روشی جدید برای حل مسائل ارضايی محدودیت

غلامرضا قاسم‌نامی و میه‌رم نمایی
دانشکده مهندسی کامپیوتر، دانشگاه صنعتی شریف
دانشگاه آزاد اسلامی (واحد خوی)

(دریافت مقاله: 1383/8/8 - دریافت نهایی: 1385/4/28)

چکیده - بسیاری از مسائل مطروح در زمینه هوش مصنوعی را می‌توان به صورت مسائل ارضايی محدودیت توصیف كرد. این مسائل با استفاده از مجموعه‌ای از متغیرهای و تعدادی محدودیت بر روی متغیری که این متغیرها می‌توانند اختیار کنند. تعریف می‌شود (در این نوع از مسائل بر اساس کیفیت بهترین روش بهترین مقدار می‌باشد). حال این مسائل که از روش مجموعه‌ای از متغیرهای منحصر به فرد برای متغیرهای بسیاری که نظر مستقل ارضايی را نشان داشته. به طوری که تمامی محدودیتهای مورد نظر مستقل ارضايی می‌باشد. به کمک تعدادى که می‌تواند به پرسش‌های کمتر راه حل دستی می‌باشد. این که کمترین عدد راه حل مستقلی از آن به استندرپنردازه‌ای پیشرفت‌های کمتری به راه حل دستی می‌باشد. این این که تشکیل کننده سیستم کامپیوتری که در حین حل نسل انجام می‌دهند. تعداد و کلمه‌نگرهایی که در حین حل مستقلی انجام می‌دهند. با یکدیگر تفاوت دارند. در این مقاله، ضمن تشریح که کلمه‌نگرهایی ذکر شده، روش جستجوی جدیدی که آن را آن کلمه‌نگرهای بهبود یافته تأمین‌های همزمانی نیز معرفی می‌شود که از کلمه‌نگرهای آبنده‌نگره کامپیوتر است.

واژگان کلیدی: هوش مصنوعی، جستجو، مسائل ارضايی محدودیت، مسائل برچسب دهی سازگار

A New Method for Solving Constraint Satisfaction Problems

G. Ghasem- Sani and M. Namazi
Assistant Professor Department of Computer Engineering, Shriﬁ University of Technology
Instructor, Islamic Azad University (Khoy Branch)

Abstract: Many important problems in Artificial Intelligence can be deﬁned as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling” means assigning a value to a variable.) Solution to these problems is a set of unique values for variables such that all the problem constraints are satisﬁed. Several search algorithms have been proposed for solving these problems, some of which reduce the need for backtracking by doing some sort of looking to future, and produce more efﬁcient solutions. These are the so-called Forward Checking (FC), Partially Lookahead (PL), and Fully Lookahead (FL) algorithms. They are different in terms of the amount of looking to the future, number of backtracks that are performed, and the quality of the solution that they ﬁnd. In this paper, we propose a new search algorithm we call Modiﬁed Fully Lookahead (MFL) which is Shown to be more efﬁcient than the original Fully Lookahead algorithm

Keywords: Artificial Intelligence, Search, Constraint Satisfaction Problems, consistent labeling problems
1- مقدمه

مسئولیت اخلاقی مسائل ارضای محدودیت بخش نسبتاً وسیعی از مسائل مطرح در زمینه هواش مصرف ها را در بر می‌گیرد. معنی‌های جریبی؛ یک منطقه و سرد، در نتیجه توصیف توطین کردن هر نوع کلیه الگوبرداری، مکانی مطالعه از این نوع از مسائل [14-16] و [18]

2- مسائل ارضای محدودیت

پیوسته مسائل ارضای محدودیت، یکی از انواع مسائل هواش مصرفی است که با کمک دو مدل مصرف اصلی که بر اساس توصیف می‌شود [[17] و [18]] تعداد محدودیت "بهره‌کننده" را که به دو دانه محدودیت"بهره‌کننده از این توضیح استفاده می‌کند.

3- الگوریتم‌ها

اگر خاصیت سی‌توان برای این مسائل ارضای محدودیت را حاصل کند، [6] و [13] بدون عفونیت حاشیه‌ای کلیدی، یک الگوریتم جستجوی آینده‌ی "بهره‌کننده" که به داشتن تغییر در این مقاله معرفی می‌شود که آن را "آینده‌ی کلیه بهبود یافته" نامیده‌ایم. از این پس برای سال‌گذار "پرنسپل

استقلال، سال 13، شماره 1، شهریور 1383
1-3- الگوریتم بررسی جلوه

در الگوریتم بررسی جلوه، مقداری از دامنه متغیرهای آنی که با مقدار انتخاب شده برای متغیر جاری ناسازگار بوده، حذف می‌شوند. زیرا واضح است که این مقدار در آینده نمی‌تواند برای آن متغیرهای آنی نه تهی شود، با وجود باقیمانده صورت گرفته و برای متغیر جاری و با متغیرهای گذشته، مقدار دیگری انتخاب شود. در گیر این صورت جستجوی با تعیین مقدار متغیر بعده ادامه پیدا می‌کند. برای مثال شکل (1) مراحل اجرای الگوریتم بررسی جلوه برای حل مسئله چهار وزیر نشان می‌دهد. به منظور ساده‌گرایی در توضیح الگوریثمهای از مسئله چهار وزیر،یک فضای جستجوی کوچکتر نسبت به وضعیت، استفاده می‌شود. همان‌گونه که در شکل مشاهده می‌شود در مرحله هشتم، اولین جواب مسئله به دست می‌آید. در این شکل مقداری از دامنه متغیرهای که توسط الگوریتم بررسی جلوه حذف شده‌اند، با استفاده BT مشخص شده است. ضمن آن، این نیز در شکل مشخص کننده مقدار انتخاب شده برای هر متغیر است. الگوریتم بررسی جلوه به صورت هرکدام یک در بخش پیوست این مقاله آورده شده است.

توجه شود که در الگوریتم به محض آنکه دامنه یکی از متغیرهای آنی پیشی به داشته که بررسی جلوه موفق شده و باقی‌مانده آغاز می‌شود. به عنوان مثال در مرحله دوم به دلیل آنکه دامنه Q3 به پیشینه افزایش دیگر مورد بررسی قرار نمی‌گیرد. به همین خاطر، همان‌گونه که در شکل 1 نشان داده شده، مقدار 3 از دامنه یکی از متغیرهای عظیم تر و تعداد دقیقی انتخاب شده می‌شود. در صورت کسب‌گیری دامنه متغیرها به وضعیت پیش از انتخاب نامناسب مقدار برای متغیرهای اعضا می‌شود. در غیر این صورت جستجو با انتخاب مقداری برای متغیر بعدی ادامه پیدا می‌کند. در ادامه توضیح مختصاتی درباره هرکدام از این الگوریتم‌های جستجوی آینده‌نگار ارائه می‌شود.
مشاهده می‌شود که الگوریتم آینده‌گر جزئی در طی مراحل کمتری (نسبت به الگوریتم بررسی جلو) به حل مسئله کم‌رسیده است. علت این امر این است که در الگوریتم آینده‌گر جزئی، با کمک‌های الگوریتم بیشتر، محاسبات بیشتری بر روی اندازه‌گیری موجود برای متغیرهای آنی اعمال شده است. الگوریتم مصرف شبیه کد در مرجع [7] ارائه شده است.

3-3 الگوریتم آینده‌گر کامل

الگوریتم آینده‌گر کامل می‌تواند برای اعمال محدودیت‌های پیشتری نسبت به الگوریتم آینده‌گر جزئی مورد استفاده قرار گیرد. اختلاف الگوریتم آینده‌گر کامل با الگوریتم آینده‌گر جزئی در این است که در هر مرحله از الگوریتم آینده‌گر جزئی، مقادیر موجود در دامنه هر یک از متغیرهای آنی هنها با دامنه متغیرهای آنی یکسان است. در الگوریتم آینده‌گر کامل، مقادیر هریک از متغیرهای آنی به دامنه کلیه متغیرهای آنی دریک (قبل و بعد از خود) بررسی می‌شود. [7] مراحل اجرای الگوریتم آینده‌گر کامل را در حل مسئله چهار مرحله از نشان می‌دهد. در این روش در مرحله بین‌آموزنگی، برای جواب مسئله به دنبالی می‌آید. در این، برای مشخص کردن مقادیری که به خاطر بررسی بیشتر (نسبت

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>FC</td>
<td>FC</td>
<td>FC</td>
</tr>
<tr>
<td>FCBT</td>
<td>FC</td>
<td>FC</td>
<td>FC</td>
</tr>
<tr>
<td>FC</td>
<td>FCBT</td>
<td>FC</td>
<td>FC</td>
</tr>
<tr>
<td>FC</td>
<td>FC</td>
<td>FCBT</td>
<td>FC</td>
</tr>
</tbody>
</table>

با مقایسه مراحل مربوط به الگوریتم بررسی جلو، مشاهده می‌شود در مرحله ششم، اولین جواب مسئله به دست می‌آید. در این روش [1] مراحل اجرای الگوریتم آینده‌گر کامل را حل مسئله چهار مرحله از نشان می‌دهد. در این روش در مرحله بین‌آموزنگی، برای جواب مسئله به دنبالی می‌آید. در این، برای مشخص کردن مقادیری که به خاطر بررسی بیشتر (نسبت

شکل ۱- مراحل اجرای الگوریتم بررسی جلو (FC) در حل مسئله چهار وزیر (۱۳۸۳)
الگوریتم دیگر نیست، به عبارت دیگر مزیت اصلی آن تعداد مراحل و عطایگرد کمتر است.

4- الگوریتم آینده‌نگر کامل به‌عده‌یافته

الگوریتم MFL آینده‌نگر کامل، از طریق کاهش تعداد بررسی‌های سازگاری انجام شده در الگوریتم (و نه کاهش تعداد مراحل حل مسئله)، طراحی شده است. [1، 2] به عبارت دیگر، الگوریتم MFL از ادامه‌ی خواص شده، الگوریتم MFL می‌تواند مسئله‌ی ارزیابی محور و را با صرف انرژی کمتری از نظر تعداد بررسی سازگاری انجام شده (در مقایسه با روش FL) و در عین حال از نظر تعداد مراحل (FL) با کیفیتی حداکثری به خوبی روش حل کند. در این الگوریتم، همانند روش آینده‌نگر جزئی، مقادیر دامنه‌های هریک از متغیرها آن‌ها با دامنه متغیرها آنی پس از FL به روش‌های قبلی) این روش حذف شده، از علائم استفاده شده است. همان‌گونه در شکل (3) دیده می‌شود، الگوریتم آینده‌نگر کامل در طی مراحل کمتری (نسبت به الگوریتم آینده‌نگر جزئی) به اولین حل مسئله دست یافته است و این به علت اعمال محدودیت بیشتر بر روی انتخاب‌های متغیرها آنی است. برای دیدن الگوریتم MFL به صورت شبه کد به مرجع [4] رجوع شود.

همان‌گونه که توضیح داده شد، الگوریتم آینده‌نگر کامل به نسبت از الگوریتم آینده‌نگر جزئی و بررسی جلوی، تعداد بررسی‌های سازگاری بیشتر انجام داده و مسئله را در طی مراحل کمتری حل می‌کند. از طرفی تعداد عفونت‌های انجام شده نیز در این روی کمتر است. الیه پایانی توجه شود که زمان کل حل مسئله در الگوریتم آینده‌نگر کامل به علت بررسی‌های سازگاری بیشتری که انجام می‌دهد، لزوماً کمتر از دو

شکل ۲- مرحلات اجرای الگوریتم آینده‌نگر جزئی (PL) در حل مسئله چهار وزیر

شکل ۳- مرحلات اجرای الگوریتم آینده‌نگر کامل (FL) در حل مسئله چهار وزیر

استقلال، سال ۱۳۸۳، شماره ۱، شهریور ۱۳۸۳
آن بررسی می‌شود. البته همان‌گونه که در بخش (۵) تشریح خواهد شد، در مقایسه با روش‌های تنگی و اثر نگری، روش آینده‌گری (بررسی روش‌های جلویی) بیشتر انجام می‌دهد. به عبارت دیگر از نظر تعداد بررسی‌های انجام‌شده در هر مرحله، روش‌های ناب‌پایه و روش MFL و PL قرار دارد، در حالی که از نظر تعداد مراحل حل حداکثر به خوبی MFL در مرحله اول از شکل (4) پس از انتخاب مقدار 1 برای وزیر اول (متغییر Q1)، انتخاب مقداری از دامنه متغیرهای آنی که با لحظه از طرف وزیر نازک‌ترین از دامنه وزیرهای بعدی حذف می‌شود (به‌عنوان خانه‌هایی که با علامت FC مشخص شده‌اند) می‌تواند در نهایت به‌عنوان مقدار ۳ از دامنه وزیر دوم (Q2) نیز به‌عنوان نامکمل متغیرهایی با مقادیر بالای‌تر از دامنه وزیر دوم شود (اين امر با علامت PL در حالت مربوط به نامکمل داشته باشد است). پس از اتصال MFL علامت وزیر دوم به نامکمل دامنه وزیر دوم به نامکمل دامنه وزیر دوم اضافه می‌شود. در همین مرحله این مقدار را نیز از دامنه MFL وزیرهای سوم و چهارم حذف می‌گردد. این امر با علامت MFL در نهایت به‌عنوان نامکمل دامنه داده‌شده است.

در اصل، به چیزی که از نظر MFL استفاده شود، خانه‌هایی که با علامت MFL نامکمل دامنه داده‌شده و اضافه حذف نمی‌شود و به‌عنوان خارجی تخمینی تحقیقاتی (مرحله ۲ از این پروتکل از لازم است با MFL در نهایت به‌عنوان MFL نامکمل از طرف اولیکا در صورتی که این تعریف به‌عموم که مقدار از دامنه MFL بررسی نشده باشد، مقدار Li MFL به‌عنوان یک مقدار موجود در دامنه چهارم از این پروتکل از DCR از دامنه MFL بررسی نشده است.

بعد از این پروتکل، در ادامه می‌باشد. (در واقع این پروتکل مقدار MFL انجام می‌دهد.) در این پروتکل به‌عنوان از دامنه MFL پس از انجام مقدار حذف نشده موجود در دامنه MFL، این پروتکل به‌عنوان MFL انجام می‌دهد.

در این پروتکل به‌عنوان از دامنه MFL به‌عنوان MFL انجام می‌دهد.

در این پروتکل به‌عنوان از دامنه MFL به‌عنوان MFL انجام می‌دهد.

در این پروتکل به‌عنوان از دامنه MFL به‌عنوان MFL انجام می‌دهد.
متغیّرهای آتی نیز با یکدیگر بررسی می‌شود. لیکن از آن‌جایی که
حاجت به چنین یک انجام شد، در یک مرحله به خاطر
سیر‌های تغییر شده، بخاطر از آن‌ها در مراحل بعدی تکرار می‌شود.
به علی‌رغم مثال، فرض کنید که در یک مطرحه‌ای از یکی از
الگوی‌های آی‌دی‌نگر، U متغیّر جاری و مقدار Li از دامنه
متغیّرهای آتی، پس از انجام بررسی سازگاری با مقدار متغیر Ui
حرف نشود. تا رسیدن به مرحله‌ای که نتیجه به تغییر مقدار Ui
در صورت Li (تا به حال) با مقدار موجود در دامنه مقدار متغیرهای آتی
دیگر محتمل است، متغیّرهای آتی به مقدار متغیرهای آتی
نسبت به MFL انجام شدند. بررسی خواهد‌شد، که برتری کویک‌پوزک که از این است که با خاطر سپاری بررسی سازگاری
انجام شده بینتیج، در تکرار مجدد آنها در ادامه جستجو پرهر
مات کند.

اگرچه هر یک از الگوی‌های SFL و FL در کل تعداد بررسی‌های
سازگاری بیشتری نسبت به الگوی‌های SFL و FC انجام
می‌دهند، از این بررسی‌های تکراری است،
لیکن الگوی آی‌دی‌نگر، U در طی هر محاله نیز می‌باشد از بررسی‌های
سازگاری تکراری انجام می‌دهد. به علت مثال، سازگاری مقدار
Li بین دامنه متغیر آتی U1 و U2 از دامنه L1 بررسی دامنه Li
بررسی شد و (در صورت عدم حذف مقدار Li) برای دیگر
در حین بررسی دامنه U1 U2 بررسی می‌شود. اما در الگوی آی‌دی‌نگر
با خاطر سپاری بررسی سازگاری انجام شده‌است.

مقدار‌های مبهر شده و نیازی به بررسی مجدد دانه و زیرهای
سوم و چهارم با وزیر دوم (بخش کاری که روش
عهد انجام می‌دهد) تدارک گریزشی بیشتر در پویش
الگوی آی‌دی‌نگر کاملاً بهبود یافت (MFL) در مرحله (2) ارائه
شده است.

5- مقایسه الگوی‌های جستجوی آی‌دی‌نگر
همان‌گونه که در بخش قبل توضیح داده شد، کلیه
الگوی‌های جستجوی آی‌دی‌نگر با حذف مقداری از دامنه
متغیّرهای آتی که امکان انتخاب آنها در آینده وجود ندارد،
انتخاب مقدار برای متغیر جاری را صورت یک محدودیت
انشای می‌دهد. با این حال، میزان حذف و تلاشی که در قابل
انجام بررسی‌های سازگاری صورت می‌گیرد، در الگوی در
مختلف آی‌دی‌نگر متفاوت است. هر چه میزان حذف مقدار
نامناسب از دامنه متغیرهای آتی بیشتر باشد، انتخاب‌های کمتری
در هنگام انتخاب مقدار متغیرهای آتی باقی خواهد ماند و در
نتیجه، اعداد عفون‌گرد و مراحل کمتری به حل مسئله (البته در
صورتی که مسئله حل داشته باشد) دست می‌یابد. اما حذف
مقدار بیشتر از دامنه متغیرهای آتی نیاز به انجام بررسی‌های
سازگاری بیشتری دارد.

همان‌گونه که در بخش (3-1) توضیح داده، در
الگویی FC بررسی‌های سازگاری نیا، بین مقدار انتخاب شده
برای متغیر جاری و مقدار موجود در دامنه مقدار متغیرهای
آتی صورت می‌گیرد و دامنه برخی متغیرهای آتی به علت
وجود نامناسبی با مقدار متغیر جاری هرس می‌شود. در
الگویی SFL و FL سازگاری مقدار موجود در دامنه مقدار

من‌عکس کننده‌ی رابطه‌ی نسبی گریزی‌های مورد بحث از نظر کلی زمان لازم برای پایان‌هایی باشم‌های مسئولیتی هشت و شانزده وزیر نیز است.

از آنجا که مسئولیت‌های محدودیت در حالی کلی از نظر NP-Complete مشمول مسئولیت‌های آینده‌نگر با توجه به وابستگی و سیستماتیک به‌دید آن در این نوع از مسئولیت‌های صورت‌های نمایی است (13). یعنی با یک‌رانگ شدن اندراز سمله، زمان مورد نیاز برای حل مسئله به صورت نمایی افزایش می‌یابد. گریزی MFL تابع از این قاعده مستندی نمایی است. نمودار شکل 5 ارائه محدودیت‌های دایری مسئولیت مسئولیتی است. نمودار نمایی است. همان‌گونه که این نمودار نشان داده شده است، در حالی که اندراز سمله‌های شانزده وزیر نیز در برای مسئله هف توزیر است، تعداد بررسی‌های سازگاری لازم برای افزایش یک مسئله به مسئله 1،000،000 برای تعداد بررسی‌های سازگاری لازم برای حل مسئله هشت وزیر است.

مقایسه تجربی گریزی‌های آینده‌نگر موج‌های با گریزی MFL نشان می‌دهد که از نظر تعداد فدمهای لازم برای حل مشتمل، نیز کم‌تر این گریزی‌های حسابی به خوبی محدودیت‌های دو کلیه پاسخ‌های دو سمله‌های هفت و شانزده وزیر نیز در MFL مشتمل (تعداد کلیه پاسخ‌های بین مدل‌های به ترتیب در 92 و 477،512 اصلی است). همان‌گونه که در مدل مشاهده می‌گردد، گریزی MFL ارائه گریزی‌های سازگاری که انجام می‌دهد (در نتیجه از نظر کارایی) در بین گریزی‌های آینده‌نگر پل (کلیه نمونه‌های) در پل MFL بهترین است.

آن، از نظر بسیار اینجام‌نامه‌ها در ادامه جستجو برای کمک‌های می‌شود. بین‌صورت که چنین نمایش از شورش به گریزی موقوف موجود در دائم MFL از قبل مسئولیت شده است که کامی که از موقوف موجود در دائم آن و متغیرهای آن بعد از آن با تمامی موقوف باقی‌مانده در دائم متغیر آن قبل از آن، ناسازگار است و باسیست حذف شود. سایر مقدارهای موجود در دائم MFL تناها مقدارهای موجود در دائم متغیرهای آن بعد از بررسی می‌شود.

قائیم‌های MFL سازگاری‌های انجام‌نامه در حل آن مسئله دارد. در نتیجه نمودارهای ارائه شده در شکل 5 در واقع به‌طور ضمنی

استقلال، سال 13، شماره 1. شهریور 1383
شکل ۵ - تعداد بررسی‌های سازگاری انجام شده برای پایان کلیه پاسخ‌های مسائل هشت و شانزده وزیر

شکل ۶ - تعداد مراحل طی شده برای پایان کلیه پاسخ‌های مسائل هشت و شانزده وزیر

بررسی‌های انجام شده فیلی، مشخص است که کدام یک از مقادیر موجود در دامنه UI و متغیر‌های آنی بعد از UI با تماسی مقادیر باقی مانده در دامنه متغیر آن مانند آن، ناسازگارند و با پیش‌بینی حذف می‌شوند. حذف این مقادیر باعث می‌شود که در طی بررسی سازگاری دامنه UI و دامنه متغیرهای آنی بعد از آن، نه تنها بررسی‌های سازگاری کاملاً با مقادیر موجود در دامنه متغیرهای آنی بعد از آنها صورت گیرد، بلکه احتمال حذف تعداد قدیم‌های بیشتری برای رسیدن به کلیه پاسخ‌های مسئله مزبور نیاز خواهد داشت. اما همان‌گونه که نمودار شکل (۶) می‌شود، تعداد مراحل الگوریتم MFL از الگوریتم FL نشان می‌دهد، تعداد مراحل الگوریتم MFL از الگوریتم FL اندکی بیشتر است. این امر بعنوان ممکن این است که در الگوریتم MFL مقادیر بیشتری از دامنه مقادیر متغیرهای آتی حذف می‌شوند و شرایط این الگوریتم، از شرایط الگوریتم UI موجود در دامنه یک متغیر آتی مانند UI بیشتر خاطر سپاری.

استقلال، سال ۳۳، شماره ۱، شهریور ۱۳۸۳
9
عنوان یک محدودیت جدید و انتشار آن، دانه‌ای متغیرهای آنی را هرس می‌کند. میزان حذف و تلاش که در قالب انجام برش‌های سازگاری صورت می‌گیرد، در کوپینه‌ها مختلف آیین‌دهی متفاوت است. هر چقدر میزان حذف مقداری از دانه متغیرهای آنی پیش‌بینی شود، تعداد انتخاب‌های ممکن برای مقداردهی به متغیرهای آنی در یک‌محله جستجو کاهش خواهد و در نتیجه تعداد مراحل تغییر و تعداد شباهت‌های انجام شده در راه رسیدن به پایان مسئله کاهش می‌یابد. اما حذف مقداری بیشتر از دانه متغیرهای آنی، نیاز به انجام برش‌های سازگاری بیشتری دارد. در ذخیره‌کردن کمکه به نسبت از در کوپینگ آبندها، جزئی و بررسی جلوی تعداد برش‌های سازگاری بیشتری انجام داده و مسئله را به طی مراحل و انجام عقب‌گردی‌های کمتر حل می‌کنند.

در این مقاله ساختار جستجوی آبندها که نام "آبندها کامل بهبود یافته" معرفی شده که از کوپینگ اصلی "آبندها کامل" کاربردی است: بدان نشان می‌کند برش‌های سازگاری کمتری انجام داده و در غیر حال، مقداری ناسازگار بیشتری را از دانه‌های متغیرهای آنی حذف می‌کند. در این کوپینگ تعداد مراحل طی شده و همچنین تعداد شباهت‌های انجام شده نیز رسیدن به پایان مسئله نیز کمتر از کوپینگ آبندها کامل است.

مقداری موجود در دامنه U1 و متغیرهای آنی بعد از آن نیز افزایش یابد. به عنوان مثال، در دامنه یکی از متغیرهای آنی بعد از U1 مقدار L2 و L1 وجود داشته و پس از پایان برش‌های سازگاری مقداری موجود در دامنه U1 مقدار L1 به دنبال عدم سازگاری با مقداری باقی مانده در دامنه H1 حذف گردید. سازگاری مقدار موجود در دامنه متغیرهای آنی بین U1 و U2 نشان‌دهنده باقی‌مانده از مقدار FL بوده و لباس از مقدار هر سازگاری دامنه U1. مقدار L1 از دامنه مقداری متغیر آنی U2 که با مقدار L2 مقداری از دامنه متغیرهای آنی بین U1 و U2 که با مقدار L2 سازگار و با مقدار L2 ناسازگار پایان داده، نیز حذف نخواهد شد. برای توضیح بیشتر و جزئیات کلی کوپینگ‌های مورد بحث این بخش به مراجعه شود.

6- نتیجه‌گیری

مسائل ارضای محدودیت، بخش نسبتاً وسیعی از مسائل مطرح در زمینه هوس مصنوعی را در بر می‌گیرد. این مسائل با استفاده از مجموعه‌ای از متغیرها و تعدادی محدودیت بر روی مقادیری که این متغیرها می‌توانند اختیار کنند، تشکیل می‌شوند. پاسخ این مسائل مجموعه‌ای از مقادیر منحصر به فرد برای متغیرهای بطوری که تمام محدودیت‌های مورد نظر مسئله ارضا شده باشد.

گرافیک ساختار جستجوی آبندها نگری که بزرگ حالت این نوع از مسائل بسیار هر مرحله، مقداری را برای متغیر جاری انتخاب می‌کند و با این نظر افراد انتخاب به

واژه‌نامه

1. Constraint Satisfaction Problems
2. Consistent Labeling Problems
3. Backtracing
4. Consistency Checking
5. Crypt Arithmetic
6. Eight Queen
7. Map Coloring
8. Waltz
9. Consistent
10. Unary Constraints
11. n-ary constraints
12. search space
13. Initial State
14. Goal State
15. Depth First Search
16. Breadth First Search
17. Iterative Deepening DFS
18. Forward Checking
19. Partially Lookahead
20. Fully Lookahead
21. Modified Fully Lookahead
22. Binary Constraints
23. Prune
24. Uninformed
25. Systematic

استقلال، سال 13، شماره 1، شهریور 1383
1. قاسم ثانی، غ. و نمازی، م.، رویکرد برای حل مسائل
برده سازگاری: مجموعه مقالات پنجمین سمینار
سالانه انجمن کامپیوتر ایران، دانشگاه شهید بهشتی،
ص. 222-226، 211-212، 1378.

2. نمازی، م. و رضای پیامدار، کمک آموزشگر
کوریتی‌های جستجوی برای حل مسائل ارزش‌های
محدود: پایان‌نامه کارشناسی، دانشکده مهندسی
کامپیوتر، دانشگاه صنعتی شریف، 1378.

Checking Algorithm," In Proceedings of the First
International Conference on Principles and Practice

4. Dechter, R., and Pearl, J., "Generalized Best-First
Search Strategies and the Optimality of A," Journal
of the Association for Computing Machinery, Vol. 32,

5. Dechter, R., and Pearl, J., "Network-Based Heuristics
for Constraint Satisfaction Problems," Artificial

6. Freuder, E., "A Sufficient Condition for Backtrack-
Free Search," Journal of the Association for

7. Haralick, R., and Elliot, G., "Increasing Tree Search
Efficiency for Constraint-Satisfaction Problems,"
Artificial Intelligence Journal, Vol. 14, PP. 263-313,
1980.

8. Kanal, L., and Kumar, V., Search in Artificial
Intelligence, Springer Verlag, 1988.

9. Korf, R., "Depth First Iterative-Deepening: an
Optimal Admissible Tree Search," Artificial

Kanal and V. Kumar ed., Search in Artificial
Intelligence, chapter 7, PP. 223-263, Springer-Verlag,

11. Korf, R., "Linear-Space Best-First Search," Artificial

12. Kumar, V., "Algorithms for Constraint Satisfaction
Problems: A Survey," Artificial Intelligence

13. Mackworth, A., "Consistency in Network of
Relations," Artificial Intelligence Journal, Vol. 8, PP.

15. Rich, E., and Knight, K., Artificial Intelligence, 2nd

16. Russel, S., and Norvig, P., Artificial Intelligence: A

17. Tsang, E., "Notes on Consistency in Consistent
Labeling Problems," Technical Report CSCM-29,
University of Essex, Department of Computer

18. Waltz, D., Understanding line Drawings of Scenes
with Shadow, in P. Winston ed., The Psychology of
پوست

در این بخش الکتریسیتهای بررسی جدول (FC)، آینده‌گر کامل پیوستیات، و ریه‌ای به نام اصلی (شکل ب۱)، زیر رویه‌های مربوط به دو الکتریسیته مربوط به این شکل (شکل‌های ب۲ و ب۳) را فراخوانی می‌کند، به صورت شبکه کارهای می‌شود. یادآوری می‌شود که کلیه الکتریسیتهای آینده‌گر (FL) و MFL در این‌نمونه راه‌برد ملکه الکتریسیتهای بررسی جدول (FC) اجرا می‌شود. لذا در اینجا برای تکمیل الکتریسیتهای MFL الکتریسیتهای FC نیز آورده شده است. برای اطلاعات بیشتر در خصوص این الکتریسیتهای به [۱ و ۷] رجوع شود.

Recursive Procedure Forwardsearch (U, F, D);
For F(U)=each element of D(U) Begin
if U < Number_Of_Variables then Begin
 New_D = Forward_Check (U, F(U), D);
 if Not Empty_Domain_Flag then Call Modified_FL (U, New_D);
 end if;
 if Not Empty_Domain_Flag then Begin
 Call Forwardsearch(U+1, F, New_D);
 end if;
else
Output the Labeling F;
end for;
end Forwardsearch ;

شکل ب۱ - روش جستجوی جدول (رویه اصلی)

Function Forward_Check(U, L, D) : New Domain Table ;
New_D = Empty Domain Table;
For U2=U+1 to Number_Of_Variables Begin
For L2=each element of D(U2)
if relation(U, L, U2, L2) then Begin
Enter L2 into New_D(U2);
Dellevel(U2, L2) = U+1;
end if;
if New_D(U2) is Empty then Begin
Empty_Domain_Flag = True ;
return(New_D);
end if;
end for U2
return(New_D);
end Forward_Check ;

شکل ب۲ - زیر رویه مربوط به الکتریسیتهای بررسی جدول (FC)
Procedure Modified_FL(U, New_D);
 For U1=U+1 to Number_Of_Variables Begin
 For L1=each element of New_D(U1) Begin
 if Dellevel(U1, L1) = U1-1 then Begin
 Delete L1 from List New_D(U1)
 end; else Begin
 For U2=U1+1 to Number_Of_Variables Begin
 Consistent_Label_Found_Flag = False;
 For L2=each element of New_D(U2) Begin
 if Dellevel(U2, L2) = U1-1 then
 Delete L2 from List New_D(U2);
 else if relation(U1, L1, U2, L2) then begin
 Consistent_Label_Found_Flag = True;
 Lastchecked(U2) = L2;
 Break For L2 Loop;
 end if;
 end For L2 Loop;
 if Not Consistent_Label_Found_Flag then begin
 Delet L1 from list New_D(U1);
 Break For U2 Loop;
 end if;
 end For U2 Loop;
 if Consistent_Label_Found_Flag then begin
 For U2=U1+1 to Number_Of_Variables Begin
 Dellevel(U2,LastChecked(U2)) = U1+1;
 For L2 = each remained element of D(U2) that not checked Begin
 if Dellevel(U2, L2) = U1-1 then
 Delete L1 from List New_D(U2);
 else if Dellevel(U2, L2)=U1 then
 if relation(U1, L1, U2, L2) then
 Dellevel(U2, L2) = U1+1;
 end if;
 end For L2 Loop
 end For U2 Loop;
 end if;
 end of else;
 end For L1 Loop;
 if New_D(U1) is empty then begin
 Empty_Domain_Flag=True;
 return;
 end if;
 end For U1 Loop;
return;
end Modified_FL;

شکل ۳- زیر رویه مربوط به الگوریتم آیبند جویان کامل بهبود یافته (MFL)