Siesmic Assessment of Ductility and Strength Capacities of Low-Rise R. C. Buildings

F. Nateghi-A and N. A. Hosseinzadeh
International Institute of Earthquake Engineering and Seismology, Tehran, Iran

Abstract: This paper presents a methodology for the assessment of ductility and strength capacities in low-rise buildings. This method utilizes the characteristics of force-displacement for the lowest story level or considers the weakest story in any given low-rise building for its primary analysis. Calculations are based on two levels of earthquake motions, namely; strong earthquakes (PGA=0.3 g), and very strong earthquakes (PGA=0.45). Failure mechanism for the structure is established based on three criteria which are: a) bending mode, b) shear mode, and c) shear-bending mode. Evaluation is then performed using a five step procedure starting with a: modeling the building, b) developing the non-linear properties of the model, c) strength calculations, d) ductility calculations, and finally, e) assessing the safety of the building under consideration. All these evaluations are performed based on a matrix format, which simplifies the whole procedure. Developed equations and step-by-step procedure are presented and described in this paper. Satisfactory results are obtained from the use of the method developed.

Keywords: Strength, Ductility, Failure mechanism, Low-Rise R. C. Buildings

چکیده: در این مقاله یک روش تحلیلی برای ارزیابی ایمنی لرزه‌ای ساختمان‌های بینی مصلح کوته و کم ارتفاع ارائه می‌شود. در این روش، ارزیابی براساس مشخصه بیرو - جابجایی طبقه اول با ضعیف‌ترین طبقه انجام می‌گیرد. معیار ارزیابی ایمنی سازه براساس دو پارامتر مقاومت و شکل پدیداری در حالت زلزله قوت (PGA=0.3 g) و زلزله شدید (PGA=0.45 g) استوار است. مکانیزم شکست سازه به‌صورت خمشی، برشي و برشي - خمشی طبقه‌بندی می‌شود. ارزیابی ایمنی در نتیجه گذاری انجام می‌گیرد که عبارت‌اند از: افزایش سیاست محدود سازه، تعیین مدل تحلیلی غیرخطی طبقه. ج. - ارزیابی ایمنی مقاومت، د. - ارزیابی ایمنی شکل پدیداری و ه. - ترکیب ارزیابی ایمنی. نهوا ارزیابی براساس یک متریس معیار پیشنهاد شده استوار است.

واژگان کلیدی: مقاومت، شکل پدیداری، مکانیزم شکست، ساختمان‌های بینی مصلح کوته

* - استاد ** - دانشجوی دکترا

استقلال، سال 1380 شماره 2، اسفند 1380

55
مقامه

اعداد پیشماری از ساختمانهای بنی مصلح موجود که طی دهه‌ها گذشته ساخته شده‌اند، نشان‌دهنده قدرتمندی آن‌ها، بنی‌بازار طراحی و ساخته شده‌اند و عموماً ضوابط آن‌ها ماموریتی را نشان‌دهنده علاوه بر آن، ضعف تکنولوژی ساخت و ساختن‌آلات ارائه شده است. بنابراین ارائه یک سوال اساسی مطرح شده است: چگونه از ساختمانهای موجود به عنوان یک سوال اساسی مطرح کنیم؟ بنابراین ارائه روش منطقی و معقول برای ارزیابی آسیب‌پذیری لرزه‌ای مجموعه بزرگی از ساختمانهای موجود در مقابل خطر زلزله قوی، مورد بررسی و ساختن در نظر گرفته شده و هم‌بینیهای مدل‌های منطقی به ویژه به لحاظ مدیریت امران حسابی مهم و اندیس نیز از این است.

با توجه به اهمیت موضوع و نیاز دستیابی به ابزاری برای ارزیابی اینهای موجود، روش‌های مختلفی توسط پژوهشگران در سراسر کشور مطرح و پیشنهاد شده است (1-8). این روش‌ها عموماً در دو دیدگاه کاملاً دو کیفیت نما که موضوع برخورد می‌کند یا درجه ی بیش‌تری از این روش را می‌بایست دو دسته قرار داده و ضمن داشتن سرعت مناسب برای ارزیابی سازه‌های دقت کافی توجه نیز برخورد است. این روش از مرحله اول که ساده‌ترین مرحله است توسط شده و به مراحل پیشرفته‌تر ادامه می‌یابد. ساختمانهای که ضوابع مباشته به محلول نهایی را نشان‌دهند، باید در مراحل بعدی با دقت بیشتری مورد ارزیابی قرار گیرند. به این ترتیب، یا به‌طوری که کمی از روش محلولی معقول شیبی غیر‌بازال کردن با استفاده از تحلیل (کیفی و کمی توانایی، مجموعه ویژه از ساختمانهای قابل بررسی برده و وسایل قابل ملاحظه‌ای در وقت و هزینه محاسبات حاصل می‌شود.

در این مقاله تاکید بر محلول اول و ذهن‌حلولی است که برای ساختمانهای بنی مصلح کوهنگ و کم ارتقای با سیستم استقامت، سال ۱۳۸۰، شماره ۲، استقلال، صفحه ۵۲، صفحه ۱۳۸۰.
خواهد شد.

2-3-2 میزان‌های ارزیابی ایمنی

تعیین خصائص مخرب و مشخصات زلزله مهتم‌ترین

پارامترهای یک روش ارزیابی محسوب می‌شوند. اما مشخصات

و شدت زلزله‌ای آینده نامعلوم بوده و باعث ساختارنگ‌های به

چین زلزله‌های کاملاً روش‌های نیست. لذا، باید مطابق در تحقیق

حاضر (1) آنها محدوده‌های زلزله قوی (P(GA = 0.3 g) و زلزله

(2) و محدوده خسارت تعیین‌پذیر و در حدود

بی‌فروشی مطلوب جدول (1) به عنوان سطح معیار در

نگرفته می‌شود. به‌طور مثال براساس شرایط سه نوع

مکانیزم شکست: خشک، برزی و برزی – خشک، تعیین شده

است. در حالی که خشک‌شکست، مکانیزم شکست ساخته‌ای در

اثر شکست خشک اعضا تشکیل شده و ساخته‌اند نسبتاً در

شکل یکدست است. در حالی که شکست برزی مکانیزم شکست

اثر شکست برزی اعضا تشکیل و ساخته‌اند و به شکل یکدست

برزی است. در حالی که شکست برزی – خشک، ترک‌های

برزی در اعضا به وجود می‌آید و/یا مکانیزم شکست از نوع

خشک است.

2-3-6 تشخیص مراحل ارزیابی ایمنی

همانطور که پیشبان این روش از پنجم گام برای ارزیابی

ایمی‌ها استفاده می‌کند که جزئیات آن به طور خلاصه‌ای در

نمونه جریانی شکل (1) نشان داده شده و به شرح زیر است.

2-3-3 گام مدل‌سازی سازه‌ای

از این گام انتخاب یک مدل سازه‌ای می‌شود که باینگر

سیستم‌های انتقال بار تغییر در لزجت و سازه‌ای است. سپس، سازه‌ای و

شدت بار تغییر با بررسی نشانده، محاسبات طراحی، مشخصات

روکوده و لازم‌های چنین مناسب بوده که با توجه به اینکه

مدل‌سازی سازه‌ای مشخصات یک گام اساسی در ارزیابی ایمنی

سازه‌ای محسوب می‌شود. لذا این گام باید به تأثیر اجسام

گردد. اگر انتخاب یک مدل ساده مشکل باشد، باید چندین مدل

استفاده، سال 200 ،شماره 2، 1380

57
جدول ۱- ماتریس معیار برای قضاوت ایمنی از زلزله‌های مختلف

<table>
<thead>
<tr>
<th>درجه زلزله</th>
<th>درجه ایمنی</th>
<th>خسارت قابل تعمیر</th>
<th>ضریب شکل پذیری (μ)</th>
<th>کوچکتر از ۴</th>
<th>مکانیزم شکست هم‌شانه (شکل یرس)</th>
<th>مکانیزم شکست برخی (شکننده)</th>
<th>مکانیزم شکست برخی - خم‌شانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>زلزله قوی (۰.۳ g)</td>
<td>حساسیت بالا</td>
<td>حساسیت بالا</td>
<td>ضریب شکل پذیری (μ)</td>
<td>کوچکتر از ۲</td>
<td>مراحل ترک خوردگی برخی</td>
<td>مراحل ترک خوردگی برخی</td>
<td>مراحل ترک خوردگی برخی</td>
</tr>
<tr>
<td>زلزله شدید (۰.۴۵ g)</td>
<td>حساسیت نیم-بالا</td>
<td>حساسیت نیم-بالا</td>
<td>قابل آنجام شدن</td>
<td>قابل آنجام شدن</td>
<td>مراحل ترک خوردگی برخی</td>
<td>مراحل ترک خوردگی برخی</td>
<td>مراحل ترک خوردگی برخی</td>
</tr>
</tbody>
</table>

۱- جابه‌جایی جاری شدن / جابه‌جایی حداکثر - ضریب شکل پذیری

۲- ضریب شکل پذیری در این مرحله نصف ظرفیت تغییر شکل نهایی در نظر گرفته می‌شود (۱۰×۱۰⁵ rad)

۳- جابه‌جایی در این مرحله، تقریباً مناطق با ضریب شکل پذیری ۲ یا بالاتر خم‌شانه در نظر گرفته می‌شود.

شکل ۱- نمودار چرایی عملیات و مراحل ارزیابی [۹]
معادلات تقریبی به شرح زیر پذیرفته شده‌اند.

\[C_{sci} = \tau_{av} \sum_{j=1}^{m} A_j \]

(2)

\[C_{sci} = Q_{sci} \sum_{j=1}^{n} W_j \]

(3)

در معادلات بالای نری‌های نیروی تیرگی سطح‌های در مرحله تیرگی ضریب برش تیرگی خوردگی، قدرت تیرگی، و زن

\[Q_{sci} = \tau_{av} \sum_{j=1}^{m} A_j \]

\[C_{sci} = Q_{sci} \sum_{j=1}^{n} W_j \]

آگر فرض فرضی \(A_i \) بیانگر آمیان عضو ماتریس سازگاری بین جای‌گاه‌های فراکسیون و جای‌گاه‌های نقطه پاراگرافین باشد، درایم

\[Q_{sci} = \tau_{av} \sum_{j=1}^{m} A_j \]

\[C_{sci} = Q_{sci} \sum_{j=1}^{n} W_j \]
(C_byl) متقاطع خمشی به کمک یک تحلیل حالت حداکثر تقریبی و
با فرض تشکیل یافتن شکلی در محل اتصال تیره‌ها، است. و
پیش‌محاسبه می‌شود. برای این منظور برنامه رایانه‌ای
برای قابلیت و برازندگی در شکل‌های (6) و (7) آورده شده
است (8) و (9). در این برنامه‌ها لگردهای جاری شدن از متقاطع
زیر محاسبه می‌شوند.

\[M_y = 0.9A_f f_y d \quad (9) \]

\[M_y = 0.8A_f f_y d + 0.6N \left(1 - \frac{N}{bDf_c^2} \right) \quad (10) \]

\[M_y = A_g f_y L + \frac{N}{2L} \quad (11) \]

\[M_y = \left(\frac{f_m}{2}\right) \left(1 - \frac{f_m}{f_b}\right) BL^2 \quad (12) \]

\[Q_i = \left[\beta_i I_i \right] \left[\frac{\sum_{j=1}^{m} \left(\beta_j X_j \right) \sum_{j=1}^{m} Q_j}{\sum_{j=1}^{m} X_j} \right] \quad (5) \]

\[\beta_i = 1 - X_i \left[\frac{\sum_{j=1}^{m} K_i X_j}{\sum_{j=1}^{m} X_j^2} \right] \quad (6) \]

\[\tau_a = \frac{\sum_{j=1}^{m} \left(\frac{A_i}{A_j} \right) \beta_i K_j}{\sum_{j=1}^{m} \beta_j K_j} \quad (7) \]

\[\alpha_{c} = \alpha_{c} \tau_c \quad (8) \]

\[C_{sul} = \alpha \times C_{sel} \quad (8) \]

\(\beta \) مقدار ضریب \(\beta \) و مطالعات آزمایشگاهی بدای می‌کند.\(\alpha \) لیکن با توجه به مطالعات سعی و خطای [9 و 10]. مقدار 1.9
در نظر گرفته می‌شود. مقدار واقعی از نتایج آزمایشگاهی
بایدها برای همه قاب حاصل می‌شود به گسته‌نگار در حال
حارص چینها مطالعات مقدار نیست. در ضمن، پیشنهاد می‌شود
این پارامتر برای دیوارهای بدون قاب یا برای ستون‌ها با در نظر
گرفتن دهانه برش و میزان آزمایشگاهی نیز اصلاح شود.

![شکل 4: سیستم سازه‌ای و سازگاری تغییر شکلها](image-url)
شکل 5- نمودار چرایی برنامه HMECH
شکل ۶ - نمودار جریانی برنامه

[۸] SWALL.
شکست در طبقه اول ساختمان، معیار اصلی ایمنی در مرحله
اول محصول می‌شود. نیاز ایمنی شکست در طبقه دیگری غیر
از طبقه اول ارائه شود، از این نتیجه نیز به اصلاح دارد. اگر تیروی
جانی در طبقات ساختمان اعمال شود ضریب بررسی طبقه آن
عبارت است از
\[
C_i = Q_1 \left(\sum_{j=1}^{n} W_j \right) / \sum_{j=1}^{n} k_j W_j
\]
(15)
در معادلات بالا \(k_j \) ضریب نیروی جانی طبقه \(j \) و \(W_j \) وزن طبقه
\(j \) در مورد \(n \) تعداد کل طبقات. اگر توزیع \(k_j \) معلوم باشد، \(C_i \) برای
آن طبقات اولیه می‌شود. \(C_i \) مقدار \(C_i \) (وزن طبقه اولیه) از طبقات اولیه
به حد خیرین بررسی ضریب بررسی یافته بر حسب \(Q_1 \) اصلاح
می‌شود. مثال: اگر مقدار مناسب \(9 \) عناصر از طبقه اول \(k_j \) مثبت (اندازه‌گیری به
(اصلی)) و وزن طبقات مسأوی در نظر گرفته شوند ضریب بررسی
پایا برای استاد با
\[
C_i = \frac{n(n+i)}{2n}
\]
(16)
\[
\bar{C}_i = \frac{C_i}{n+i}
\]
(17)
در معادلات بالا \(\bar{C}_i \) نرم‌ال شدته \(C_i \). \(\bar{C}_i \) است. اگر مقدار \(\bar{C}_i \) برگردی
از مقایسه نرم‌ال شدته \(C_i \) (مقاومت آمیز طبقه به مقاومت
طبقه اولیه) باشد، مقاومت طبقه اول به صورت زیر اصلاح
می‌شود
\[
C_{yi} = C_{yi} \frac{n+1}{n+i}
\]
(18)
\[
C_{yi}' = \frac{C_{yi}}{C_{yi}}
\]

5-1-2-2: ضریب طبیعی

این ضریب طبیعی ساختمان به طور تقریبی معادل است
\[
C_{yi}' = \frac{C_{yi}}{C_{yi}}
\]
(0.06 - 0.1)×n
\[
\text{نتیجه‌ی مورد کرده به عنوان طبقات سازه است.}
\]

5-2-2: ضریب و كالا

با توجه به اینکه اثر مدهای پالدار از ساختمان‌های بینی کننده
نگه‌سازی تشکیلات می‌تواند ایجاد در طبقه‌های گرفته می‌شود. یک سیستم جرم متمرکز با توزیع یکنواخت جرم

ستون لبه L، لبه N (BL)، لبه N (BL) مقدار تنظیم‌نهایی توسط
\(f_i = \frac{N}{BL} \) خاک \(f_i = \frac{N}{BL} \) خاک

(10) قابل استفاده تبدیل معادله \(2\) با استفاده از
\(f_i \) روش فشار‌گزار فشرده\(f_i \) را با استفاده
در مرحله
\(f_i = \frac{N}{BL} \) را 2 یا 3 برای
فرض کرده.

ضریب برای یافته در یک سیستم قاب خمیس برخاست
نوع مکانیزم مشابه ساختمان می‌شود. برای این منظور یکی از
مکانیزم‌های شکست: مفصل نیروی، مفصل ستون با مفصل پیسا
مقاوم مجموع لگر بزرگ‌ترین، ستونها و پی‌ها در محل
اصاله طبقات شکل (V) تعیین می‌شود. سیستم نیرویی بررسی طبقه
از معادله زیر به دست می‌آید
\[
Q_i = \sum_{j=1}^{m} \left(\frac{M_{ij} + B M_{ij}}{h_i} \right)
\]
(13)
\[
C_i = Q_1 \frac{\sum_{j=1}^{n} W_j}{\sum_{j=1}^{n} k_j W_j}
\]
(14)
در معادلات بالا \(Q_i \) بررسی طبقه \(i \) ام. \(C_i \) لگر در بالایی
\(M_{ij} \) ستون، \(B M_{ij} \) مقدار در ضریب بررسی طبقه \(i \) ام. \(h_i \) تعداد ستونها و دیوارهای \(C_i \) ضریب بررسی طبقه \(i \) ام و
کل طبقات.

برای محاسبه ضریب بررسی یافته، یک سیستم قاب - دیوار
مطابق شکل (V) با استفاده از مدلی ساختمانی محصول همراه با
نحوی صلب استفاده می‌شود. در این سیستم، نقطه عطف برش‌های
مرکز در حداکثر مقدار موجد و به‌وسیله این فرض می‌شود
مس، با فرض تکیه‌گاه خمیسی در اینفجی این تسهیل
مرگ و با انتخاب توزیع نیرویی جانی به صورت یکنواخت یا
می‌تواند در ارتقاء طبقات، ضریب بررسی یافته برای تماس حالات
منخص مضاعف‌هایی با استفاده از معادلات تعادل به دست
می‌آید. کنترل داده به عنوان ضریب بررسی یافته استفاده

5-1-2-2: اصلاح ضریب بررسی

مقاومت جانی بر حسب ضریب بررسی یافته با فرض کنترل

استقلال، سال 1380، شماره 2، اسفند

63
شکل ۷ - مکانیزم مفصل پلاستیک در نقطه گرگی

شکل ۸ - قاب معادل برای دیوار برخی

شکل ۹ - اصلاح مقاومت طبقه
ملاحظة: formulation of this document is not fully clear and requires translation for better understanding.
مرحله ترک خورگذی، $B\delta_{\text{max}}$ حداکثر جامد ترک، $B\delta_{\text{max}}$ حداکثر جامد ترک

${\delta}_{\text{max}}$ حداکثر جامد ترک

$B\delta_{\text{max}}$ حداکثر جامد ترک
در ساخته‌هایی با شکست نوع خمیش، ضرایب مشابهت مقدار مکانیکی
محله جایی شدن جایگزین محله ترک خوردگی برخی
خواهد شد.

4-3-2- گام ترک خوردگی ایننی
با انجام مراحل زیر به پک جمع‌بندی و تبیین‌گیری نهایی
برای ارزیابی ایننی می‌توان دست‌یافت.

4-3-2- شکست
ابتدا با استفاده مقاومت ترک خوردگی برخی

\[
\begin{align*}
(\beta u)_1 &= \text{ضریب مشابهت محدود طبقه آم}\ \\
(m.f') &= \text{ضریب اصلاح شکل در ناحیه غیرخطی}
\end{align*}
\]

\[
\left[\frac{(\beta u)_{\text{top}}}{(\beta u)_1} \right] < 1
\]

4-3-2- شکست
مقادیر خمشی را مطابق شکل (۱۴) ترسیم کرده و توسط دو خط آن به سه ناحیه تقسیم کنند. خط معاده دو معکوس مرز بین شکست نوع خمشی و برشی - خمشی و خمشی شکست، معکوس مرز بین شکست نوع برشی - خمشی و برشی است. مقادیر خمشی و مقادیر تراکم خوردنی بر روی طبقه اول ساخته‌نامه (حاصل از گام ب) در این نمونه رسماً می‌شود.

\[C_{cr} = \left(\frac{n \cdot (\beta_i) \cdot W_i}{n \cdot W_i} \right) a_{0} k_{g} \]

(۲۲)

در معادلات بالا، \(\alpha_{0} \) ضریب عدداً حاصل از طیف غیرخطی و حداکثر مقادیر بزرگ شدن طبقه اول ساخته‌نامه است.

ملاحظات شماه برای ساخته‌نامه نوع برشی - خمشی و برشی در نظر گرفته می‌شود. در حال جدول مقادیر بحرانی ساخته‌نامه نوع برشی - خمشی در وزن گرفته ۰.۴۵ گرمی به طبقه اعتیفی بعد، مقادیر برشی ب주의 این نوع ساخته‌نامه قابل تعیین است. با پارامتر برای ناحیه تشکیل بین مقاومت بحرانی برابر وزن ۰.۴۵ گرم (نام‌دار برکنار) است که از این ناحیه تشکیل طبقه طبقه (۵) به جای مختصات محاسبه و در راستای اطمینان در وزن (۴) استینگر ناحیه در وزن ۰.۵۰ گرمی تبدیل مناسب از جایی به مقادیر لازم است. حداکثر مقادیر لازم برای حداکثر جایی و برا پای‌نامه در ضریب شکل ذیل می‌گردد از طیف پای‌نامه ضریب محاسبه است. این حداکثر مقادیر که مقادیر بحرانی نامیده می‌شود عوموماً به مشخصات بار - خشکی ضریب خمشی و مشخصات حرارت لزه‌ای زمین و غیره بستگی دارد. مقادیر بحرانی با داشتن دو یا چندین طبقه، شکل مدل ساخته‌نامه و ضریب اصلی شکل مدل (برای حالت خشکی تهیه می‌شود. به عنوان مثال در یک ساخته‌نامه با شکست خشکی تحت وزن ۰.۳ گرم ۱/۲(m.f) حاصل کمک‌بندی طیف خشکی و حداکثر مقادیر بحرانی مدل ساخته‌نامه چنین سیستم تک جرمی (Kp) برای چندین‌گوشه از جایی‌به‌یک‌یا از شکل ذیل برای مثال قابل محاسبه است

\[K_{cr} = \alpha_{0} K_{g} \]

(۲۵)

نحوه ارزیابی اینم برای وزن‌های ۰.۳ گرم و ۰.۴۵ گرم توسط ۹ منطقه طبقه شکل (۱۶) مشخص می‌شود. با رسم نتایج مرحله اول این شکل، نحوه ارزیابی و گردن بندی اینمی توسط ۶ جدول (۲) انجام می‌گردد. ساخته‌نامه واقع در مناطق B، A، D و C در ارزیابی اینمی مقادیر، اینمی شناسه‌ی می‌شود و به عنوان گره I طبقه بندی می‌شود. ساخته‌نامه واقع در منطقه D ارزیابی اینمی شکل پذیری اینمی شناسه‌ی می‌شود و به عنوان گره II طبقه بندی می‌شود.

با توجه به اینکه ساخته‌نامه منطقه G و F ضوابط مربوط به وزنه ۰.۳ گرم و ۰.۴۵ گرم را تایم کرده و نه هر دو، با نظریندی از این‌گونه بین ساخته‌نامه مرحله بعدی و یک ارزیابی دیق‌تر ضروری است. زیرا آنها در مرحله دوم این منطقه قرار دارند. ساخته‌نامه واقع در مناطق H و I به عنوان گره IV طبقه بندی شده و در
جدول 2- نواحی ارزیابی و گروه‌بندی ایمنی

<table>
<thead>
<tr>
<th>گروه</th>
<th>Zلزلاه شدید (PGA=0.45g)</th>
<th>Zلزلاه قوی (PGA=0.3g)</th>
<th>نوع شکست</th>
<th>منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>شکل پذیری</td>
<td>مقاومت</td>
<td>شکل پذیری</td>
<td>مقاومت</td>
</tr>
<tr>
<td></td>
<td>ایمن</td>
<td>ایمن</td>
<td>ایمن</td>
<td>ایمن</td>
</tr>
<tr>
<td></td>
<td>ایمن</td>
<td>ایمن</td>
<td>ایمن</td>
<td>ایمن</td>
</tr>
<tr>
<td></td>
<td>ایمن</td>
<td>ایمن</td>
<td>ایمن</td>
<td>ایمن</td>
</tr>
<tr>
<td>II</td>
<td>شکل پذیری</td>
<td>-</td>
<td>شکل پذیری</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>نامعین</td>
<td>ایمن</td>
<td>نامعین</td>
<td>ایمن</td>
</tr>
<tr>
<td>III</td>
<td>شکل پذیری</td>
<td>-</td>
<td>شکل پذیری</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>نامعین</td>
<td>ایمن</td>
<td>نامعین</td>
<td>ایمن</td>
</tr>
<tr>
<td>IV</td>
<td>شکل پذیری</td>
<td>-</td>
<td>شکل پذیری</td>
<td>-</td>
</tr>
</tbody>
</table>

درحالی‌که برای ارزیابی، برخی از فضاهای خمیشی توسط نشان داده شده است. بروز اصلی سازه در جهت شمال - جنوب و تغییر در حرارت به ترتیب برابر 250 و 320 نانو است.

2-3 گام مدل تحلیل

برای تعیین مقاومت ترک خوردگی برخی به لحاظ ایمنی، اعضای لرزه (ستون‌ها) در سطح مقعوض و سختی مشابهی بوده و تمرکز نش در عضو خاصی ایجاد نشده است. زیرا و فرض می‌شود تجزیه زلزله‌های کلیه نشان داده که مقاومت ترک خوردگی برخی ساختارهای موجود در حدود $\tau_{av} = \sqrt{\frac{1}{12}} \cdot 14.5 \text{ kg/cm}^2$ است. بنابراین

$$\tau_{av} = \alpha_{q} \cdot c_{e} = \sqrt{120} \cdot 14.5 = 14.5 \text{ kg/cm}^2$$

مدل HMECH برای محاسبه مقاومت خمیشی طبقات از برنامه استفاده شده است. این برنامه با توجه به مشخصات مقطع ایبرها و سون‌ها و توان قدرت مقاومت خمیشی اعضای هماهنگ و با مقاومت آنها توان می‌تواند پلاستیکی ترین‌ها با سنتوترا را تعیین و سپس طرفیت مقاومت جایی طبقات را محاسبه نماید [8].

مرحله اول به صورت ساختارهای تانم طبقه بندی می‌شود.

3- مثال عدای

برای نشان دادن قابلیت روش مذکور، یک ساختار 4 طبقه بینی سالم موجود طی گام‌های متوازی زیر بررسی می‌شود.

3-1 گام مدلهای سازه‌ای

ساختار مورد مطالعه یک قلب فضایی خمیشی بین آرم است. مشخصات سازه‌ای این ساختار در شکل (17) نشان داده شده است. سیستم قفل‌های نوع تریومیبل هندسه شده بارهای مردنه و زنده به ترتیب برابر 200 و 200 کیلوگرم بر متر سازمان میری و ضرب اطمینان طراحی پی‌ها برای است. مقاومت جایی شدن آرمان‌های مصرفی سنتوترا و سنتوترا برابر مقاومت مشخصه بین برابر ممکن $f_{p} = 0.21 t / c m^{2}$ در $f_{c} = 2.4 t / c m^{2}$

نظر گرفته شده است. تولید خمیشی را سیستم بایار بار آلوده و لرزه‌برداری محسوب می‌شود. برگزاری لرزه‌های بین‌میانه آسیب آنها نامه زلزله ایران (استاندارد 2008) و ویرایش اول [13] و طراحی براساس

استقلال، سال 20، شماره 2، اسفند1380

70
جدول ۳- بارگذاری و ضرب پرش طبقات (برحسب تن- سانتی‌متر)

<table>
<thead>
<tr>
<th>طبقه (i)</th>
<th>W_i</th>
<th>H_i</th>
<th>F_i</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴</td>
<td>۱۰۹</td>
<td>۲۰۵۳</td>
<td>۱۷۷۵</td>
<td>۲۳</td>
</tr>
<tr>
<td>۳</td>
<td>۱۰۹</td>
<td>۱۷۷۵</td>
<td>۱۱۴۴</td>
<td>۱۷</td>
</tr>
<tr>
<td>۲</td>
<td>۱۰۹</td>
<td>۱۱۴۴</td>
<td>۴۷۰</td>
<td>۸۴</td>
</tr>
<tr>
<td>۱</td>
<td>۱۰۹</td>
<td>۴۷۰</td>
<td>۳۸۴۰</td>
<td>۶۴</td>
</tr>
</tbody>
</table>
سیستم در حد ارتجاعی و
 جاده شدن هستند که از ناحیه خطر مربوط به یخ‌گیری می‌شوند.

\[\mu_e = \frac{\delta_{\text{max}}}{\delta_y} = \frac{S_D K_g}{\left(\frac{g}{4\pi} \right)^\frac{1}{2} K_g} \]

\[\delta_{\text{max}} \] در معادله (16) به جایی جابجایی طنابی برای زلزله 1.0g و

\[\delta_y \] در معادله (15) با جایگزینی سایر‌پایه سازمان تا حدی معلامه.

\[C_{byl} = \frac{0.29 \times 0.66 \times \frac{4 + 1}{4 + 2}}{0.16} \]

3-3. گام ارزیابی ایمنی مقاومت

ضریب برخ پایه عرضی (C\text{byl}) از معادله (19) و به کمک

\[(\mu_1) = 0.431, \quad (\mu_2) = 0.809, \quad (\mu_3) = 1.091 \]

\[(\mu_4) = 1.214 \]

\[C_E = 0.886S_a = 0.93 \]

\[\text{برای زلزله } 0.3 \text{g} \]

\[C_E = 0.45g \]

\[C_E = 1.24 \]

\[\text{مقابله ضریب برخ پایه ساخته، } C_{byl} \] با ضریب

\[C_E \]

در این گام به سیستم تک جرمی معادله و طیف‌پذیر

\[0.21 \]

\[K_g = C_{byl} / 0.886 = 0.18 \]

\[\text{حال با مراجعه به طیف پایستردی ایمینی، } \] شکل پایه

\[\text{از ارزیابی روش ارائه شده، سازه مورد مطالعه با } \text{برای}

\[\text{IDARC مدلسازی و محاسبه است [12], این برنامه برای}

\[\text{تحلل دینامیکی خطر و تعیین ضریب ساخته‌پایه}

\[\text{بینی مناسب همراه با } K_g. \text{ضریب برخ پایه }

\[\text{حاصل از این برنامه } 0.25 \text{است که در محاسبه }

\[\text{ریز ارائه شده مطالعه است. مهم‌ترین }

\[\text{مکانیزم‌شناسی خمشی

\[\text{تیرها و خسارت شدید طبقه دوم به عنوان اثرات زیر آن نتیج}

\[\text{می‌باشد.} \]
جدول ۴- مقاومت برخی و خمش برحسب ضربه برش طبقات (برحسب تن - متر)

<table>
<thead>
<tr>
<th>(\overline{C}_{yi})</th>
<th>(\overline{C}_{i})</th>
<th>(C_{byi})</th>
<th>(Q_{byi})</th>
<th>(C_{sci})</th>
<th>(Q_{sci})</th>
<th>(\sum A_i)</th>
<th>(\sum W_i)</th>
<th>طبقه (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1</td>
<td>1/1</td>
<td>0/19</td>
<td>98/2</td>
<td>2/25</td>
<td>240</td>
<td>1/190</td>
<td>1/190</td>
<td>4</td>
</tr>
<tr>
<td>0/9</td>
<td>1/4</td>
<td>0/26</td>
<td>67/9</td>
<td>1/12</td>
<td>240</td>
<td>1/195</td>
<td>218</td>
<td>3</td>
</tr>
<tr>
<td>0/66</td>
<td>1/2</td>
<td>0/19</td>
<td>33/7</td>
<td>0/75</td>
<td>240</td>
<td>1/195</td>
<td>377</td>
<td>2</td>
</tr>
<tr>
<td>1/0</td>
<td>1/0</td>
<td>0/49</td>
<td>127</td>
<td>0/74</td>
<td>222</td>
<td>2/12</td>
<td>436</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول ۵- پاسخ غیرخطی و شکل پذیری سیستم تک جرمی معادل و طبقه اول ساختمان (cm)

<table>
<thead>
<tr>
<th>(B H_o)</th>
<th>(\beta max)</th>
<th>(\mu)</th>
<th>(\delta max)</th>
<th>(K_y/K_g)</th>
<th>(K_y)</th>
<th>(K_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>26</td>
<td>>7</td>
<td>>13</td>
<td>>25</td>
<td>0/1</td>
<td>0/18</td>
<td>0/3</td>
</tr>
<tr>
<td>>18</td>
<td>>13</td>
<td>>24</td>
<td>>35</td>
<td>0/4</td>
<td>0/18</td>
<td>0/45</td>
</tr>
</tbody>
</table>

شکل ۱۸- طبقه پاسخ غیرخطی زلزله ۱۹۵۲ نفت [۱۱]

استقبال، سال ۱۳۸۰، شماره ۲، اسفند
نظریه حاکم، عملیات ارزیابی سیب‌سایر ساده و با صرف زمان بسیار اندک قبل انجام است. بنابراین با مسائل و روشهایی که همان برداشت‌های مبتنی از ساختمان است، شروع شده و با کمک گیری از مداخلات پیچیده‌ترین‌ها، مبادرت به ساده‌سازی برای ارزیابی این نوع سازه‌ها پیشنهاد می‌کنیم. برای اینکه این عمل پاسخ‌دهنده‌ای دیر بود، روش توصیع‌یافته حاکم از دقت مناسب، سرعت بالا و صرف‌هزینه کم برای ارزیابی است.

تشکر و قدردانی

بدین وسیله از حمایت مالی کمیته‌فرعی - تخصصی مقابله با خطرات ناشی از زلزله و لغزش‌های زمین - کمیته‌ملی کاهش شرایط، پیش‌بینی طبیعی و نگرانی از سایر سازمان‌ها و قدردانی به عمل می‌آید.

1. origin-oriented 2. degrading-trilinear 3. modified degrading trilinear

مراجع

6. ناطق الهه، ف.، اباصاله، ف.، ارزیابی مقایمت و عملکرد سازه‌های بتن آمره در برابر زمین‌لرزه، انتشارات پژوهشگاه
7. ناطق الهه، ف.، اباصاله، ف.، ارزیابی مقایمت و شبکه پیچیده‌ترین‌ها، ارزیابی مساحتی
8. ناطق الهه، ف.، اباصاله، ف.، ارزیابی مقایمت و شبکه پیچیده‌ترین‌ها، ارزیابی مساحتی
9. ناطق الهه، ف.، اباصاله، ف.، ارزیابی مقایمت و شبکه پیچیده‌ترین‌ها، ارزیابی مساحتی

IDARC

5- جمع‌بندی

این مقاله حاصل تحقیق ویژه‌ای است که برای کمیته فرعی تخصصی مقابله با خطرات ناشی از زلزله و لغزش‌های زمین برای توسعه روشی به منظور برآورد ارزیابی مقاومت و شکل پذیری ساختمان‌های بین مسطح کوتاه و کم ارتفاع در کشور صورت گرفته است. در این روش یک برنامه کام به گام برای تعیین مداخلات حاکم در آسپر پذیری سازه‌های بین انرژی شده است. در مرحله اول شاید در این مداخلات انجام شده اگر ارزیابی را نداشته کد لیکن همانگونه که در ارزیابی ساختمان نمونه دیده شد، پس از درک و تفسیر دقیق وارزه نامه

74

استقلال سال 1380 شماره 2 اسفند
ملی کاش بلايای طبعی - كمیته تخصصي زلزله
ارديبهشت 1379، 134 صفحه، (در دست چاپ).

13. آتیات نامه طرح ساختمانهای در پایگاه زلزله - استاندارد 8800 زلزله ایران. ورایش اول. مرکز تحقیقات ساختمان و مسکن، 1376.

15. خسین زاده، ن. ع. "مطالعه اجرای اثرات انریکنش خاک - سازه در آسیب ایزومتری لرزه‌ای ساختمانهای مجاور هم‌روی میز لرزان" پایان‌نامه دکتری، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، به راهنمايی دکتر فریدر ناطقی اهی (در دست چاپ).