تعیین پک روش ‘آب و بند’ به نواحی زیر صوت در حل معادلات سهمیه شده ناوير-استوکس

حسن خالقی، مسعود میرزاىی و سید محمد حسن کریمیان

گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه تربیت مدرس
دانشکده فنی مهندسی، دانشگاه خواهان نصر الدين طروسی
دانشکده مهندسی هوای فضا، دانشگاه صنعتی امیرکبیر

(دریافت مقاله ۷۹/۷/۱۹- دریافت نسخه نهایی ۸۸/۷/۷)

چکیده- در این مقاله یک روش ‘آب و بند’ که اصول اولیه آن را روش ‘روه’ تشکیل می‌دهد برای محاسبه‌ی شارهای غیر لنزه در حل عدید معادلات سهمیه شده ناوير-استوکس PNS ارائه می‌شود. این روش مقدماتی و معادلات مذکور به صورت اجزایی و غیر تکراری با استفاده از روش حجم‌های محدود حل می‌شود. نتایج حاصل این روش ارائه شده نسبت به روش‌های دیگر در این زمینه، کاهش شدید نوسانات در محورهای خط صوتی است. این روش سبب می‌شود که روش حاضر قادر به تحلیل جریان‌های مافوق صوت با عدد مکا انزدیک به یک باشد. این در سفرایبی است که روش‌های ‘آب و بند’ دیگر توافقاتی چنین کاری ندارند. از روش مذکور با تحلیل سر مسئله نمونه بررسی شده است. این مسئله شامل جریان ابر صوتی دو بعدی حول گوشه تراکمی با زاویه ۱۵ درجه. جریان مافوق صوت دو بعدی حول یک صفحه نیمه‌دایره نیز تحقیقاتی حول یک دماه مماس است. نتایج حاصل از این تحقیقات به این نتیجه برسیده است که روش ‘آب و بند’ دیگر مانند روش ‘پیم- ورمنگ’ مقایسه شده است.

واژگان کلیدی: آب و بند، ناور-استوکس، ابر صوتی

Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations

H. Khaleghi, M. Mirzaee and S.M.H. Karimian
Department of Mechanical Engineering, Tarbiat Modaress University.

Abstract: In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mach number near to one, where similar upwind methods normally fail. Some two dimensional/axisymmetric test cases have been computed to validate the present method. These cases are: Hypersonic flow over a 15-degree compression ramp, two-dimensional supersonic flow over a flat plate and axisymmetric supersonic flow over a tangent

استادیار

دانشیار

استقلال، سال ۱۳۸۷، شماره ۱، شهریور ۱۳۸۷

155
فهرست علائم

<table>
<thead>
<tr>
<th>شماره</th>
<th>علائم</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>پارامتر تراکم خطوط شبکه</td>
</tr>
<tr>
<td>β</td>
<td>ناب پذیری</td>
</tr>
<tr>
<td>γ</td>
<td>جهت اصلی جریان</td>
</tr>
<tr>
<td>δ</td>
<td>جهت عرضی جریان</td>
</tr>
</tbody>
</table>
| ρ | ضریب روش ویکنر
| μ | مقدار مشخصه |
| ν | مسکوزیت سیال |
| ζ | ضریب اطمینان در تقريب ویگنر
| τ | زمان بدون بعد |
| δ | دانشی سیال |
| i | شار غیر لزج |
| n | شار لزج |
| p | شرایط جریان آزاد |
| Q | پارامترهای بعد دار |
| ≈ | شار لزج با حرک مشتق در جهت جریان |
| s | پارامتر مجاور خط صوی |
| ≌ | پارامترهای مربوط به شار مربوط دوم |
| M | مقدارهای مستقل |
| n | مقدارهای محاسباتی |
| p | فشار بدون بعد |
| Q | برد مغناطیسی متقابل |
| R | ماتریس مقداری ویژه سمت چپ |
| T | دمای بدون بعد |
| u | مولفه بدون بعد سرعت |
| v | مولفه بدون بعد سرعت |

1- مقدمه

پایه‌های میدان‌های جریان پیچیده دائم، موفق صوت و لزج به طور گسترده‌ای استفاده شده‌اند. این مقدارهای استفاده از روشهایی مکانیکی در چهار اصل جریان تأکید جار نموده و کاربرد آن در سیستم‌های شرایط ای استفاده از یک مدل به‌صورت یک‌درویک‌مرکزی و زمان‌های محدودی اندازه‌گیری می‌کند. این موضوع به شدت افتاده است که مدل‌های در تحلیل سیستم‌های جریان پیچیده از نظر اشغال حافظه محاسباتی و همچنین زمان

استقلال، سال 22، شماره 1، شهریور 1382

156
2- معادلات حاکم

معادلات از معادلات کامل ناور-استوکس با اعمال فرضیات استخراج می‌شوند. تاکنون انتخاب مختلفی از این معادلات استخراج شده است که به‌دست آمده تقریباً اعمال شده در استخراج آنها به شرایط فیزیکی مسائل مربوط می‌شود. به طور کلی در استخراج انتخاب مختلف از این فرضیات استفاده می‌شود. در این مقاله در موارد نابی‌گیوهای موجود در میدان‌های جریان (مانند امواج دریایی) می‌تواند برای بروز این مشکلات اعمال شود.

معادلات دو بقایای نقربانوی ناور-استوکس غیر دانم در سیستم مختصات عمومی (η, ξ) در شکل "یافته" چنین است:

\[\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial \xi} + \frac{\partial F}{\partial \eta} + \alpha \Pi = 0 \] (1)

با اعمال فرضیات فوق شکل نهایی معادلات PNS به شکل بقایای برای یک جریان در راه‌های محوری در سیستم مختصات عمومی (η, ξ) چنین خواهد شد:

\[\frac{\partial E_i^*}{\partial t} + \frac{\partial F_i^*}{\partial \eta} + \frac{\partial E_i}{\partial \xi} + \alpha \Pi_i = \frac{\partial F_i}{\partial \eta} + \alpha \Pi_i^* \] (2)

که علامت "*" بر روی شارهای لزج شده است که کلیه مشتقات لزج در جهت اعمال جریان (جهت ξ) محقق است. بردار شار غیر لزج F_i لزج عبارت شار است و بازیابی این عبارت فشار در جهت اصلی جریان در عبارات به خواهد شد. وجود این گرادیانت نسبت به شدت که در ناحیه زیر اثرات لایه‌های معیار اطلاعات از پایین دست جریان به بالا دست مرزی در واقع در این ناحیه از جریان‌های ماهیت بیضوی داشته و نتایج از روش پیش‌سازی نسبت به بزرگ شدن حلق به صورت نمایی در مجاورت دیواره‌های میدان جریان می‌شود و پیش‌سازی مکانی نتایج بمزیات می‌شود. لذا برای حذف اثرات بالا دست جریان، گرادیانت فشار مذکور بالا به نحوی صحیح شود.

در این مقاله بر روی "آب و بیнь" نباید ممکن شود. برای حذف معادلات همه میدان ناور-استوکس ارائه می‌شود. در کاراهی این اعمال به روش "آب و بیнь" در این زمینه مراجع [4-7] و [10] برای محاسبه عبارات غیر لزج در مزراعات نمونه‌سازی در نواحی زیر اثرات این تقریب مرکزی در نواحی ماقبل صوت صوت برون از تقریب "آب و بیнь" استفاده شده است. برای استفاده این کار باید می‌شود که به دلیل تغییر روش در محاسبه شارهای غیر لزج میدان‌های نوسانات شبدید در نتایج نکش می‌شود. این نوسانات در اعداد مختلف پایین تغییر داشته و در روی ارائه شده در این مقاله تا زمانی این سیره برطرف شده است و در تمامی نواحی میدان جریان (زیر صوت و ماقبل صوت) روش "آب و بیнь" استفاده می‌شود.
با اعمال تکنیک "محصولات" بر روی معادله ۴ و بعد از خطی سازی خواهیم داشت:

\[
\begin{align*}
\left[A_j^* + \Delta \sigma \left[C_j^* - (C_j) \right] \right] + \frac{\Delta \sigma}{\Delta \eta} \left[B_j ((j-1/2,j) - B_j (j+1/2,j)) \right] \delta^{*} \psi_j + \\
\frac{\Delta \sigma}{\Delta \eta} \left[B_j ((j-1/2,j)) \right] \delta^{*} \psi_j + \frac{\Delta \sigma}{\Delta \eta} \left[(F_j)^{*} \right] - \left[(F_j) \right] = - \left(\Delta \psi \right)^* + \\
\frac{\Delta \sigma}{\Delta \eta} \left[(F_j)^{*} \right] - \left[(F_j) \right] = - \Delta \sigma (\psi_j - \psi_j)
\end{align*}
\]

(۶)

که در این معادلهٔ ترکیبی در منطقهٔ شار شار لزگ و غیر لزگ، معادلات (۷) و (۸) را اعمال می‌نماییم. نتایج این معادلات در واقع نشان می‌دهد که از مدل استفاده شده است براساس بررسی واحدهای مذکور این استدلال برای این معادلات (۷) و (۸)

با توجه به تحلیل مقداری از مناسب ب săرنه آب و برق، موسوم به "حل کننده‌های ریمان"، معنی است و همان طور که از آن نتایج برای تعیین شاراها از هر منطقه ترکیبی برای بررسی شرایط اصلاح شده می‌شوید و برای این معادلات (۷) و (۸)

با شرایط اولیه:

\[
\begin{align*}
(E^*)^n = \begin{cases}
(1/2)^+ E_j^* + (1/2)^- E_j^* & \eta > \eta j+1/2 \\
(1/2)^+ E_j^* + (1/2)^- E_j^* & \eta < \eta j+1/2
\end{cases}
\end{align*}
\]

(۸)

و ترکیبی "منابع ب săرنه" در جهت حکایت از مدل شرایط اصلاح شده می‌شود و برای این معادلات (۷) و (۸)

با شرایط اولیه:

\[
\begin{align*}
\frac{\partial E_j^*}{\partial \eta} + \frac{\partial E_j^*}{\partial \xi} = 0 \\
\frac{\partial E_j^*}{\partial \eta} + \frac{\partial E_j^*}{\partial \xi} = 0
\end{align*}
\]

(۹)

در معادله‌ای مختلفی برای تصحیح این عیانات پیشنهاد شده است که کامال دادار نقاط ضعف و قوت هستند. یکی از روشهای نسبتاً موفق که در اینجا از آن استفاده شده است "روش "ویگنر"" است. در این روش بردار شار غیر لزگ \(\psi_j \) به دو بردار تفکیک می‌شود:

\[
E_i = E_p + E_i^*
\]

(۱۰)

که در این معادله:

\[
\begin{align*}
\psi_j = \frac{1}{J} \left[\xi \phi_j E_j + \xi \phi_j F_j \right] \\
E_i^* = \frac{1}{J}[\xi \phi_j E_j + \xi \phi_j F_j]
\end{align*}
\]

(۱۱)

پارامتر \(\omega \) با توجه به تحلیل مقداری از مناسب ب săرنه آب و برق، موسوم به "حل کننده‌های ریمان"، معنی است و همان طور که از آن نتایج برای تعیین شاراها از هر منطقه ترکیبی برای بررسی شرایط اصلاح شده می‌شود و برای این معادلات (۷) و (۸)

با شرایط اولیه:

\[
\begin{align*}
\frac{\partial E_j^*}{\partial \eta} + \frac{\partial E_j^*}{\partial \xi} + \alpha \psi_j = \frac{\partial E_j}{\partial \eta} + \alpha \psi_j
\end{align*}
\]

(۱۲)

ضریب های کار گرایی را از مدل "وارد" بر حسب وISK高温 واگلگی می‌شنود و برای این معادله

"سارتین"" محاسبه می‌شود.

\[
\mu = \frac{T^{3/2} (1 + 1104/\psi_{\psi_j})}{T + 1104/\psi_{\psi_j}}
\]

(۱۳)

برای بستن سیستم معادله (۱) نیاز به معادله حالت گاز است. در این مقاله از فرض گاز ایداال استفاده شده است که معادله

حالت را می‌توان به صورت زیر نوشت:

\[
T = \gamma M_{\mu}^2 / p \mu \quad \text{و} \quad p = (\gamma - 1) e
\]

(۱۴)
(\(F_i\))_{j=1/2} = \frac{1}{2} \left(\eta_x / J \right)_{j=1/2} [(E_i)_{j} + (E_i)_{j+1/2}] + \\
\frac{1}{2} \left(\eta_y / J \right)_{j=1/2} [(F_i)_{j} + (F_i)_{j+1/2}] + \\
\left[\left(\eta_x / J \right)_{j+1/2} \Delta E_i + (\eta_y / J)_{j+1/2} \Delta F_i \right]

(10)

\(\text{چینی تعریف می‌شود:} \)

\[[\epsilon_k] = \frac{1}{2} \left(\eta_x / J \right)_{j=1/2} \Delta E_i + \frac{1}{2} \left(\eta_y / J \right)_{j=1/2} \Delta F_i + \\
\frac{1}{2} \left(\eta_x / J \right)_{j+1/2} \Delta E_i + \left(\eta_y / J \right)_{j+1/2} \Delta F_i \]

(11)

\(\text{بسیط معادله فوک اعضا ماتریس قطعی} \)

\[[\eta_k] = -\frac{1}{2} \sum_{L=1}^{4} (s d n D)_{k,L} \left(\left[\left(\eta_x / J \right)_{j=1/2} \Delta E_i + \left(\eta_y / J \right)_{j=1/2} \Delta F_i \right]_{k} + \\
\left(\eta_x / J \right)_{m+1/2} \Delta E_i + \left(\eta_y / J \right)_{m+1/2} \Delta F_i \right)_{k} \]

(12)

\(\text{که در معادله (5), (6) به عنوان} \)

\[(K=1,2,3,4) \text{ است.} \]

\(\text{با توجه به تعریف اعضا ماتریس} \)

\[[\epsilon_k] \text{ دو سطح قطعی} \]

\(\text{اصلی تعریف می‌شود:} \)

\[D_{j+1/2} (1/J)_{j+1/2} \Delta E^* = (\eta_x / J)_{j+1/2} \Delta E_i + \left(\eta_y / J \right)_{j+1/2} \Delta F_i \]

(8)

\(\text{قابِلت تُغییر می‌شود}\)

\(\text{که برای نقطه‌بندی سطح قطعی است، این} \)

\(\text{مکانیم اتصال شار از نوع پذیرش است}.

\(\text{اعضاء روش فتوک راجع} \)

\(\text{ماتریس قطعی در} \)

\(\text{دقت مربوط به} \)

\(\text{زیر معادله (6)} \)
شکل 1- هندسه و شبکه محاسباتی برای نگر جریان ابرسوزی در داخل کانال

\[y = y_w + Z(\eta) \delta_y \quad x = x_w + Z(\eta) \delta_x \]

که \(y_w \) و \(x_w \) مقاطع نقاط روی دیواره جسم و اختلاف مقاطع مزدرویی جریان با مقاطع روی دیواره جسم است.

4- شرایط اولیه و شرایط مرزی

برای حل معادلات PNS با استفاده از روش پیشروی مکانی نیاز به یک صفحه اطلاعات اولیه است. این صفحه اطلاعات باید در جایی باشد که مولفه سرعت عمود بر این صفحه در خارج از مرز مافوق صوت باشد. برای اجسامی که لبه نرک تیز دارند اطلاعات اولیه را می‌توان به طور مستقیم از حل معادلات PNS در سطح آورده و به این اکنون برای اجسام سریع اطلاعات PNS اولیه را به طریق فرآهنک کرد که در این تحقیق از کد TLNS است استفاده کرد.

\[\varepsilon_k = \left(\frac{\varepsilon_S}{M_S} \right)^{1 / 2} \]

در معادله (13) \(\varepsilon_S \) بیانگر عدد مخ در اولین سطح کنترلی است که معادله (12) روی انرژی می‌شود. عدد مخ \(M_S \) عدد ماخ سطح کنترلی است که معادله (9) روی انرژی می‌شود و عدد ماخ \(M \) موضعی روی سطح کنترل بین سطح جامد و سطح است. برای افرادی در دقت کوری به مرتبه دوم در روش که در مرجع [14] برای حل معادلات اولیه غیر دائم اثرات شده استفاده می‌شود.

3- شبکه محاسباتی

شبکه محاسباتی در هر مرحله از پیشروی با استفاده از روش جبری تولید می‌شود و در ناحیه اولیه مزایا برای ریز کردن شبکه از تابع کشش که به صورت زیر تعیین می‌شود استفاده شده است:

\[z(\eta) = \frac{\beta + 1 - \alpha}{\alpha + 1} \]

\[\alpha = \left(\frac{\beta + 1}{\beta - 1} \right)^{1-\eta} \]

مختصات نقاط شبکه چنین به دست می‌آید:

استلال، سال 22، شماره 1، شهريور 1382
الف - 4- نتایج روش تولید آمیختگی در مسیر اول

الف - خطوط عدد مان ثابت ب - خطوط فشار ثابت

خطوط شبکه محاسباتی تعدادی از آنها حذف شده اند ابعاد واقعی شبکه 351 سلول در جهت طولی و 156 سلول در امشاد، عرضی است. پیشروی با گامهای یکتایی 100/200 شروع می‌شود و تا مقطع 15 متری ادامه پیدا می‌کند. دبای کانال در دماه ثابت 1000 درجه کلوین فرض شده است. شرایط ورودی به کانال چنین است:

\[\text{M}_{\infty} = 30 \quad T_{\infty} = 100 \quad \text{Re}_{L} = 8 \times 10^4 \quad Pr = 0.72 \]

در این مثال صفحه اطلاعات اولیه برای پیشروی از خود حل معادلات PNS با تقریب مرتبه دوم تهیه شده است. در این مسئله مداخله شبیه سازی آماده و امداد ارسالی وجود دارد. در شکل 3 نتایج پژوهش در طول دیواره کانال ورودی است و نتایج به دست آمده با نتایج روش تولید آمیختگی که در مرجع [4] آورده شده است مقایسه شده است. با توجه به این شکل ملاحظه می‌شود که اختلاف این دو روش در مناطق ماکزیمم و مینیمم (نواحی برخورد امواج به دیواره) از دیگر مناطق بیشتر است که این مسئله به شکل همزمان ارائه می‌شود. در این شکل به عنوان نمونه خطوط فشار ثابت و خطوط عدد مان ثابت در طول ورودی به کانال برای

الف - 5- نتایج

نتایج اعتبار روش ارائه شده با تحلیل سه مسئله مورد بررسی قرار گرفته است. اولین مسئله جریان دو بعدی ابرصوتی در ورودی یک کانال همگرا شونده است که در شکل 1 میدان حل به همراه شکل محاسباتی آن آورده شده است. در این شکل به عنوان نمونه

الف - 5- نتایج

نتایج اعتبار روش ارائه شده با تحلیل سه مسئله مورد بررسی قرار گرفته است. اولین مسئله جریان دو بعدی ابرصوتی در ورودی یک کانال همگرا شونده است که در شکل 1 میدان حل به همراه شکل محاسباتی آن آورده شده است. در این شکل به عنوان نمونه

الف - 5- نتایج

نتایج اعتبار روش ارائه شده با تحلیل سه مسئله مورد بررسی قرار گرفته است. اولین مسئله جریان دو بعدی ابرصوتی در ورودی یک کانال همگرا شونده است که در شکل 1 میدان حل به همراه شکل محاسباتی آن آورده شده است. در این شکل به عنوان نمونه

الف - 5- نتایج

نتایج اعتبار روش ارائه شده با تحلیل سه مسئله مورد بررسی قرار گرفته است. اولین مسئله جریان دو بعدی ابرصوتی در ورودی یک کانال همگرا شونده است که در شکل 1 میدان حل به همراه شکل محاسباتی آن آورده شده است. در این شکل به عنوان نمونه

الف - 5- نتایج

نتایج اعتبار روش ارائه شده با تحلیل سه مسئله مورد بررسی قرار گرفته است. اولین مسئله جریان دو بعدی ابرصوتی در ورودی یک کانال همگرا شونده است که در شکل 1 میدان حل به همراه شکل محاسباتی آن آورده شده است. در این شکل به عنوان نمونه

الف - 5- نتایج

نتایج اعتبار روش ارائه شده با تحلیل سه مسئله مورد بررسی قرار گرفته است. اولین مسئله جریان دو بعدی ابرصوتی در ورودی یک کانال همگرا شونده است که در شکل 1 میدان حل به همراه شکل محاسباتی آند آورده شده است. در این شکل به عنوان نمونه

161

استقلال، سال 32، شماره 1، شهریور 1382
شکل ۵- نیم‌خ سرعت در جهت x در مسیر دوم در مقطع x=0.91 m

شکل ۷- توزیع ضریب اصطکاک در مسیر دوم در مقطع

روش مورد بحث در این مقاله و روش "پیم و وارمینگ" ترسیم

شکل ۶- نیم‌خ دما در جهت x در مسیر دوم در مقطع x=0.91 m

شکل ۸- توزیع ضریب انتقال گرمای جابجای در امتداد سطح در مسیر دوم

شده است. با مقایسه این اشکال ملاحظه می‌کنیم که در نواحی

مرکزی کانال جهتی روش "پیم و وارمینگ" علی‌رغم اضافه

شدن عبارات هموار کننده (ارتباط مصنوعی) توسن دارند در

حالی که این مسئله در نتایج اکتومب مورد بحث می‌باشد.

نیم‌خ دما در این مسیر به علت باعث عدد ماخ ورودی و

در نتیجه نزدیکی بین از جد خط صوتی با دیواره‌های کانال

و کوچک بودن ناحیه مادون صوت تفاوت جدی‌ای بین نتایج به

دست آمده از روش ارائه شده در این مقاله و روش "پیم و وارمینگ"

شده در مرجع [۴] دیده شده. نتایج بین این دو روش در

مطالعات بعده مشخص می‌شود.

در مسیر جریانهای مواقف صوت به یک صفحه تخته به

طول ۱ متر است. شرایط این جریان عبارت است از:

\[
M_w = 2.0 \quad Re_w = 1.65 \times 10^6
\]

\[
T_w = T_f = 221.6^\circ C \quad Pr = 0.72
\]

این مسئله نتایج حاصل از اعمال این الگوریتم با نتایج به دست

آمده از روش "پیم و وارمینگ" ارائه شده در مرجع [۴] و همچنین

نتایج به کل کننده ناوبر-استوسک‌موسوم به که

بر اساس روش "پیم و وارمینگ" عمل می‌کند و جزئیات مربوط به آن در

مرجع [۴] موجود است. در این مسئله با راک دمای

ضخامت لایه صوتی قابل توجه بوده و تفاوت بین نتایج روش

اصلاً این مقاله و روش مرجع [۴] آشکار می‌شود. علاوه بر

استقلال، سال ۲۲، شماره ۱، شهروند ۱۳۸۲

۱۶۷
ضریب اصطکاک و ضریب انتقال گرمایی جابجایی که از معادلات زیر محاسبه می‌شوند، دقیقتر دیده می‌شود.

\[
C_h = \frac{\mu_{wall}}{R e_d} \left(\frac{1}{(\gamma-1)M^2_s} \frac{\partial T}{\partial y} \right)
\]

\[
C_f = \frac{\mu_{wall}}{R e_d} \frac{\partial u}{\partial y}
\]

در شکل (7) توزیع ضریب اصطکاک و در شکل (8) توزیع ضریب انتقال گرما در طول صفحه آورده شده است. در این شکل تفاوت بین نتایج روش این مقاله و نتایج مرجع [4] به وضوح آشکار است. علاوه بر آن ملاحظه می‌شود که نتایج این مقاله نظارت بیشتری با نتایج تفاضل‌گیری است. تفاوت مسئله جریان نقل‌محوری حول یک کام‌گاز معمای استر، شرایط مرزی و جریان آزاد آن چنین است:

\[
M_{in} = 2.0 \quad T_{in} = 14597 \quad \bar{T}_w = 216.40^\circ K
\]

دقایق جسم برای با 1/25 متر است که طول مشخصه برای بسیاری از طول در نظر گرفته شده است. 50 سولول در جهت شعاعی در نظر گرفته شده است و برای ایجاد صفحه اطلاعات اولیه پیشروای یا گام‌های پیش روی کوچک از نوک دامنه آغاز می‌شود و با مقعط 0.05 متری از نوک آدامه پیدا می‌کند. مقدار از این مقعط با داشتن صفحه اطلاعات اولیه تا انتهای میدان پیشروای یا 500 گام ادامه پیدا می‌کند. لازم به ذکر است برای این مسئله که مشخصه از شکل ذکر شده تفاوت مستقیل از ابعاد شکل ندیده است نظارت. در این مسئله به دلیل پایین بودن عدد ماخ، تفاوت روش روز ۴ انتخاب شده در مرجع [1] و روش ارائه شده در این مقاله کاملاً نشان داده می‌شود. این موضوع در شکل (9) نشان داده است در شکل (9-الف) خطوط فشار تابیت دو روش مقایسه شده اند در ظاهر شکل متفاوت است ولی جواب‌ها یکسان است ولی با بررسی دقیقتر نتایج در محور می‌توان سطح جسم تفاوت اشکار می‌شود. در شکل (9-ب) این تفاوت نشان داده شده است. همان طور که قبلا ذکر شد به علت تغییر ناگهانی روش محاسبه شاره‌های غیر لیث در ناحیه زیر صیعت و در ناحیه مالفون صیغه نتایج لازم در ناحیه زیر صیغه برای این نتایج مرجع [4] در محور صیغه بنا بر نوسان تأمین است ولی در شرایطی است که در روی ارائه شده در این مقاله مشکل به حداکثر رسیده است. در

شکل 9- خطوط فشار ثابت روز دیافراگم تفاوت محوری

در عدد ماخ 2

آن مقایسه این نتایج با نتایج حل معادلات تفاضل‌گیری است. تفاوت می‌دهد که نتایج روش اصلاحی تفاوت بیشتری با نتایج تفاضل‌گیری است. این مجموع در سه‌کل‌ای (8) نشان داده است. در شکل (5) نماینده عرضی موافقه سرعت در X=0/01 m. در مقطع X=0/01 m نماینده توزیع دما در این مقعط آورده شده است ملاحظه می‌شود که تفاوت روش ارائه شده با نتایج روش مرجع [4] در ناحیه زیر صیغه بنا بر نوسان تأمین است ولی نتایج روش این مقاله به نتایج تفاوت نتایج تفاوت‌گیری است. همین روند در تفاوت توزیع

نتیجه‌گیری

در این مقاله یک روش اپیوند بر مبنای روش 'رو' وازه نامه

1-upwind
2-Roe’s method
3-Beam&Warming
4-space marching
5-streamwise
6-Lindemach
7-Killeen
8-McDonald
9-central difference
10-shock waves
11-time marching
12-conservative
13-Vigneron technique
14-Southland
15-Riemann solver problem
16-shock capturing
17-thin layer Navier-Stokes
18-Tangent Ogie

استلال، سال 22، شماره 1، شهریور 1382

164

3. \(\text{ایمضا} \) اسفهانیان، و هجران فر، ک. "شبیه‌سازی جریان محوری دانش‌آموزان به‌منظور مقایسه داده‌هایی استفاده از معادلات سهمی شده ناوی-استوکس، جهانی، کنفرانس دینامیک شاردهای دانشگاه تریبت مدرس، مهر ماه 1375.

7. \(\text{ایمضا} \) مسیرایی، م.، حافزی، ح. و کریپتان، س. ح.، "روش آپ وند در حل معادلات سهمی شده ناوی-استوکس، پنجین کنفرانس دینامیک شاردهای دانشگاه فردوسی مشهد، 1375 مهر.

