table>
<thead>
<tr>
<th>تابع انتقال به دست آمده</th>
<th>درجه صورت و مخرج</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(5s+4)/s^2+0.8s+4$</td>
<td>$m=1, n=2$</td>
</tr>
<tr>
<td>$(5s^2-10.95s-11.96)/s^3-2.19s^2+1.68s+11.96$</td>
<td>$m=2, n=3$</td>
</tr>
<tr>
<td>$(58s^2+37.7s+36.6)/s^4+6.55s^3+46.9s^2+6.85s+35.8$</td>
<td>$m=2, n=4$</td>
</tr>
</tbody>
</table>

استثناء سال 19، شماره 14، آبان 1379
کارایی روشن‌پیشنهادی در مورد سیستم‌های غیرکمیته‌فاز و یا ناپاپیژار هگامی که داده‌های قوی‌تر از جدول (2) مشخص می‌شود. پاسخ فرکانسی جواب‌ها هنگامی با طیف نویزی آنها در نمودار (7) و (8) داده شده‌اند که معلوم می‌باشد که جواب‌های به دست آمده قابل قبول‌اند.

هرگونه اختلاف درجه صفر و مخرج همچنین صحیح انتخاب شده باشد، تعدادی صفر و قطب اضافی به دست می‌آید که دقیقاً یکدیگر را جذب می‌کنند و نتیجه نهایی آن قابل قبول است (کاملاً شبیه به شکل 4). با این حال اگر پاسخ با درجه انتخابی نامناسب باشد، جواب حاصل غیرتیق خواهد بود (سطر سوم جدول 3).

شكل 2- پاسخ فرکانسی برای $m=1$ و $n=2$ و $m=2$ و $n=3$ در حالت داده‌های بدون نویز

شكل 5- پاسخ فرکانسی برای $m=2$ و $n=4$ در حالت داده‌های بدون نویز

استقلال، سال 19، شماره 19، 1379
جدول ۳ - تابع برای سیستم (
\[
\frac{4.9s + 3.98}{s^2 + 0.78s + 3.97} = \frac{4.9(s + 0.81)}{(s + 0.39 \pm j1.95)}
\]
در حالت داده‌های نویزی

<table>
<thead>
<tr>
<th>درجه صورت و مخرج</th>
<th>m=1, n=2</th>
</tr>
</thead>
</table>

\[
\frac{4.98s^2 + 2.46s - 1.19}{s^3 + 0.5s^2 + 3.76s - 1.19} = \frac{4.98(s + 0.79)(s - 0.3)}{(s + 0.4 \pm j1.96)(s - 0.299)}
\]

<table>
<thead>
<tr>
<th>درجه صورت و مخرج</th>
<th>m=2, n=3</th>
</tr>
</thead>
</table>

\[
\frac{-507s^2 - 274.2s + 110.6}{s^4 - 102.7s^3 + 44.5s^2 - 389.3s + 110.6} = \frac{-507(s + 0.32 \pm j0.72)}{(s + 0.37 \pm j1.96)(s - 0.27)(s - 103.2)}
\]

<table>
<thead>
<tr>
<th>درجه صورت و مخرج</th>
<th>m=2, n=4</th>
</tr>
</thead>
</table>

جدول ۴ - تابع برای سیستم‌های فاز و با ناپایدار در حالت داده‌های نویزی

<table>
<thead>
<tr>
<th>نوع سیستم و درجه صورت و مخرج</th>
<th>m=1, n=2</th>
</tr>
</thead>
</table>

\[
\frac{-5.11(s + 0.78)}{(s + 0.38 \pm j1.97)} = \frac{-5(s + 0.8)}{(s + 0.4 \pm j1.96)}
\]

<table>
<thead>
<tr>
<th>نوع سیستم و درجه صورت و مخرج</th>
<th>m=1, n=2</th>
</tr>
</thead>
</table>

\[
\frac{5.05(s + 0.808)}{(s - 0.38 \pm j1.96)} = \frac{5(s + 0.8)}{(s + 0.4 \pm j1.95)}
\]

<table>
<thead>
<tr>
<th>نوع سیستم و درجه صورت و مخرج</th>
<th>m=1, n=2</th>
</tr>
</thead>
</table>

شکل ۶ - پاساژ فرکانسی (با طیف نویز) برای \(m=1 \) و \(n=2 \) در حالت داده‌های نویزی:

\[
G(s) = \frac{5(s + 0.8)}{s^2 + 0.8s + 4} \times \frac{2500}{s^2 + 30s + 2500} = \frac{5(s + 0.8)}{s + 0.4 \pm j1.96} \times \frac{2500}{s^2 + 15 \pm j47.7}
\]

حال برای بررسی اثر وجود موده‌های فرکانس با بالا، سیستم زیر را در نظر بگیرید:

اسکال، سال ۱۳۷۹، شماره ۱، شهریور ۱۳۷۹

169
شکل 7- پاسخ نرمالیسی (با طیف نویزی آن) برای سیستم غیر کمینه فاز با داده‌های نویزی

شکل 8- پاسخ نرمالیسی (با طیف نویزی آن) برای سیستم ناپایدار با داده‌های نویزی

شناختی کننده جواب غیردقتی حاصل می‌شود (مقدار دوم جدول 5) زیرا فرکانس طبیعی مود اضافی ۵۰ rad/sec است که خارج از محدوده فرکانس نمونه‌برداری است. اما شرایط محدوده فرکانس نمونه‌برداری را به (0.0011,00001) رادیان بر ثانیه افزایش دهنده کلیه مودها شناختی شده و جواب قابل قبول حاصل می‌شود (مقدار اول جدول ۵ و شکل 9). اما شرایط بخواهیم تمامی مودها را که کمک می‌کنند مودهای مورد نظر برای شناختی و کسر دوم را می‌توان فقط در نظر گرفت. نتایج کاربرد الگوریتم برای حالت‌های مختلف، بدین شرح است. چنانچه فقط بخواهیم دو مود اول را شناختی کنیم، که جواب قابل قبول به دست می‌آید (مقدار اول جدول ۵ و شکل 9). اما شرایط بخواهیم تمامی مودها را

استنل، سال 19، شماره 1، شهریور 1379

۱۷۰
جدول ۵- نتایج برای سیستم

در حالت داده‌های نویزی

<table>
<thead>
<tr>
<th>تابع انتقال به دست آمده</th>
<th>درجه صورت و مخرج</th>
<th>محیدده فراکسانت</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{4.92(s+0.84)}{(s+0.33\pm j1.99)}$</td>
<td>$m=1$, $n=2$</td>
<td>$\omega \in [0.01, 10]$</td>
</tr>
<tr>
<td>$\frac{77.07(s+0.94)}{(s+2.69\pm j5.34)(s-0.07\pm j1.43)}$</td>
<td>$m=1$, $n=4$</td>
<td>$\omega \in [0.01, 10]$</td>
</tr>
<tr>
<td>$\frac{1.72(s+12.67)}{(s+13.48)(s+13.1)}$</td>
<td>$m=1$, $n=2$</td>
<td>$\omega \in [0.01, 1000]$</td>
</tr>
<tr>
<td>$\frac{12644(s+0.79)}{(s+0.37\pm j1.98)(s+18.4\pm j46.05)}$</td>
<td>$m=1$, $n=4$</td>
<td>$\omega \in [0.01, 1000]$</td>
</tr>
</tbody>
</table>

شکل ۹- پاسخ فراکسانت (با طیف نویز این) برای سیستم با مود فراکسانت بالا و داده‌های نویزی ($n=2$, $m=1$)

چهارم جدول ۵ و شکل ۱۰. حال آنکه برای شناسایی نه دو مود اول جواب غیردقیق به دست می‌آید (سرع سوم جدول ۵). علت آن است که محدوده فراکسانت بالا در محدوده فراکسانت جدید نمودار قرار دارد.

۵- خلاصه و نتیجه‌گیری

الگوی جدیدی برای شناسایی سیستم‌های خطی (اعم از پاپادار با ناپایدار و کمیته فاز از گیر کمیته فاز) بررسی می‌شود. پاسخ فراکسانت آنها از جمله بررسی روش‌های متعددی است که در این روش ابتدا با داشتن پاسخ فراکسانت آنها از طریق تحلیل می‌شود.
شکل ۱۰- پاسخ فرکانسی (با طیف نویزی آن) برای سیستم با مود فرکانس بالا و داده‌های نویزی (n=4, m=1)

یک مجموعه جواب‌های قابل قبول برای سیستم واقعی (بدون نویز) می‌شود. هر کدام از این روایت انتقال قابل قبول درای یک پاسخ فرکانسی است که طیف نویزی آن داده‌های مشاهده مسئله را کامل‌اً می‌پوشاند. برای یافتن یکی از این جواب‌ها، نخست با کمیت کردن تابع هزینه LSD یک تابع انتقال اولیه یافته می‌شود که پاسخ فرکانسی آن به نحو بهینه‌ای از بين داده‌ها می‌گذرد. سپس با استفاده از تکنیک برنامه‌نویسی پویا، الگوریتمی ارائه شده که با آن می‌توان اثر نویز داده‌ها را کاهش داد، به طوری که در هر مرحله، تابع انتقال به دست آمده به سمت یکی از روایت انتقال قابل قبول برای سیستم واقعی (بدون نویز) رانده می‌شود. کارایی این روش نیز با استفاده از چندن مثال نشان داده شد.

واژه نامه

1. identification
2. dynamic programming
3. continuous-time state-space differential equations
4. discrete-time state-space difference equations
5. curve fitting
6. least squares error
7. Chebyshev
8. maximum likelihood
9. least squares distance
10. hyper-plane
11. random

مراجع

5. Gu, G., and Misra, P., "Identification of Linear

