تعیین تحلیلی عدید استکست دردها، ورودی مجاری

سیستم‌منشزی – علی‌اشرف اصغری

دا نشگان، دمنشته، مچپا ن... دا نشگان مکا کیک

مقید

مبدل‌های جراحی عموماً از تعدادی مجاری جراحی تضمین می‌شود که روی اصولی ساخته شده و موجب انتقال حاره‌ها به جراحی می‌شود. زیرا این مجاری مبتنی بر مراکز جراحی می‌باشند. در زمان مبدلا خود از مجاری انتقال حاره‌ها به جراحی می‌شود.

با توجه به این سیستم، فرزند یک جراحی انتقال حاره‌ها در زمان مبدلا خود از مجاری انتقال حاره‌ها به جراحی می‌شود. فرزند یک جراحی انتقال حاره‌ها در زمان مبدلا خود از مجاری انتقال حاره‌ها به جراحی می‌شود.

با توجه به این سیستم، فرزند یک جراحی انتقال حاره‌ها در زمان مبدلا خود از مجاری انتقال حاره‌ها به جراحی می‌شود. فرزند یک جراحی انتقال حاره‌ها در زمان مبدلا خود از مجاری انتقال حاره‌ها به جراحی می‌شود. فرزند یک جراحی انتقال حاره‌ها در زمان مبدلا خود از مجاری انتقال حاره‌ها به جراحی می‌شود. فرزند یک جراحی انتقال حاره‌ها در زمان مبدلا خود از مجاری انتقال حاره‌ها به جراحی می‌شود.
استقلال

هدرویدینامیک توسعه‌یا فتح‌ها، هیدروودمبی‌تان اجرایی ایجادی
دهانه‌روی را می‌شکست. این نوع جریان (جریان در حال توسعه
حرارتی و توسعه‌یا هیدرویدینامیک‌یا) اولین‌بار روند گرانز
در سال 1883 برای دهانه‌روی لوله‌ی یک‌نارسی شده است و
به‌سئیکه‌گران‌مصرفی است. وی از روش حاکم می‌باشد
(Seperation of Variables) برای حل معادله‌ی افزای استفاده
کرده، نتیجه‌ی بی‌ستوده بسیار به‌صورت یک سری نامحدود که شامل مقادیر
برداشته‌ی مسخوتوت باید می‌باشد با یک دردست
فوق برای دهانه‌روی لوله بی‌پرده و مواردی مجزا با مفهوم
مثلثی وی‌پی‌وی و جریان بین دو لوله هم مخورخل شده است. [1]

کاربرد عملی این مسئله در مدل‌های حرارتی مثل کندا نسی‌ها
و ابرای بی‌پرده برای سال‌هایی با اعداد بایدل تعادل 69/14، برگزاری 6،
می‌باشد.

اعکال عمده، حل سری نامحدود که با این روش بدست می‌آید،
می‌باشد با اینکه عامل نزدیک به‌دست آمده و هرودی است. مثلا در
4-10* 7 تعداد این جمله‌ی نزدیک مضر مصرف و مناسب را تعمیمی‌دهد.[1]

برای جریان نارس‌که مذکور تولو (Leveque) حل تقنینی
را برای نشان دهنده بی‌پرده نام‌گذاری شده و حل‌ولوم
نزدیک به‌دست آمده‌ی بدودی که برگز شاهکاری لازم‌ریاینداز
جواب بی‌پرده را بی‌صرفه‌ریا آید می‌باشد. [4]

برای جریان سیالاتی با اعداد بایدل تعادل نزدیک وی و پریده (ون‌ه
خیلی زیبا د) مثل مسئلهٔ تدریی پیچیده تهیه نشده است. در این حالت دیگر
فرض توزیع سرعت ترکیب جریان در حال بازدهی وابسته به

1 - فهرست علائم در نشان مقالهاب می‌شه است
ورودی مجزا گسترده همزمان سرعت و درجه حرارت وجود دارد و دو لایه مزی خارجی و هیدرودینامیک همزمان در حال رشد هستند. (Simultaneously Developing)

میباشد معاونت دیفرانسیل مقدار و انرژی رادره‌ها و یوکانی تا بتواند نمونه برداری و یوکانی تا بتواند نمونه برداری و یوکانی جمع‌آوری شود. در انتخاب محور سرعت دردها و یوکانی است که از هدایا زحل

معادله ممنتوم دردها و یوکانی بسته می‌آید.

برای حالت مداوم مینوکاری دردها و یوکانی بسته می‌آید.

وجود دارد. در روش انتگرالی که از مادافل انتگرالی مینوکاری و پیوستگی استفاده می‌شود، توزیع سرعت در لایه مرزی بوسیله و یک چندجمله‌ای که نتایج از روش‌های همچنین از مادافل برناولی در روی محورولوهک جریان فیزیک است استفاده می‌شود. این روش اولین پارامترش [3] Schiller جریان داخل لوله و دوم به موازی مورد استفاده قرار گرفت. روی

دیفرانسیل به روش خصی کردن معاونت در روش است. این است که جمله مرتبه می‌گیزد معاونت دیفرانسیل مینوکاری که منجر به است

بعضی کتاب‌نیست و نتایج می‌گیزد این ترتیب

معادله دیفرانسیل مینوکاری برای خاصیت تبدیل می‌شود.

\[ u \left( \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \nu \frac{\partial^2 u}{\partial x^2} \]

که در ۳، ۴ رابطه از است. این معاونت از نرم‌زار و انتهای مشخص خود و سپس یا. محور تابعی از ۴ و به دست می‌آید سبسب \( u \) محور دیل محاسبه می‌گردد: (۴) معاونت دیفرانسیل و پیوستگی روی سطح مقطع جریان انتگرال گرفته شده و درهم ادغام می‌شوند. (۴) معاونت دیفرانسیل روی محورولوهک جریان (۳) بدست می‌آید. این ترتیب

برای حالت مداوم مینوکاری دردها و یوکانی بسته می‌آید.

نهایتاً "افتفارا از معاونت دیفرانسیل روی محورولوهک محاسبه می‌گردد."
استقلال

این روش اولیه بایوپسیله، Langhaar، بکاربرده شده است.

نیز معادله متنوتو را بهتر سرعت زیرخوتی نموده است:

\[ \frac{\partial u}{\partial x} + \frac{\partial \phi}{\partial y} = 0 \]

که در آن (x) و (y) مربوط به جمله \( u \) و جمله دیگر. به معنی است. اگر بازدهی برای رازم می‌شود و معادله انتزاعی این انواع برای روند تفویض سرعت فقط درجه بهبود می‌یابد. دا رده‌بندی لوله، دو وضعیه مجزای و اجرا یکان در دو نمایشگاه یک روش با توانایی می‌باشد. ورودی در انرژی مشترکی، از روش‌های نیمه محدود و یا محدود و این در نتیجه استفاده کرده شده است در افزایش نیمه محدود برای حل معادله این روش انتزاعی که با استفاده از روشی خودکار در معادله که بسته است در معادله

Langhaar

که در آن (x) و (y) مربوط به جمله \( u \) و جمله دیگر. به معنی است. اگر بازدهی برای رازم می‌شود و معادله انتزاعی این انواع برای روند تفویض سرعت فقط درجه بهبود می‌یابد. دا رده‌بندی لوله، دو وضعیه مجزای و اجرا یکان در دو نمایشگاه یک روش با توانایی می‌باشد. ورودی در انرژی مشترکی، از روش‌های نیمه محدود و یا محدود و این در نتیجه استفاده کرده شده است در افزایش نیمه محدود برای حل معادله

Langhaar

که در آن (x) و (y) مربوط به جمله \( u \) و جمله دیگر. به معنی است. اگر بازدهی برای رازم می‌شود و معادله انتزاعی این انواع برای روند تفویض سرعت فقط درجه بهبود می‌یابد. دا رده‌بندی لوله، دو وضعیه مجزای و اجرا یکان در دو نمایشگاه یک روش با توانایی می‌باشد. ورودی در انرژی مشترکی، از روش‌های نیمه محدود و یا محدود و این در نتیجه استفاده کرده شده است در افزایش نیمه محدود برای حل معادله

Goldberg

داده است که این‌ان در معادله (1) موجود می‌باشد.
شماره تحلیلی عددها و نسبت... 

نوعت موضوع بدست آمده توسط آنان گسترا زمینه را بدست آمده میدهد.


توجه کنید "عدد" عددها هر روزدها به رویتی به جهت تحلیلی که مختصاً "عدد" عددها را دارد هر روزدها در محوریت نامبرت تا به‌طور مختصر محوریت مجزا و اخوان سیال به پیش بینی کننده به‌طور نمی‌دهد.

در ریسک حاضر گسترش هم‌زما با بروزل سرعت و درجه حرارت در دهنه و روده جریان بین دو وضعیت موارد جز چه برای سیال غیرقابل تراکم با اکسسوری‌های ناتوانا بعیدر اندل حدودی یک روش جز چه مطالعه است. 

روش جز چه Leveque "کم‌ترین نسبت" کمیتی از گرمای درجه حرارتی در محوریت شده و سپس را بطقه تحلیلی برای عدد عددها و نسبت میدهد و عددها و نسبت میدهد برای این نوع جریان به رویتی همچنین تنها به سبب کم‌ترین نسبت آن آمده می‌بوده.

کم‌ترین نسبت آن آمده می‌بوده.

Leveque استفاده دارد هواچسب و با توجه به فرضیات باکی رفته در روش بینی شده و نسبت دو از این می‌باشد. 

تقریب نسبت "خوب ضرر" بیان جریان در محوریت را نمود.

پیش بینی نمود.
تجزیه تحلیل

(4) جریان دو سر میکرودریدسینا میکرو درده شده‌روی:

همانطور که قبل اشاره شده بود، تعداد $4 - 10^6$ جمله‌ای سری گرا ترکیب‌های مناسب برای عدد گونه ی کنار نما در مرجع [3] این مسئله را با استفاده از تحقیق در Leveque حل نموده است.

فرض نمودهای فاصله ترکیب به نقطه‌ای کم‌تر از مرز حوا ری اعمال می‌گردد، پس شکست‌پذیری مزی حوا ری بسیار کم است. توزیع سرعت در داخل لایه مزری حوا ری علی‌اکت و بهتر دیگر:

$$u = Cy$$

$$\tau = \mu \left( \frac{\partial u}{\partial y} \right)_0 = \mu C$$

$$C = \frac{\tau y}{\mu}$$

با توجه به بروز کردن سرعت دو سر میکرودریدسینا فاصله شکست برزی و درنتیجه‌های مقا درندهای بینی است. درنتیجه معا دلته‌های نرخی بحورت زیردردیا به‌دست می‌آید:

$$\frac{1}{y} \frac{\partial^2 \tau}{\partial y^2} = \left( \frac{C}{a} \right) \frac{\partial \tau}{\partial x}$$

معادله فوق به روش طلای شمالی قابل حل است. برنامه اینکه بررسی روش حل پایین آن با استفاده از روش یک‌ابعادی، یکی از مقدمات برنامه‌آوری بوده است. مدل گذاری با پایین ترکیب اعمال میکرودریدسینا در واقع در دو دسته قرار دارد: درجه حرارت سیال بهره‌برداری حرارت سیال و روده ورودی می‌برد. با پایین شرط تقارن در دو دسته معادله به یک ناحیه دو عددی دو روش تکنیک می‌شود. با این فرضیات حل زیر را برای دمای و روده لوله‌بندی Leveque نشان می‌دهد.
درآمده فرآیند گیره‌بردگی از 
برهنه لوفیه با درجه حرارت

\[
\theta = \frac{T_o - T}{T_1 - T} \quad \eta = y \left( \frac{C}{\alpha x} \right)^{1/3}
\]

در آن، \( T_0 \) و \( T_1 \) دو درجه حرارت مختلفی هستند که در جریان‌های مختلفی می‌باشند.

اکثر الگوها در گونه‌های مختلفی از یکدیگر جداگانه‌اند. برای بررسی این الگوها، می‌توان بررسی‌های محاسباتی انجام داد.

\[
\theta (\zeta, \eta) = \frac{T-T_0}{T_1-T} = \sum_{n=0}^{N} \zeta^n \eta (n) \quad \zeta = \left( \frac{9 x}{\alpha x} \right)^{1/3}
\]

معادله دیفرانسیل درجه‌ی یکم در حال بیشتری است.

جبران درجه‌ی توسعه‌ریزی و هم‌زمان رشد

\( b \) (Simultaneously Developing Flow)

ابتدایی را درنظر گرفته که 

\[
u = \frac{T \omega (x)}{\mu} y
\]

با این حال، هنگامی که به درجه‌ی دوم می‌رسیم، می‌توانیم:

\[
\frac{2 \pi T}{\mu \alpha} \frac{\sqrt{\frac{2 \pi T}{\alpha \mu}}}{y^2}
\]
با انتخاب مسیر جدید \( y \) هر دوی زیر فرم معادلات نیز به حالت (a) تبدیل می‌شود:

\[
\begin{align*}
\frac{ds}{\tau_w(x)} &= \frac{\mu a}{\tau_w(x)} \frac{dx}{s}, \\
\frac{dT}{g s} &= \frac{1}{y} \frac{\partial^2 T}{\partial y^2}
\end{align*}
\]

که زحل این معادله به روش تشابه حوزه بزرگ و عددهای نسبی به سمت می‌آید:

\[
0 = \frac{T_0 - T}{\frac{T_0 - T}{1}} = \frac{1}{0.893} \int_0^\infty \exp(-w) \left( \frac{1}{9s} \right)^\frac{1}{3} \text{d}w, \quad w = \frac{y}{\frac{1}{9s}}
\]

\[
Nux = \frac{x}{\frac{0.893}{1} \left( \frac{1}{9s} \right)^\frac{1}{3}}, \quad s = \mu a \int_0^x \frac{dx}{\tau_w(x)}
\]

به این ترتیب حالت برخی فرآیند هیدروژنامیک سیل شده در دما نورودی می‌تواند عددهای نسبی را محاسبه نمود.

عددهای نسبی در این حالت برخی فرآیند (a) به صورت تا بسیار زود

\[
x^*\text{ستقل} \quad \text{در جواب مشکلهای بسیار مهم} \quad \text{هدف اصلی بسیاری} \quad \text{در حال امکان‌هایی} \quad \text{ حتی از هیدرودینامیک عددهای نسبی تابعی از}
\]

(3) جریان در حال توسعه حرارتی هیدرودینامیکی با فرض \( 0 \leq \tau \leq 1 \) در

فوایل نزدیک به هدف

اگر یک همان جمله قسماً "دقیق معادله‌ای برای جریان

سیال آرام یا گیرنده شرکت‌ها خواص هیدرودینامیک تایید می‌گردد،

ماوری به این ترتیب که ایجاد می‌شود. در جریان از شخصی بدهی به

دوم گرفته ممکن است سیال "خوب برای لوله‌های دارای توسعهی" در

هدف ایجاد پیدا کردن عددهای نسبی در حال توسعه حرارتی در

دها و همچنین با استفاده از این روش که مولفهٔ صوتی درجه‌ی \( \tau \) نیز
در مداخله‌هایی همچون مسئله‌های انتقال حرارت، می‌باشد. از هدایا تولید و تغییرات اتلافکاری نگاریان با استفاده از مدل‌های جدید نظری در مسیر می‌باشد.

تنها تکنیکی که در این پخش یک روش قدیمی می‌باشد. همیشه پروفیل سرعت دروازه تری دیگر به هدایا است. این تقریب با توجه به بررسی ها کروی نتایج بخش (a) و (b) انجام‌دهد است به‌بینار مناسب است.

راهنمای حل [15] Worsφe - Schmidt

و برای رابطه سبیلی تکمیل نموده‌اند. در حالی که [14] Nunge کارا را به روش نظری انجام داده‌اند. و نشان داده است تقریب پروفیل سرعت خشی در میانه‌های دیواره البته بسیار بجا و مناسب است.

مطالعات اندیس ویسکوزی برای جریان در خروجی توسه‌هایی با استفاده از فرمول‌های کشش گیر رارت است. از

\[ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \alpha \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \]

این معادلات رابطه‌ای است به شکلی تبدیل نموده‌اند. آن‌ها به

حل تاما بند کرد. (می‌توانید به‌طور گسترده‌ای از این مورد استفاده کنید.) من می‌بایست در این تبدیل از مدل‌های مورد استفاده می‌باشد. در این تبدیل از مدل‌های مورد استفاده می‌باشد. این مدل‌ها به‌طور گسترده‌ای در معادله‌های حاصل از

\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \]

\[ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \]
استقلال

\[
\frac{\partial T}{\partial x} = \alpha \frac{\partial}{\partial \psi} \left( u \frac{\partial T}{\partial \psi} \right)
\]

فرم معادله (2) (شیب معادله انتزاعی) بررسی شده است. \(\psi\) مختصات فرضی خود را بروزدخلای \(u\) به شرح ذیل از معادله انتخاب گذاشته شد: [3]

\[
\frac{\partial T}{\partial s} = \frac{\partial}{\partial \psi} \left( \psi^2 \frac{\partial T}{\partial \psi} \right)
\]

\[
ds = \alpha \left(\frac{2 \tau_\omega(x)}{\mu}\right)^{\frac{1}{2}} dx
\]

معادله (3) به روش تشابهی قابل حل است و با استفاده از تغییر متغیرتعدادی

\[
n = \frac{1}{2} \left(\frac{4}{9S}\right)^{\frac{1}{3}}
\]

\[
\frac{d^2 T}{d \eta^2} + 3 \eta \frac{dT}{d \eta} = 0
\]

شرايط مرزي برای معادله (4) مبارزت از:

\[
y = 0 \quad \Rightarrow \quad T = T_0 \quad (\psi = 0, \eta = 0)
\]

\[
y \to \infty \quad \Rightarrow \quad T = T_1 \quad (\psi \to \infty, \eta \to \infty)
\]

\[
x = 0 \quad \Rightarrow \quad T = T_i \quad (s = 0, \eta = \infty)
\]

معادله (4) با شرايط مرزي فوق قابل حل است. توسيع درجه حرارت بسیار در معادله (4) می‌باشد:

\[
\frac{T - T_0}{T_1 - T_0} = \frac{1}{0.893} \int_0^n \exp \left( -\frac{3}{\eta} \right) d \eta, \quad n = \frac{1}{2} \left(\frac{4}{9S}\right)^{\frac{1}{3}}
\]

\[
\psi = \frac{\tau_\omega(x)}{\mu} + \frac{\psi^2}{2}
\]

\[
ds = \alpha \left(\frac{2 \tau_\omega(x)}{\mu}\right)^{\frac{1}{2}} dx
\]
تعیین تحلیلی عدده‌ی نولت

عدد نولت موضعی \( \text{Nu}_2 \) را می‌توان با توجه به تعیین‌ها دانست توزیع درجه‌ی حرارت محاسبه‌نامده شود.

\[
\text{Nu}_2 = -\frac{\frac{\partial T}{\partial y}}{\frac{T_0 - T_1}{T_1}} = \left( \frac{\frac{T_1}{y}}{\frac{\eta}{y}} \right) = \left( \frac{\frac{T_1}{y}}{\frac{\eta}{y}} \right) = \frac{\frac{1}{3}}{\frac{4}{9}}
\]

که از آنجا بگذاریم و خلاصه نمودن:

\[
\text{Nu}_2 = \frac{\frac{1}{2}}{0.893} \left( \frac{x}{1} \right)
\]

همان‌طور که دیده می‌شود عدد نولت موضعی محورت دارا بعی ی از گری باشد.

برنیتز، بخش‌آمده است، با داشتن توزیع تنش برتری از یک‌طرف هیدرودینامیکی در رسانایی دیواره‌های نوردی عدد نولت موضعی مشخصاً "بخش‌های تنش باعث آزمایش" و "عدد NRE در رسانایی نوردی دیواره‌های نوردی بوده‌ایم.

بنابراین می‌توان داشت درجه‌ی حرارت متوسط و آن‌ارا مقدار عدد نولت موضعی و همچنین عدد نولت موضعی می‌شود و محاسبه می‌باشد، عدد نولت موضعی می‌شود:

\[
\text{Nu}_m = 1 - \int_0^{x} \frac{\text{Nu}_2}{\text{dx}}
\]

\[
\text{Nu}_1 = \frac{\text{Nu}_2}{\theta_m}
\]

\[
\text{Nu}_2m = \frac{1}{4x^{\frac{1}{3}}} \left( 1 - \theta_m \right)
\]

\[
\text{Nu}_1m = \frac{1}{4x^{\frac{1}{3}}} \ln \left( \frac{1}{\theta_m} \right)
\]

(8) شیفت ترکیبی برای جریان یابی دوم موضعی زی.
توظیف مناسب برای بررسی داشته باشید که روند ارایه کننده کان، بر خورداری و قابل اندازه‌گیری بوده و یا در نظر گرفته، رشد بی‌درجه‌ای زاست و رشد دیگری نمی‌باشد. در مورد بررسی دقت‌گرایانه برای اندازه‌گیری به‌طور آینده و هرچه بزرگ‌تر تشخیص‌برآورد مقدار و دقت‌گرایانه تغییرات و همچنین متفاوتی در روش‌های مختلف روش‌های خواهد بود.

برای حل مسئله هیدرودینامیکی دردناکه ورودی‌های دوگانه‌ای می‌باشد. با استفاده از داده‌های مصنوعی و نیز ساختار می‌باشد. در میزانی که برای بررسی دقت‌گرایانه، ارائه‌ای از آن نتیجه می‌شود. در شرایط‌های مختلف، برای تشخیص داده‌ها در این شرایط، نتیجه‌گیری برای توزیع سرعت و تنش بررسی نیستند.

معادلات گاوسی مصنوعی و ویژگی‌های آن با انتخاب

\[
\tau_w(x) = \frac{u(\frac{3u}{2y} - \frac{u}{y})}{\rho} = \frac{d}{dx}(u_1^2 \delta_2) + \delta_1 \frac{du_1}{dx} \tag{14a}
\]

\[
\delta_2 = \int_0^\delta \frac{u}{u_1} \left(1 - \frac{u}{u_1}\right) dy \tag{14b}
\]

\[
\delta_1 = \int_0^\delta \left(1 - \frac{u}{u_1}\right) dy \tag{14c}
\]

رابطه‌ای دیگری نیز از بین یگرای خرم‌یادی می‌باشد. جمع‌میانی در بسیاری از رودخانه‌های دیگر، پیش‌بینی می‌باشد:

\[
\overline{u} = \int_0^\delta u \, dy + u_1(a - \delta) \tag{14}
\]

\[
a(1 - \overline{u}) - \delta \cdot \overline{u} = 0
\]
شیب‌ین تحلیلی عدد‌توسط...

سیس برتولف روش توزیع سرعت را در [کارمن - فولهایسن] داخل لایه برش‌کنندهِ یک پیاده‌سازی چندجمله‌ای از $y$ (مثلث‌نوار دوم یا نمودار سوم) که دارای قراردادی یک مثلثی از هستند دستی دستی و ریاضی آنها با اعمال شرایط مرزی دردی‌رویه درجا و ریزلاه و معادلات (12) و (13) بست می‌باشد.

را بیشتر ساده و ساده‌تر کنید که کاملاً برای توزیع سرعت در لایه سردر مزیر استفاده می‌شود و روش پیشین است:

\[ u = u_1 \left( 2 \left( \frac{y}{\delta} \right) \left( \frac{y}{\delta} \right)^2 \right) \quad 0 < y < \delta \]  

\[ \begin{aligned}
  u &= 0, \\
  \frac{\partial u}{\partial y} &= 0
\end{aligned} \quad y = 0 \quad y = \delta \]

اگر شرط مرزی را به شکل دیفرانسیل می‌پذیریم:

\[ \left. \frac{2}{y^2} \frac{\partial u}{\partial y} = \frac{1}{\mu} \frac{\partial p}{\partial x} \right|_{y=0} \]

با را راد دن توزیع سرعت در مزیر (14) در معادلات (12) و (13) با پیچیده مشابه می‌باشد:

\[ \delta_1 = \frac{\delta}{3}, \quad \delta_2 = \frac{2}{15} \delta \]

\[ 2v \left( \frac{u_1}{\delta} \right) = \frac{u_1}{\delta} \frac{d}{dx} \left( \frac{2}{15} \delta \right) + \left( \frac{9}{2} \right) \frac{u_1}{\delta} \frac{du_1}{dx} \]

\[ \frac{\delta}{a} = 3 \left( 1 - \frac{u}{u_1} \right) \]

و با پیچیده در معادله (12) به جای $\delta$ می‌باشد:

\[ dx = \frac{3}{10} \frac{a}{v} \left( \frac{u_1 - u}{u} \right) \left( \frac{9}{2} \right) \frac{u_1}{u_1} \frac{du_1}{dx} \]
استقلال

فرم بدون بعد معلامه (15) عبارت است از:

\[ \frac{dx^+}{x^+} = \frac{3}{160} \left( \frac{U_1^* - 1}{U_1^*} \right) (9U_1^* - 7) \frac{du_1^*}{dx} \]  

برای جراین توسعه با ظرفیت 1.5 معمولاً (U_1^* = 1.5) است. با استفاده از تغییرات سرعت بسته به نسبت عمق به سمت پروفیل سرعت توسعه برای طی میکنند و زیرا وقتی به سمت 1.5 میله میکنند به سمت درون میکنند. در نتیجه به داده می‌توان از تغییرات در معلامه (16) استفاده کرد:

\[ U_1^* - 1 = \frac{9U_1^* - 7}{\sqrt{\frac{160x^+}{3}}} \]  

همچنین با انتگرال گیری از معلامه (16) رابطه بین x^+ و U_1^* به دست می‌آید:

\[ x^+ = \frac{3}{160} \left( 9U_1^* - 161U_1^* - \frac{7}{U_1^*} - 2 \right) \]  

تنش برخی با داشتن پروفیل سرعت و رابطه بین x^+ و U_1^* به صورت تابعی از معمای سیستم است:

\[ \tau = \mu \cdot \frac{3a(1 - \bar{U})}{U_1} \]  

برای بدست آوردن توزیع تننش برخی بر حسب x می‌باشد:

\[ \tau = \frac{2 \mu U_1}{3a(1 - \bar{U})}, \quad \tau = \frac{2 \mu U_1}{3a(1 - \bar{U})} \frac{U_1^*}{(U_1^* - 1)} \]
حساب $x^+$ بدست آورده اما بطور عادی معادله (18) این کارامکسان
پذیرفته است، بنابراین معادلات زیر مجموعه "توزیع تنش برخی رادر
دهانه ورودی بر حسب $x^+$ ارائه می‌شوند:

$$\tau_\omega = \frac{2 \mu U}{3a} \frac{u_1^2}{u_1^* - 1} \quad \text{(20)}$$

$$x^* = \frac{3}{160} \left[ \frac{9u_1^*}{1} - 161n_1^* \frac{7}{u_1^*} - 2 \right] \quad \text{(21)}$$

ولی اکر از معادله (17) می‌دانیم که انتقای $u_1^*$ استفاده شده‌شد.
بنابراین مسئله تابعی از $x^*$ بدست می‌آید:

$$\tau_\omega = \frac{2 \mu U}{3a} \left( 1 + \frac{\sqrt{\frac{160}{3} x^*}}{\sqrt{\frac{160}{3} x^*}} \right) \quad \text{(22)}$$

که البته این توزیع تنش برخی دقت معادله (20) رادرانیست.

(5) عدد‌نول‌سیت‌برای چیزی نبین دو وسیله می‌زی:

(6) بدست آمده برای عدد‌نول‌سیت دریخت (c) معادله معادله

(5) تابع محاسبه از تنش برخی‌توده ودقت آن بستگی به رابطه
توزیع تنش برخی در دما بهره‌وری دارد بنابراین با توجه به مواسط
بدست آمده برای توزیع تنش برخی در دما بهره‌وری معادله

(6) و (21) عدد‌نول‌سیت مرتبه‌راتا مناسب به معادله وسیله با نمای
بدست آمده از روش‌های عددی ویا روش‌های دیگرکه دیگران به‌دست آوردند
و نتایج آنها به‌صورت منحنی رس شده‌اند، مقایسه می‌شوند. تابع
توزیع تنش برخی از معادله (21) عبارت است:

عده‌دوسیت بسته‌ای به‌استفاده زمان‌داره (5) 

\[
\tau_w = \frac{8 \mu U}{3d} \frac{\left(1 + \frac{160}{3x} \right)^{\frac{2}{3}}}{\sqrt{\frac{160}{x}}} 
\]

\[
Nu_x = 0.242 \frac{(1 + \frac{160}{3 pr \frac{x}{2}} \frac{1}{2}) x^{-\frac{1}{2}}}{(1 + \frac{160}{5 pr \frac{x}{2}} \frac{1}{2}) x^{-\frac{1}{3}}} 
\]

(22)

هم‌اکنونکه از زمان‌داره (22) دیده می‌شود عده‌دوسیت مشخصابصورت

تابعی از \(x\) و عده‌دوسیت بسته‌ای به‌استفاده زمان‌داره (5) است. اگرچه دقیقاً رابطه از زمان‌داره (5) مشخص نشده‌اند، اما دراین مکان تابعی از زمان‌داره (5) مشخص می‌شود که تابعی از \(u_1\) رابطه‌ای است و عده‌دوسیت نیز بطور تابعی از \(u_1\) بسته می‌شود که تابعی از \(u_1\) مشخص و مکان؛ ابتدا نتیجه‌گیری از بستگی به

در رابطه (22) عده‌دوسیت لازم است، مشخص می‌کنیم:

\[
I = \int_0^\infty \tau_w(x) dx = d.Re \int_0^\infty \tau_w(u_1) \frac{1}{u_1^{\frac{1}{2}}} dx \frac{1}{u_1^{\frac{1}{2}}} 
\]

\[
I = d.Re \frac{8 \mu U}{3d} \frac{U_1^{\frac{1}{2}}}{U_1^{\frac{1}{2}} - 1} 
\]

\[
I = d.Re \sqrt{\frac{8 \mu U}{3d} \frac{3}{160} \left\{ \frac{3}{(U_1^{\frac{1}{2}} - 1)^{\frac{1}{2}}} - 14(u_1^{\frac{1}{2}} - 1)^2 + 14\tan^{-1}\sqrt{u_1^{\frac{1}{2}} - 1} \right\}} 
\]

با افرادان این نتیجه‌دار می‌شود (6) و خلاصه‌نمودن، نتیجه‌داکنی
تعیین تطبیقی عددهای نسبت...

برای عددهای نسبت بصورت زیربردهست می‌سیند:

\[
\begin{align*}
\text{Nu}_2 &= 2.23 \times \frac{1}{\text{Pr} \times \frac{1}{\text{U}_1}} \left( \frac{1}{\text{U}_1} \right)^2 \left( 30 \text{U}_1^{-1} - 1 \right)^2 - 7 \left( 3 \text{U}_1^{-1} - 1 \right)^2 \left( 1 + \tan^{-1} \left( \frac{\text{U}_1^{-1}}{3} \right) \right) \frac{1}{3} \\
x^* &= \frac{3}{160 \text{Pr}} \left( 90 \text{U}_1^{-1} - 1 \right) - \frac{7}{\text{U}_1} \\
\text{Nu}_2 &= 2.23 \times \frac{1}{\left( 3 \frac{\text{Pr}^2}{\text{Pr} + 1} \right) \left( 1 + \xi \right) \frac{1}{3} } \left( 1 + \xi \right) \frac{1}{3} + 7 \tan^{-1} \left( \frac{\text{U}_1^{-1}}{3} \right) \frac{1}{3} \right)
\end{align*}
\]

(22)

مطابق با (23) بایستی بسیار ریخته‌گذاری عددهای نسبت را در داده‌ها و روشی برای جریان در حال توسه‌بندی مانند بسته می‌شود، عددهای نسبت مناسب آزمایشی "بصورت تایپی" از x^* و Pr نزدیک به x^* و Pr می‌باشد. این مطالعه در حقیقت دوی رابطه تطبیقی عددهای نسبت در مورد استفاده از x^* و Pr با استفاده از x^* و Pr سادگی در مطالعه (23) بصورت تایپی از x^* و Pr و x^* و Pr می‌باشد در نتیجه نسبت برای عددهای نسبت که بر حسب تایپی از x^* و Pr می‌باشد

از رابطه تطبیقی (17) استفاده گردید:

\[
\begin{align*}
\text{Nu}_2 &= 2.23 \times \frac{1}{\left( 3 \frac{\text{Pr}^2}{\text{Pr} + 1} \right) \left( 1 + \xi \right) \frac{1}{3} } \left( 1 + \xi \right) \frac{1}{3} + 7 \tan^{-1} \left( \frac{\text{U}_1^{-1}}{3} \right) \frac{1}{3} \\
\text{Nu}_2 &= 2.23 \times \frac{1}{\left( 3 \frac{\text{Pr}^2}{\text{Pr} + 1} \right) \left( 1 + \xi \right) \frac{1}{3} } \left( 1 + \xi \right) \frac{1}{3} + 7 \tan^{-1} \left( \frac{\text{U}_1^{-1}}{3} \right) \frac{1}{3} \\
\text{Nu}_2 &= 2.23 \times \frac{1}{\left( 3 \frac{\text{Pr}^2}{\text{Pr} + 1} \right) \left( 1 + \xi \right) \frac{1}{3} } \left( 1 + \xi \right) \frac{1}{3} + 7 \tan^{-1} \left( \frac{\text{U}_1^{-1}}{3} \right) \frac{1}{3} \\
\end{align*}
\]

(24)

به این از دیگر، این رابطه به دو داده (23) و (24) است که در مطالعه (22) ارائه‌داده‌ها، تشریح بررسی را از داده (23) ارائه‌داده‌ها، تشریح بررسی و در داده‌های دو داده بسیار متفاوت است (تغییرات در تغییرات در معادله (23) و ژنری نسبت...
استقرار

عدد نوسیله‌‌های هم‌روله از مکانیک ماده است. با توجه به معادله (۲۳) ارجعیت دارد.

برای محاسبه عدد نوسیله متوسط ابتدا با یک از معادله (۲۴) بدست آوریم. انتگرال گیری از عدد نوسیله موقعی بزرگ‌تر مقدار معادله (۲۲) بطرق تحلیلی امکان پذیریست. با ارائه قا برد در نویسندگی می‌توان برای عدد متوسط نوسیله نیز تابعی تحلیلی بدست آوریم. که دو راه برای محاسبه عدد نوسیله به روش گریزی می‌توان با استفاده از معادله (۲۵) با بیشتری در رابطه با عدد نوسیله

برای محاسبه عدد نوسیله (۲۴) داریم:

\[
N_u = 0.242 \left( \frac{1 + \sqrt{160} \sqrt{x^2 Pr}}{x^2 Pr} \right)^{-\frac{1}{2} \frac{1}{Pr}} - \frac{1}{6} \left( \frac{1}{x^2 Pr} \right)
\]

\[
N_u = \left( \frac{160}{3} \right)^{\frac{1}{3}} \left( \frac{1}{0.893} \right) \left( \frac{1}{3x36} \right)^{\frac{1}{3}} \left( \frac{1 + g \cdot Pr}{1 + g} \right)^{\frac{1}{3}} \left( \frac{g}{\frac{1}{3} + g + \frac{1}{5} g \cdot \frac{1}{3}} \right)
\]

\[
g = \left( \frac{160}{3} \cdot x^2 Pr \right)^{\frac{1}{2}}
\]

\[
\theta_m = 1 - 4 \int_0^x N_u \cdot dx
\]
بعد از انگرال گیری خواهیم داشت:

\[ \theta_m = 1 - 1.3276944 \Pr \left\{ \frac{2}{3} \left( 3t^5 - t^2 \right) \right\} \]

\[ t = \left( \frac{1}{3} + \frac{1}{5} \left( \frac{160}{3} \times \Pr \right) \right)^{\frac{1}{3}} \]

\[ \text{Nu}_1 = \frac{1}{4x^*} \ln \left\{ 1 - 1.3276944 \Pr \left\{ \frac{2}{3} \left( 3t^5 - t^2 \right) \right\} \right\} \]

\[ \text{Nu}_2 = \frac{1}{4x^*} \left\{ 1.3276944 \Pr \left\{ \frac{2}{3} \left( 3t^5 - t^2 \right) \right\} \right\} \]

\[ t = \left( \frac{1}{3} + \frac{1}{5} \left( \frac{160}{3} \times \Pr \right) \right)^{\frac{1}{2}} \]

نکته‌های مربوط به درمادلات (۱۵) و (۱۶) این است که هر یک از نرخ‌های به دست آمده را برای بررسی به‌کمک می‌توانید از دست‌دادن متوسط مربوط به بسیار جویند آزمایش از جمله می‌تواند به دست آید. در اینجا نمودار (۱۹) را می‌توانید با دقت بسیار بررسی کنید.

ملاحظه کنید که راه‌حل مبتنی بر استفاده از یک برای کاهش سرعت درجه‌بندی به‌طور کلی برای بررسی تنش برشی کی به‌کمک می‌باشد.

\[ u = \frac{3}{2} \left( \frac{y}{\delta} \right)^{\frac{1}{2}} - \frac{1}{2} \left( \frac{y}{\delta} \right)^{\frac{3}{2}} \]
دراین حالات نیزیکی از رابط مزیت که از معادله دیفرانسیل
می‌توان رای دیواره حاصل میشود اره نیشود.
نتیجه، حاصل برای عدد ناولت موضعی، و متوسط باد نظرگرفته
توزیع سرعت در جسم‌ها به‌صورت استانداردی

\[
\frac{1}{\text{Nu}_2} = 4.7999 \left(1 + \frac{f^3}{5}\right) \frac{f}{Pr} \left(\frac{\text{Pr}}{13} x \frac{1}{\text{Nu}_2}\right)^{1/4}
\]

(24)

\[
\theta_m = 0.3461043 \frac{f}{Pr} \left(\frac{f^2(1+f^2)}{61} \right)^{1/3}
\]

(25)

\[
\text{Nu}_1m = \frac{1}{4x} \ln \left\{ 1 - 0.3461043 \frac{f}{Pr} \left(\frac{f^2(1+f^2)}{61} \right)^{1/3} \right\}
\]

(31a)

\[
\text{Nu}_2m = \frac{1}{4x} \left\{ 0.3461043 \frac{f}{Pr} \left(\frac{f^2(1+f^2)}{61} \right)^{1/3} \right\}
\]

(31b)

بحث و نتیجه‌گیری:

عدد ناولت متوسط برای دو وضعه، موازی (\text{Nu}_1m) با استفاده
از معادله (6) که به‌تدریج نتیجه‌گیری می‌شود، برای

تحلیل میباید برای اعداد ایرانی در حدود ۰.۱، ۰.۲، ۰.۵، ۱، ۲، ۵، ۱۰، ۲۰، ۴۰، ۸۰، ۱۰۰، ۲۰۰، ۴۰۰، ۸۰۰، ۱۶۰۰، ۳۲۰۰ به طور تغییری نشتری برری (معادله ۲۲) با توزیع تغییری نشتری برری (معادله ۲۱) درداجه نورودی دردکل ۷ با کیفیت بیشتری است. هم اکنون تغییر دیده میشود نتیجه بسته آنما دلایل (۲۱) باید از توزیع دیده توزیع دیده بوده و تا حدودی که جهان پنجه یا به میکروکاربن با توزیع دیده برری تقیبی بیشتر معادله (۲۲) استفاده راه باشد.
استقلال

شوره‌های اولیه و توسعه‌ی افتخارات هیورودینامیکی با پروفیل سرعت سبکی که تاکنون خصوصاً برای عدلی و سرمایه‌گذاری در افزایش انرژی و سرعت سیستم‌های موجود در محیط آب‌ها و گازها، به‌طور مستقیم و به‌طور کامل ممکن نمی‌باشد. در این صورت، سرعت در حال توسعه‌ی حسی است که در طول مسیر خود به‌طور هماهنگ با یکدیگر در این زمینه‌ها به‌کار می‌رود. این امر باعث افزایش سرعت در حال توسعه‌ی حسی نمی‌شود.

اتخاذ روش‌های درون‌مکانیکی و مطالعه‌های جدید در این زمینه به‌کار می‌رود. این این‌که به‌طور مستقیم و به‌طور کامل ممکن نمی‌باشد. در این صورت، سرعت در حال توسعه‌ی حسی نمی‌شود. این امر باعث افزایش سرعت در حال توسعه‌ی حسی نمی‌شود.

دربخش (c) نیز، این مسئله مستقیم است و در معادله (5) محاسبه‌ی بخش (a) از سرعت انتقال به داده‌های مربوط به شرایط درون‌مکانیکی. در این صورت، سرعت در حال توسعه‌ی حسی نمی‌شود. این امر باعث افزایش سرعت در حال توسعه‌ی حسی نمی‌شود.

برخی مربوط به شرایط درون‌مکانیکی، به‌طور مستقیم و به‌طور کامل ممکن نمی‌باشد. در این صورت، سرعت در حال توسعه‌ی حسی نمی‌شود. این امر باعث افزایش سرعت در حال توسعه‌ی حسی نمی‌شود.

مصدر: درون‌مکانیکی و مطالعه‌های جدید در این زمینه به‌کار می‌رود. این این‌که به‌طور مستقیم و به‌طور کامل ممکن نمی‌باشد. در این صورت، سرعت در حال توسعه‌ی حسی نمی‌شود. این امر باعث افزایش سرعت در حال توسعه‌ی حسی نمی‌شود.
...
فرض توزیع سرعت خطي فرض مناسبی نمی‌باشد. بنابراین بررسی جاهربرای اعداد دیگر اندل حدودیک ویژه‌سیک به‌جای مدل‌های بیشتر مناسب‌تر بوده و برهم‌توده عده‌ای همگرایانه‌ای نیستند.

عدد مولکول مخصوص بدست آمده به دلیل (۲۹) در شکل‌های و و، با مقادیر موجود در مرجع ۱ برای دماه و وزن‌های لوله ممکن است، که نشان می‌دهد بررسی‌ها در این منطقه فعال و پیچیده‌ای داشته‌اند. نتایج بدست آمده در این مقاله برای دماه و وزن‌های لوله با تحقیق خوب استفاده گردیده و استفاده از مراحل به‌عنوان مطالعه (۱) در مقاله بدست آمده است. برای سیالات-

\[ \frac{\alpha T}{\alpha x^2} \]

که در این عدد برای دماه خیلی کم‌ترند. همچنین فلزات مذکور به دیگر

از لحاظ حرارتی توسعه می‌یابند و ریزی از دیگر مگ‌پردازات

درجه حرارت دریک طول بسیار کم کمی از اجرای انفجار می‌افتد. بنابراین جمله

این به پیدا می‌گردد که در در دیگر مراحل نمایان خواهد گذاشت.

درخواستی باشد یا دو روشک را به تجربی تقریبی بدست آمده برای عدد مولکول مخصوص و توسعه متوسط برای جرم اندل تحویل را تهیه رود و در میان می‌گردد بررسی حاکمیت پر

روش‌های دیگر است. میزان بازدهی موجود برای این نوع جریان به روش تحلیلی برای عدد مولکول مورد استفاده است.
<table>
<thead>
<tr>
<th>جدول 1</th>
<th>ماکسیمم</th>
<th>حداقل</th>
<th>تعداد</th>
<th>نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_{max}$</td>
<td>$0.242$</td>
<td>$0.242$</td>
<td>$1.5$</td>
<td>$1.5$</td>
</tr>
<tr>
<td>$W_{max}$</td>
<td>$0.449$</td>
<td>$0.449$</td>
<td>$2.5$</td>
<td>$2.5$</td>
</tr>
<tr>
<td>$W_{max}$</td>
<td>$0.646$</td>
<td>$0.646$</td>
<td>$3.5$</td>
<td>$3.5$</td>
</tr>
<tr>
<td>$W_{max}$</td>
<td>$0.843$</td>
<td>$0.843$</td>
<td>$4.5$</td>
<td>$4.5$</td>
</tr>
<tr>
<td>$W_{max}$</td>
<td>$0.242$</td>
<td>$0.242$</td>
<td>$1.5$</td>
<td>$1.5$</td>
</tr>
<tr>
<td>$W_{max}$</td>
<td>$0.449$</td>
<td>$0.449$</td>
<td>$2.5$</td>
<td>$2.5$</td>
</tr>
<tr>
<td>$W_{max}$</td>
<td>$0.646$</td>
<td>$0.646$</td>
<td>$3.5$</td>
<td>$3.5$</td>
</tr>
<tr>
<td>$W_{max}$</td>
<td>$0.843$</td>
<td>$0.843$</td>
<td>$4.5$</td>
<td>$4.5$</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

- برای $W_{max}$ نتیجه‌گیری می‌شود که $0.242$ و $0.449$ در مقیاس $1.5$ و $2.5$ باید در نظر گرفته شوند.
- برای $W_{max}$ نتیجه‌گیری می‌شود که $0.646$ و $0.843$ در مقیاس $3.5$ و $4.5$ باید در نظر گرفته شوند.

توجه: این نتایج بر اساس تحلیل‌های مربوط به $W_{max}$ و $W_{max}$ است.
شکل ۱: تصویر نمودار عدد توسل متوسط (\(\text{Nu}_{im}\)) بر حسب \(x^*\) در مقایسه با نتایج در مقاله متوسط (\(\text{Nu}_{im}\)) بر حسب \(x^*\) در مقایسه با نتایج در مقاله

\[ px = 0.7 \]
نمودار ۲ - مشخصات شیمیایی عدد نویز متوسط (N_u) در مقایسه با سطح دو پلاک مطابق با pr = 10.0

pr = 10.0
نگارش ۳ - نمودار نسبت عدد نوسپت متوسط و بررسی جه‌پوش در مقایسه با نتایج دو محاسبه مزاحم برای عدد پراوایی $\text{Pr} = 50.0$. 

$\text{Nu}_{\text{lm}} - \text{h}_{\text{lm}}$ 

$10^{-5}$ $4 \times 10^{-5}$ $10^{-4}$ $4 \times 10^{-4}$ $10^{-3}$ $4 \times 10^{-3}$ $10^{-2}$
شکل ۴. تغییرات عدد نویسته دوسمی (\(\text{Nu}_1\)) در مقایسه با نتایج لیوله برای عدد پراخلد \(pr = 0.7\).
شکل 5: منحنی تغییرات عدد نویسته مولفه $\frac{Nu_1}{pr}$ در مقایسه با نتایج لوله بروز عادل $pr = 2.0$
شکل ۱- تغییرات عدد جولیت مولتی (Nu) در مقایسه با نتایج لوله‌برای عدد X* برای پارامتر \( \text{Pr} = 5.0 \).
عکل 7 - محاسبه شرایط میان‌مرحله‌ای در دهانه ورودی در مسیره موایی.
تعمین تحلیل عدد‌نوسان...

فهرست علائم

علائم

\( a \) نصف فاصله بین دو خط \( y = 0 \) و \( y = 1 \)

\( C_p \) حرارت مخصوص در فاصله \( y = 0 \) تا \( y = 1 \)

\( d = 4a \) قطر هیدرولیک

\( f = (\frac{630}{13} \times \text{Pr})^4 \) با استفاده از داده‌های درهم داده 29 و 26

\( \dot{m} = \rho \bar{u} 2a \) دبی جرمی سیال غیرکوانتومی

\( \text{Nu}_{x,T} = \frac{hx}{k} \) عدد‌نوسان موفقیت برای سرعت مزی در جریان سطح

\( \text{Nu}_1 = \frac{h_d}{k} = \frac{-k \frac{\partial T}{\partial y} |_{y=0} \frac{d}{T_0 - T_m}}{k} \) عدد‌نوسان موفقیت برای اختلاف درجه حرارت سطح و متوسط سیال

\( \text{Nu}_2 = \frac{h_d}{k} = \frac{-k \frac{\partial T}{\partial y} |_{y=0} \frac{d}{T_0 - T_1}}{k} \) عدد‌نوسان موفقیت برای اختلاف درجه حرارت سطح و سیال و ورودی

\( \text{Nu}_{1m} = \frac{\int \text{Nu}_1 \, dx}{x} \) عدد‌نوسان متوسط برای \( \text{Nu}_1 \)

\( \text{Nu}_{2m} = \frac{\int \text{Nu}_2 \, dx}{x} \) عدد‌نوسان متوسط برای \( \text{Nu}_2 \)

\( P \) توزیع فشار در سطح ورودی

\( \text{Pr} = \frac{\nu}{a} \) عدد دیال

\( \text{Re}_x = \frac{U x}{\nu} \) عدد دینامیک برای سطح ملایم دهانه
استقلال

$T$ \quad مربوط به شرط مرزی درجه حرارت سطح تابت

$T_m$ \quad درجه حرارت موسط سیال

$T_0$ \quad درجه حرارت دیواره مجرا

$T_i$ \quad درجه حرارت سیال وارد شونده دردهانه ورودی

$\bar{U}$ \quad پایا مترویت بعدهماستفاده در معادلات (12a) و (12b)

سرعت متوسط سیال

$U_1$ \quad سرعت سیال دررخته

$U_{x1}$ \quad سرعت سیال بعد دررخته

$U$ \quad سرعت جریان آزاد دررازای صفحه سطح

$x$ \quad مولفه سرعت درجهت $x$

$y$ \quad مولفه سرعت درجهت $y$

$\chi$ \quad کمیت بدون بعد آنالوژی محوری

$x^* = \frac{x/d}{Re Pr}$ \quad کمیت بدون بعد آنالوژی درجهت محوری

$\alpha = \frac{K}{pcp}$ \quad ضریب بخش جرارة تابع گاما

$\Gamma$ \quad ارتفاع لایه مرزی خراشش

$\delta$ \quad ارتفاع لایه مرزی هیدرودینامیکی

$\delta_l$ \quad ضخامت جا بجا شده

$\delta_2$ \quad ضخامت معمولی
مراجع


