Volume 22, Issue 2 (1-2004)                   jame 2004, 22(2): 201-213 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

A. Afshar and M.R. Vaezi. Evaluation of Electrical Breakdown of Anodic Films on Titanium in Phosphate-base Solutions. jame 2004; 22 (2) :201-213
URL: http://jame.iut.ac.ir/article-1-297-en.html
Abstract:   (6406 Views)
Titanium is a highly reactive metal so that a thin layer of oxide forms on its surface whenever exposed to the air or other environments containing oxygen. This layer increases the corrosion resistance of titanium. The oxide film is electrochemically formed through anodizing. In this study, anodizing of titanium was performed in phosphate-base solutions such as H3Po4, NaH2Po4, and Na2Hpo4 at 9.75Ma/cm2 and 35ºC under galvanostatic conditions. The Potential-Time curves in the above solutions show that the anodic films formed on titanium are compact and their thickness depends on the solution type and concentration. The SEM and XRD techniques show that these layers are amorphous. In this paper, the effect of electrolyte concentration, composition and resistivity on breakdown voltage have been discussed in terms of Ikonopisov electron avalanche breakdown model. This model shows that the major factor contributing to the decrease in breakdown voltage is the increased electrolyte concentration leading to increased primary electronic current.
Full-Text [PDF 5901 kb]   (1381 Downloads)    
Type of Study: Research | Subject: General
Received: 2014/10/25 | Published: 2004/01/15

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb