بررسی شکست الکتریکی لاشه‌های اکسید آندی ایجاد شده بر روی تیتانیوم در محلول‌های پایه‌فسفات

مهدیه افشار* و محمدپردا واعظی**
دانشکده مهندسی و علوم مواد دانشگاه صنعتی شریف

(دریافت مقاله: ۸/۸/۱۴۹۳ - دریافت نهایی: ۸/۸/۱۴۹۳)

چکیده - تیتانیوم فلز سیار فعالی بوده و در صورتی که در معرض هوا و یا مخلوط‌های حاوی اکسیژن قرار گیرد، یک لاشه‌ تشکیل شده و در نتیجه مقاومت به غیردگی آن را افزایش می‌دهد. تکیه‌گاه این لاشه به روش الکتروشیمیایی توسط عملیات آنالوژیگ نیز امکان‌پذیر است. در این مقاله، تیتانیوم در محلول‌های آبی فسفاتی تهیه است. آزمایش‌ها در محلول‌های آبی فسفاتی آماده شده و فشاری سیستم، تغییر یافته در شکست مقاومت و شکست‌های تیتانیوم در ناحیه‌های مختلف در هر سیستم در هر فشار و در تمام درصد‌های نفوذی آنها تابعی و غلظت محلول است. ساختمان لاشه‌های آندی توسط تکنیک‌های تقریب آماده، میکروسکوب الکترونی و نویی و نشان داده شده است که این ساختارها دارای غلغظ شکست، تکیه‌گاه شیمیایی محلول و مقاومت الکتریکی در ولتاژ شکست با لوجه به مدل تجمع و تسریع الکترولی ایون‌سازی و بررسی و نتایج نشان داد که افزایش غلظت محلول، ولتاژ شکست کاهش می‌یابد. مهم‌ترین یافته‌ها مربوط به تاثیر ولتاژ، شکست غلظت فلز و الکترولیت است که سبب افزایش جریان الکترولیتی اولیه (ول) می‌شود.

واژگان کلیدی: تیتانیوم، آندی‌زایی، شکست الکتریکی، محلول، فسفات، اکسید آندی

Evaluation of Electrical Breakdown of Anodic Films on Titanium in Phosphate-base Solutions

A. Afshar and M.R. Vaezi
Department of Materials Science and Engineering, Sharif University of Technology

Abstract: Titanium is a highly reactive metal so that a thin layer of oxide forms on its surface whenever exposed to the air or other environments containing oxygen. This layer increases the corrosion resistance of titanium. The oxide film is electrochemically formed through anodizing. In this study, anodizing of titanium was performed in phosphate-base solutions such as H₃PO₄, Na₃H₂PO₄ and Na₂HPO₄ at 95±5°C and 25°C under galvanostatic conditions. The Potential-Time curves in the above solutions show that the anodic films formed on titanium are compact and their thickness depends on the solution type and concentration. The SEM and XRD techniques show that these layers are amorphous. In this paper, the effect of electrolyte concentration, composition and resistivity on breakdown voltage have been discussed in terms of ion optic electron avalanche.

*دکتر مهندس مهدیه افشار
**دکتر محمدپردا واعظی

استقلال، سال ۱۳۳۳، شماره ۲۱، اسفند ۱۳۸۲

201

این پروین و همکارانش در مدل توری را برای شکست کاتیکی
لایه‌ای آنالیز شدند و نتایج آن چه که این نتایج منجر به تجربه
(کاتیکی) کاتیکی در فصل مشترک کارکرد -

کارکرد مثبت است [12].

بر اساس این مدل، رابطه بین ونل و شکست با مقاومت و
غلظت کاتیکی و معادله دانشگاه نیروی کاتیکی (ب) و
مقاومت کاتیکی توسط معادلات ذیل می‌شوند:

\[
V_n = a_c + b_c \log C
\]

\[
L_n = a_g + b_g \log a
\]

شرایط کاتیکی و معادله کاتیکی است. آمیزه این پروین از معادله (2) مقادیر ثابت \(a_c \) و \(b_c \) را برای
پوشش کاتیکی (با غلظت و دمای مشخص) در دانشگاه
مصوبات زیر تحقیق گردید:

\[
\alpha_n = \frac{(C_m + \epsilon C)}{(C_m + \epsilon C)} \log J_n - \log a_n
\]

\[
b_n = \left(2.303 \frac{r}{\epsilon \nu_n} \right) E
\]

در این معادله \(\epsilon \) ارزش آستین‌ها برای پیوپرس‌بن و برخورداری
یک ثابت ترکیب مجدداً \(r_n \) رقم دانشگاه کاتیکی در یک
فراکس مشابه برای ترکیب لایه کسیدی، \(E_n \) شارژ کاتیکی
و \(\epsilon \) و \(\nu_n \) ثابت و طبق معادله (ب) با مقادیر ثابت، \(r_n \)
و \(\epsilon \) برای تیتان اندایی مشخص مانا شده است [12].

می‌توان معادله (5) را بسته‌ای ارائه کرد:

\[
\frac{b_n}{b_c} = \frac{2.303E_n}{\epsilon r_n}
\]

در دما و دانشگاه جریان نیز ثابت بود. البته اگر برای محلول
طرف راست معادله (5) ثابت است، نسبت \(b_n/b_c \) برای محلول
اسید فسفریک مقدار 5879/9 برای محلول‌های پودر می‌شود و سپس 1/1.
معادله اینیوس نیز به‌دست آورده شده است. همچنین در روش تحقیق الکتریکی بر مراحل لاشهاد آن‌دازی مورد بررسی قرار گرفته است.

2- روش تحقیق

2-1- آماده‌سازی نمونه‌ها

نمودنیایی از جنس تننینمخار (نباج) با ترکیب شیمیایی

ماده‌هایی از جنس تننینمخار (نباج) با ترکیب شیمیایی

سیمی مقدار 7/529 و برای فسفات اسیدی-الکترولیت و

E(ینه و سیمی) توسط ماده‌های با ترکیب شیمیایی

فلوروریت به مقدار 5 کرم به لیتر اسید شیمیایی

دمای 860 و 1000 سی در آب‌های آلومینیاک می‌کنیم، سپس دمای داده شده و پس از دسته‌بندی، با هوا، گرم

شکل شده‌اند.

2-2- آزمایشات

برای اندازه‌گیری نتایج از مصالح‌های اسید فسفریک

فلز مرغوب سبز و سیلیست و در مخلوط‌های سبز، برای

سایر امور با ترکیب شیمیایی سیمی و فسفات

سپس در مخلوط‌های 860/1000 میلی‌متر مکعب شکل از

جنس فولاد زهک، توسط لیزر نباج (ب) مایعاتی که

به‌صورت کالریت است. از جنس‌های جریان 375/400 میلی‌متر

مقدار 2300/3000 وارد شده‌اند.

است که در ماده‌های مورد نظر، سیمی می‌کنیم، سپس

بیان آن‌ها و دارایی سیمی می‌کنیم.

و دارایی:

که معادله (9)، به‌معادله اینیوس موسوم است [11]. آبلا و

همکارانش از استحکام برای ایجاد جعبه‌ای شکست

شکست الکترولیت نیز به‌معادله آن‌دازی، مسئول تغییر الکترولیت به‌معادله آن‌دازی، لذا این تحقیق

شبه‌پیمانی شناختی شکست نیز به‌معادله آن‌دازی است. منظور

فاز مورد نیازی می‌باشد. شکست نیز به‌معادله آن‌دازی بررسی و ثبت شد.
جدول 1- ترکیب شیمیایی تیتانیم مورد استفاده

<table>
<thead>
<tr>
<th>تیتانیم</th>
<th>پایه</th>
<th>اکسیژن</th>
<th>کریم</th>
</tr>
</thead>
<tbody>
<tr>
<td>37%</td>
<td>0%</td>
<td>62%</td>
<td>1%</td>
</tr>
</tbody>
</table>

الکترونی رویشی و تغییر وضعیت اکسیدهای بررسی مورفولوژی ساختار و تجزیه و تحلیل این استفاده شده است.
برای اندازه‌گیری دانسیتی جریان الکترونی در غلظت

مختلف محلول‌های ا نانو‌هایی در دانسیتی جریان

\[
T = \frac{1}{3} \text{mV/cm}^2
\]

* تغییرات جریان نسبت به زمان ثبت شده است (ان) تغییرات با

* تغییرات کاملاً ثابت است و مسی به مقدار ثابت می‌رود. این

* مقادیر ثابت تحت عناوین دانسیتی جریان الکترونی گزارش شده

نتایج و بحث

منحنی‌های تغییرات پاتسینل نسبت به زمان آنالیز در

دانسیتی جریان ثابت 975 میلی آمپر بر سانتی‌متر مربع

غلظت‌های مختلف محلول‌های اسید فسفریک، فسفات هیدروژن

در سدیم و نیترات‌های هیدروژن سدیم در کلکه (1) تا (3)

شناس داده شدند. همان‌گونه که ملاحظه می‌شود، در محلول‌های

مختلف در کل خلقت ثابت، با افزایش زمان آنالیز سختی، پاتسینل

به‌صورت نمایان افزایش یافته و لیکن در یک محلول مشخص،

با افزایش غلظت، پاتسینل کاملاً ثابت می‌باشد. با توجه به مکانیزم

تشکیل لایه‌ای اکسید، با افزایش زمان پاتسینل، ضخامت لایه

به‌صورت ثابت می‌ماند و گرم شدن آن، با ترکیز مایع

شده در نتیجه مقادیر آن کاهش یافته و سپس افت پاتسینل

می‌شود [8].

این مقاله که ملاحظه می‌شود این منحنی خطی بوده با

استفاده از منحنی‌ها می‌توان مقادیر به داده ارائه شده

در معادلات (1) و (2) را به‌دست آورد. مقادیر ثابت فوق برای

محلول‌های پایه‌ای در جدول (4) ارائه شده است.

دانسیتی جریان الکترونی (IA) (واتس و دامی نتیجه‌بر)

با افزایش غلظت الکترولیت الکترولیت باعث شده است که تغییر

ترکیب الکترولیت اکسیدهای با تغییر ترکیب الکترولیت در

همان غلظت تغییر می‌کند. تغییرات یا نسبت به غلظت و ترکیب

الکترولیت با دلیل تغییرات در مقادیر الکترولیت محلول است.

شکل (7) منحنی تغییرات دانسیتی جریان الکترونی را

استقلال، سال 22، شماره 2، اسفند 1382

204
شکل 1- منحنی‌های تغییرات پتانسیل نسبت به زمان آندازه‌گیری در دانسیتی جریان ثابت 9/75 میلی آمپر بر سانتریمتر مربع در غلظت‌های مختلف محلول اسید فسفریک

شکل 2- منحنی‌های تغییرات پتانسیل نسبت به زمان آندازه‌گیری در دانسیتی جریان ثابت 9/75 میلی آمپر بر سانتریمتر مربع در غلظت‌های مختلف محلول فلزسیستم‌های هیدروژن و دی سدیم

شکل 3- منحنی‌های تغییرات پتانسیل نسبت به زمان آندازه‌گیری در دانسیتی جریان ثابت 9/75 میلی آمپر بر سانتریمتر مربع در غلظت‌های مختلف محلول فلزسیستم‌های هیدروژن و دی سدیم

استقلال، سال 12، شماره 2، اسفند 1382

205
جدول ۲- مقاومت محلول‌ها و ولتاژ شکست دانسیتی جریان الکترولیت دانسیتی‌گیری شده در آنها

<table>
<thead>
<tr>
<th>مقاومت الکترولیت (Ω·m)</th>
<th>ولتاژ شکست (ولت)</th>
<th>دانسیتی جریان الکترولیت (mA/cm²)</th>
<th>محلول آنالیزی‌گری</th>
<th>خلف‌گذار (مولار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>0.24</td>
<td>0.0005</td>
<td>0.001</td>
</tr>
<tr>
<td>0.013</td>
<td>0.07</td>
<td>0.23</td>
<td>0.0007</td>
<td>0.002</td>
</tr>
<tr>
<td>0.020</td>
<td>0.08</td>
<td>0.22</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>0.030</td>
<td>0.09</td>
<td>0.21</td>
<td>0.0008</td>
<td>0.001</td>
</tr>
<tr>
<td>0.040</td>
<td>0.10</td>
<td>0.20</td>
<td>0.0007</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

*معدل دانسیتی جریان الکترولیت در ۱۰۰ ولت انتقال از یک شده است.

شکل ۲- تغییرات دانسیتی جریان الکترولیت نسبت به خلف‌گذار محلول‌ها موردنظر آزمایش

استقلال، سال ۱۳۸۲، شماره ۲، اسفند
شکل 5- محققی تغییرات ولتاژ شکست نسبت به مقاومت محلولهای مورد آزمایش

شکل 6- محققی تغییرات ولتاژ شکست نسبت به مقاومت محلولهای مورد آزمایش

شکل 7- محققی تغییرات دانسیتی جریان الکترونی نسبت به مقاومت محلولهای مورد آزمایش

شکل 8- تصویر میکروسکوپی الکترونی سطح تیتانیوم آندازه شده در محلول بسیار سبزک 1/5 مولار می-هیدرو مکس. مقدار آن افزایش خالصه الکترولیت با احتمال اینکه تیتانیوم بین ویژه شدید در غلظتهای بالاتر میت ترفع به ضریب‌های کمتر می-هیدرو کاهش می‌یابد. با توجه به معادله این‌پژوهش معادله (5)، ولتاژ شکست (Vsh) تحت تأثیر پارامترهای J_0, Z, a, E و b، بوده و نتایج بدست آمده نشان می‌دهند که نسبت E/b در محلولهای مورد نسبت به مقاومت الکترولیت نشان داده و مطابق شکل، این تغییرات خطری است. معادله به b ارائه شده در معادله (2) برای محلولهای مورد آزمایش نیز در جدول (3) آورده شده‌اند. مقدار E و ضریب پنترامیون بزرگ (a) محلی به شده از معادله (7) در غلظتهای مختلف محلولهای مورد در آزمایش در جدول (4) آورده شده‌اند. مبنای‌هیچیک در جدول (2) ملاحظه 1387

استقامت سال 24، شهریور 1387
جدول ۳ - وابستگی اندامگیری شده در محلول‌های مختلف

<table>
<thead>
<tr>
<th>b۰ (m/A/cm²)</th>
<th>b۰ (V)</th>
<th>α۰ (V)</th>
<th>b۱ (V)</th>
<th>α۱ (V)</th>
<th>محلول آنتئزیبیک</th>
<th>محلول اسید فسفریک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۸</td>
<td>۰/۸۴۲</td>
<td>۱۲۱/۳</td>
<td>۲۳۵</td>
<td>۱۰۲/۴۹</td>
<td>۱۳۵/۸۹</td>
<td>اسید فسفریک</td>
</tr>
<tr>
<td>۱/۱۴</td>
<td>۰/۵۰۲</td>
<td>۱۱۸/۲</td>
<td>۲۰۳</td>
<td>۱۰۵/۲۴</td>
<td>۱۰۸/۹</td>
<td>فسفات دی هیدروژن سدیم</td>
</tr>
<tr>
<td>۱/۱۸۲</td>
<td>۰/۸۴۹</td>
<td>۱۵۲/۸</td>
<td>۲۴۴</td>
<td>۱۱۲/۳۳</td>
<td>۸۸/۸۷</td>
<td>فسفات هیدروژن دی سدیم</td>
</tr>
</tbody>
</table>

جدول ۴ - مقادیر میدان الکتریک (E) و ضرب بیولژیسی برخوردی (ε) در محلول‌های مختلف

<table>
<thead>
<tr>
<th>۱۰⁶ u(1/cm)</th>
<th>E(MV/m)</th>
<th>حلول محلول (مولار)</th>
<th>محلول آنتئزیبیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۱۷</td>
<td>۷۷۶</td>
<td>۰/۰۴۱</td>
<td>اسید فسفریک</td>
</tr>
<tr>
<td>۷/۱۴</td>
<td>۷۳۱</td>
<td>۰/۰۴۰</td>
<td>فسفات دی هیدروژن سدیم</td>
</tr>
<tr>
<td>۷/۱۸</td>
<td>۶۵۵</td>
<td>۰/۰۱۰</td>
<td>فسفات هیدروژن دی سدیم</td>
</tr>
<tr>
<td>۷/۸۸</td>
<td>۹۸۹</td>
<td>۰/۰۱۰</td>
<td>۰/۰۵۷</td>
</tr>
<tr>
<td>۷/۷۸</td>
<td>۷۶۱</td>
<td>۰/۰۲۰</td>
<td>۰/۰۵۷</td>
</tr>
<tr>
<td>۷/۹۴</td>
<td>۸۳۳</td>
<td>۰/۰۴۱</td>
<td>۰/۰۵۷</td>
</tr>
<tr>
<td>۷/۶۸</td>
<td>۹۵۷</td>
<td>۰/۰۴۱</td>
<td>۰/۰۵۷</td>
</tr>
<tr>
<td>۷/۶۸</td>
<td>۷۴۰</td>
<td>۰/۰۵۱</td>
<td>۰/۰۵۷</td>
</tr>
</tbody>
</table>

اصفهای تغییر نمی‌کند (ابن نسبت برای محلول‌های استاندارد، فسفات دی هیدروژن سدیم و فسفات هیدروژن دی سدیم بترتیب برای ۲۱۷، ۲۲۷ و ۲۳۷ ولتاژ). نیازی به برخورد با فییکسیون واریانس، ارزیابی برای تغییرات جریان الکتریکی اولیه و عامل اصلی کاهش ولتاژ شکست در افزایش فشار داشته و برای است که با تاثیج به‌دست آمده توسط سایر محققان مطابقت دارد [۱۴].

تصویر میکروسکوپ الکترونی سطحی تیتانیوم آندازه شده در محلول اسید فسفریک ۵۰ مولار قبل از شکست الکتریکی لایه اکسید آنی در شکل (۸) نشان داده شده است. هم‌کاری که ملازه می‌شود، تخلخل لایه اکسید شده کم است و این موضوع با توجه به محدودیت شکللی (زمان شکل‌گیری (۱) تا (۳) تأیید شده است.

استقلال، سال ۸۳، شماره ۲، استفاده ۱۳۸۲

۲۰۸
شکل 9- دیفراکتوگرام تیتانیم آندازی شده در محیط اسید نسفريك 100 مولار پس از عملیات حرارتی در دمای 600 درجه سانتیگراد در انریکس خوکی گاز آرگون به مدت یک ساعت

شکل 10- دیفراکتوگرام تیتانیم آندازی شده در محلول فسفات دی هیدروژن سدیم 600 مولار پس از عملیات حرارتی در دمای 600 درجه سانتیگراد در انریکس خوکی گاز آرگون به مدت یک ساعت

آموض بوده است. دیفراکتوگرامهای تیتانیم آندازی شده در محلولهای مورده بروزی پس از عملیات حرارتی در شکلانی (9) تا (11) نشان داده شدهاند.

(رویال) در رابه (23-20) ظاهر شدهاند که نشان دهنده کرومیتیپر آنتوی در اثر عملیات حرارتی است. بنا براین می توان نتیجه گرفت که لایه آندازی ایجاد شده دارای ساختاری

استقلال سال 22 شماره 3 اسفند 1387
جدول ۵- خواص و رنگ لایه‌های آندازی شده در محلول‌های پایه فسفات

<table>
<thead>
<tr>
<th>رنگ لایه</th>
<th>ضخامت لایه (میکرون)</th>
<th>ضخامت محلول (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>صوری</td>
<td>0/01</td>
<td>0/20</td>
</tr>
<tr>
<td>صوری کم رنگ</td>
<td>0/05</td>
<td></td>
</tr>
<tr>
<td>زرد منعکس به صوری</td>
<td>0/17</td>
<td></td>
</tr>
<tr>
<td>سیب منعکس به زرد</td>
<td>0/01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>رنگ لایه</th>
<th>ضخامت لایه (میکرون)</th>
<th>ضخامت محلول (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>صوری</td>
<td>0/01</td>
<td>0/20</td>
</tr>
<tr>
<td>سیب زرد</td>
<td>0/05</td>
<td></td>
</tr>
<tr>
<td>بیش</td>
<td>0/17</td>
<td></td>
</tr>
<tr>
<td>زرد منعکس به صوری</td>
<td>0/01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>رنگ لایه</th>
<th>ضخامت لایه (میکرون)</th>
<th>ضخامت محلول (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>صیب زرد</td>
<td>0/20</td>
<td></td>
</tr>
<tr>
<td>سیب روشن</td>
<td>0/05</td>
<td></td>
</tr>
<tr>
<td>صوری</td>
<td>0/17</td>
<td></td>
</tr>
<tr>
<td>زرد طالب</td>
<td>0/01</td>
<td></td>
</tr>
</tbody>
</table>

تصمیم‌گیری که ملاحظه می‌شود، ساختار لایه‌شکسته شده با ساختار لایه آندازی شده در محلول سدیم‌های هیدرورانون که تحت فسفات الکتریکی قرار گرفته، در شکل (۸) نشان داده شده است.
شکل ۱۲- تصویر میکروسکوپی الکترونی لاشه آندیز (ایجاد شده در محلول فسفات هیدروژن دی سدیم ۵/۰ مولار) شکل‌شده

شکل ۱۳- تصویر میکروسکوپی الکترونی لاشه تخریب و تخربی نشده در محلول فسفات هیدروژن دی سدیم ۵/۰ مولار

شکل (۱۲)، تصویر میکروسکوپی الکترونی مقطع عرضی لاشه آندیز ایجاد شده در محلول اسید فسفوریک ۵/۰ مولار را نشان می‌دهد. با توجه به این شکل، لاشه آندیز ایجاد شده نسبتاً یکنواخت است.

شکل (۱۳)، تصویر میکروسکوپی الکترونی لاشه آندیز ایجاد شده در محلول فسفات هیدروژن دی سدیم ۵/۰ مولار را نشان می‌دهد. ضخامت لاشه نیمی از سطح اکسیداسیونی پوشیده شده است.

نتیجه: افزایش ضخامت لاشه با افزایش غلظت محلول، ضخامت لاشه کاملاً کاهش می‌یابد.

استقلال، سال ۳۲، شماره ۲، آسفند ۱۳۸۲
شکل 15- تصویر میکروسکوپی الکترونی لایه اندیز ایجاد شده (در محلول فسفات هیدروژن در دمای 230 درجه سانتی‌گراد در اندازه‌گیری گاز آگوئی که مدت یک ساعت و 15 دقیقه مدت دارد) نشان می‌دهد.

شکل 16- نتیجه‌گیری لایه‌ای اندیز ایجاد شده، که در اثر ساختار آمورف بوده و فیلکس آنها با فازهای غلظت محلولی کاملاً بهبود یافته و
1. x-ray diffraction
2. scanning electron microscopy
3. auger electron spectroscopy
4. threshold energy for impact ionization
5. recombination constant
6. interionic forces