اثر تراکم استگاه و تفکیک منطقه‌ای در برآورد توزیع مکانی بارندگی روزانه
(مطالعه موردی بر روی بارندگی جنوب غرب ایران)

بهرام نظریان، سیما رحمی بندرآبادی ***، حمید طاهری شهرآئینی *** و جعفر غیورمان ****
پژوهشگاه حفاظت خاک و آبخیزداری

(دریافت مقاله: ۸۳/۳/۲۱ - دریافت نسخه نهایی: ۸۳/۴/۲۴)

چکیده - بارندگی یکی از متغیرهای اقلیمی است که به عنوان محرک چرخه‌های هیدرولوژی اهمیت زیادی برخوردار است. اصولا در مطالعات بارندگی و بیش از سالیانه در جو های متغیر و بر بقای مطالعات آلودگی، علاوه بر تغییرات زمینی بارندگی، نیاز به بررسی تغییرات مکانی آن تیز هست. برآورد تغییرات مکانی بارندگی روزانه بدون توجه به مقاوم و انتخاب روش‌های مناسب و به‌روش‌های مناسب، می‌تواند از عوامل مهم ایجاد خطأ در تعیین ورودی مدل‌های بارش-روش‌های باشد. میان‌مقداری از جمله، مقاوم و انتخاب روش‌های مناسبی بارندگی است. در این مقاله می‌خواهیم به بهبود روش‌های مدل‌های بارش-روش‌های مکانی بارندگی، توزیع مکانی بارندگی روزانه جنوب غرب ایران مورد توجه قرار گردد. به‌منظور مقایسه و ارزیابی هر روش روش‌های انتخاب سنجی تقاضایی (۲۰) استفاده شد. ارزیابی روش‌های مختلف برای برآورد بارندگی روزانه نشان داد که به‌طور تکمیلی انتخاب سنجی تقاضایی (۲۰) بهترین نتایج را داشت. به طور کلی، تحلیل سنجش استحکام دقت میان‌مقداری با افزایش می‌دهد که این افزایش دقت در روش منطقه‌ای بندی خوزستان بیشتر از افزایش منطقه‌ای نتایج است. گزارش کلیدی: تحلیل خوشهای، تراکم استگاه، میان‌مقداری، زمین آمار، بارندگی روزانه، اعتبار سنجی تقاضایی، ایران

واژگان کلیدی: تحلیل خوشهای، تراکم استگاه، میان‌مقداری، زمین آمار، بارندگی روزانه، اعتبار سنجی تقاضایی، ایران

The Effect of Station Density and Regional Division on Spatial Distribution of Daily Rainfall

B. Saghafian, S. Rahimi Bandarabadi, H. Taheri Shahraeeni and J. Ghayoomian
Soil and Watershed Conservation Research Institute

Abstract: Rainfall is one of the most important climatic variables in the hydrology cycle. In flood estimation as well as environmental pollution studies in medium to large watersheds not only must temporal pattern of rainfall be known, but also the knowledge of its spatial distribution is required. Estimation of daily rainfall distribution without comparison and selection of

* - دانشیار پژوهشی **- کارشناسی ارشد ***- دانشجوی دکتری ****- استادیار پژوهشی

استقلال، سال ۲۴، شماره ۱، جلد اول، شهریور ۱۳۸۴

59
suitable methods may lead to errors in input parameters of rainfall – runoff models. Interpolation methods are among the techniques for estimating spatial distribution of rainfall. In this study, Thin Plate Smoothing Splines (TPSS), Weighted Moving Average (WMA) and Kriging are applied to estimate spatial daily rainfall in the southwest of Iran. Cross validation technique is used for comparison and evaluation of the methods. The results of analysis with two different station density showed that the TPSS method with power of 2 is the most accurate method in estimating daily rainfall. Zoning of the region also increased the interpolation accuracy. Generally speaking, division of the region based on cluster analysis improves accuracy compared with division by inter basin boundaries.

Keywords: Cluster Analysis, Station Density, Interpolation, Geostatistics, Daily Rainfall, Cross Validation, Iran

فهرست علائم

<table>
<thead>
<tr>
<th>MAE</th>
<th>C₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBE</td>
<td>C(h)</td>
</tr>
<tr>
<td>CV</td>
<td>n</td>
</tr>
<tr>
<td>RMSE</td>
<td>اعتبار سنجی تکاپکی</td>
</tr>
<tr>
<td>WMA</td>
<td>مدل ارتفاعی رقمی</td>
</tr>
<tr>
<td>x₁, x₂</td>
<td>عکس مجزور فاصله همراه با گردانی</td>
</tr>
<tr>
<td>Z(x)</td>
<td>فاصله بين هر نقطه مجزا</td>
</tr>
<tr>
<td>Z⁺(x)</td>
<td>معرف نقاط مشاهده‌ای</td>
</tr>
<tr>
<td>α</td>
<td>درجه مشتق عددبی نسبی ماصلح در نقاط اندازه‌گیری شده</td>
</tr>
<tr>
<td>λ</td>
<td>پارامتر پراش</td>
</tr>
</tbody>
</table>

کر. اگر جه محاسبات این روشهای سریع و آسان است ولی معایب و اشکالات آنها گهی می‌نمی‌کند به این راحتی که نباید قابل قبول و با دقت کم می‌شود. از معایب این روشهای می‌توان به موارد زیر اشاره کرد: در روش‌ها می‌توانیم به سه تا چهار نقطه ایستگاه‌ها در نظر گرفتی که نمی‌شود و نیاز دارد به نوبه‌رانش نقاط با مقدار معلوم در اطراف نقاط مجزا به دست دادن. نیویکور در این حال و تقصیر در این نتیجه‌ها شکاف که نباید انجام شود. اگر نسبت به شبکه می‌گوییم حتی که نباید انتخاب یا انتخاب نویه‌های بارندگی نباید که نباید می‌شود. اگر گرفته شود می‌شود ولی برای پروپوزال و می‌توانیم در نقاط می‌توانیم به دست نمی‌آید. در روشهای این فاصله، در روشهای دیگر می‌توانیم به نقطه‌سیستم در نظر گرفته می‌شود ولی برای تولید و می‌توانیم در نظر گرفته شود. ولی برای پروپوزال و نقطه نسبی نقاط در محاسبات لحاظ نمی‌شود و باید به فاصله می‌شود.

1- مقدمه

پراورد میزان بارندگی در بسیاری از مطالعات هیدرولوژیکی انجام نیامده است. این مطالعه با استفاده از داده‌های اسنادی و سطحی این مطالعه انجام گرفت. معیار اصلی در این مطالعه بررسی میزان بارندگی در مناطق مختلف شهرستان‌ها نماشگری از این مطالعه است. مطالعه گردیده در این مطالعه از عوامل مهم ایجاد خطاهای بارندگی در محیط‌های شهری و روستایی - رواناب در کاربردهای پیشینی و نهایی باشد، به درجه در پراورد بیان آفت در بارندگی متغیر بارندگی اهمیت فراوانی دارد. روشهای مختلف برای پراورد توزیع میزان بارندگی وجود دارد. از جمله روشهای کلاسیک معمولاً می‌توان به روش‌های میانگین حسابی، تبسیه، هیپومنتریک و روشهای استفاده از خطوط هم باران اشاره

استقبال، سال 24، شماره 1، جلد اول، شهریور 1384
یکسان از نقطه محیطول قرار دارند، یکسان در نظر گرفت
می‌شود. در روش تینز نیز، تمامی وزن به نوعی مربوط داده
می‌شود. ضمن آنکه با توجه به تجسم منطقه به وسیله عمل
منصوب، تغییرات بارندگی به‌طور مشابه تایپیستگی
است و در نتیجه برای اغلب مناطق نظر منطقه کوهستانی
نیازی نداشت. این باعث افزایش می‌شود.

اکثر بخش‌های محیطول قرار دارند، یکسان از نظر گرفته‌
می‌شود. در روش تینز نیز، تمامی وزن به نوعی مربوط داده
می‌شود. ضمن آنکه با توجه به تجسم منطقه به وسیله عمل
منصوب، تغییرات بارندگی به‌طور مشابه تایپیستگی
است و در نتیجه برای اغلب مناطق نظر منطقه کوهستانی
نیازی نداشت. این باعث افزایش می‌شود.

کردن. گوارتر [7] روزه‌های بارندگی ممکن است به الكرینگ
خارجی و کریکینگ را برای بارندگی سالانه و دمای
ایستگاه کیلیم‌نژادی در ناحیه‌ای به وسعت
5000 کیلومتر مربع در پرگان بررسی کرد. در مقایسه بین سه روش
با روش‌های عکس مجزا فاصله، رگرسیون خطی با ارتفاع، نیسن
و کریکینگ معمولی با استفاده از تکنیک اعتبار منطقه‌ی اقتصادی،
روش بارندگی سالانه ناتمام بوده و اثر این نوع روش
از روش استکلاینی جزئی و استکلاینی و استکلاینی
بارندگی در سه‌تای استفاده کرد. برای کردن با استفاده از مفهوم
کمکی ارتفاع و بدون انجام شک دو هر نتایج مشابه ارائه
کردن. هرچیزی بدون‌داده‌ای [1] کاربرد روزه‌های زیر آرای
مورد بررسی قرار داد. ترتیب نشان داد برای بارندگی
ماهانه و سالانه روش TPSS با نمودر و با منگر کمکی ارتفاع
روش ماهانه است.

روش ماهانه این دسته بنا به یکتایی و سه‌تایی روزانه،
اسپیلاین در بارندگی و بارندگی روزانه در افریقای جنوبی.
روش مایلینگ متغیر وزنی را مناسب تشخیص داد. جغرافیا و
همکاران [11] تغییرات مکانی داده‌های بین دو در استپکه‌ای
هوشمندسک دوست ایرانی مورد بررسی قرار دادند. آنها با
ایجاد یک شیب معکوس در مدت 605 متر به روش
TPSS میان‌متریک روزه‌های زیر آرای و روش کریکینگ معمولی
برای میان‌متریک بارندگی سالانه و روزانه استفاده کردند. بیان و
لوك [12] درآی تخمین توزیع شدت بارندگی در حوادث شهیر
سیاسی در کشور استرالیا، روشهای تینز، عکس فاصله،
اسپیلاین و جدیدتری را بررسی کردند. نتایج نشان داد که
روش اسپیلاین با خطای نسبی 32 درصد فاصله‌ریز روش و
روش تینز با خطای نسبی 79 درصد ناتمامبوده روش
است. ثغیبی و همکاران [13] چند روش میان‌متریک تیپ‌سن،
مرزی غرب، مارون - جراحی زهره، طبیعی و بینکننده‌ان، شب‌‌‌نگ، دالکی، رود موند، رود کلی، ساحل خلیج فارس و میناب در محلوده منطقه قرار دارد. مرز شمالی شرقی و میناب محدود به مرز حوزه‌ها و در قسمت غربی محلود به مدار ۱۳۹۸. است. این منطقه از حفاظت اقیمی متنوع و دارای اقلیم‌های خشک بیابانی، فراخش، نیمه خشک، مدیران‌های و نیمه مرتوبان و به طور کلی از نواده‌های روغنی و جهانی باران این از جنوب، جنوب غرب و غرب وارد کشور می‌شوند نمایش است. سطح محله مورد نظر بخشی از رشته‌کوه‌های زاگرس در بر می‌گردد. به طوری که حداکثر ارتفاع حدود ۴۵۰ متر و حداقل سطح در صفر کالی فارس است. شکل(۲) تغییرات مکانی افتتاح منطقه را در قالب مدل ارتفاع‌سومه، ILWIS GIS (W) تنظیم نرم‌افزار DEM (DEM) انجام داده است. استفاده از اندازه‌گیری خطوط تراز ساحلی شده است. تعداد ایستگاه‌های بیت بارندگی در این محلوده مجموعا ۴۲۴ است. این محلوده مربوط به وزارت نیرو و تعداد ۴۷ است. این محلود به سازمان هواشناسی بایستگان تراکم ایستگاه‌ها در قسمت غرب منطقه است. در شکل(۱) پراکنش این ایستگاه‌ها نشان داده شده است.

۳- روشهای میانی‌بایی

در این منطقه، قبی نیماکان و همکاران(۱۳) چند روش میانی‌بایی شما: تیپ‌های میانی‌بایی، روش محکم، روش چند جمله‌ای و کریگینگ را به برای بارندگی روز ۱۶ اسفند ۱۳۸۹ میلادی با استفاده از داده‌های ایستگاه‌های هواشناسی (۴۷ ایستگاه) آزمون کردند. نتایج آنها نشان داد که روش میانی‌بایی تراکم (WMA) و بارندگی TPSS را در این منطقه است. سه است. این تحقیق نتایج روشهای و روش میانی‌بایی محقق وزنی با نتایج بهترین روش فیُکانس و همکاران (۱۳) با ایزه تراکم بیشتر ایستگاه‌ها در منطقه می‌باشد. تزیین شد. در شکل(۶) نحوه پراکنش بارندگی در روز ۱۶ اسفند نشان داده شده است. بررسی توزیع بارندگی در این منطقه با

۲- منطقه مورد مطالعه

منطقه مورد مطالعه در جنوب غربی ایران و شمای استان‌های خوزستان، بوشهر، چهارمحال و بختیاری و کهگیلویه و بویراحمد و قشم‌های از استان‌های اصفهان، هرمزگان، فارس، بندر کرمان است. شکل(۱) این منطقه بین طولهای جغرافیایی ۵۷ و ۴۷ تا ۴۰ و عرضهای ۵۰ و ۶۷ تا ۳۴ درجه شمال واقع شده است. حوزه‌های ابریز کرخه، دز کارون،
شکل ۱- منطقه مورد تحقیق در جنوب غرب ایران

شکل ۲- نقشه مدل ارتفاعی رقمی (DEM) منطقه
هدف نامن تیزه‌های مطالعات ارژینی و پیش‌بینی آلودگی باران‌های سیاه ناشی از چگ کویت و انفجار جاه‌ای نیست کویت، در ایران صورت گرفته است. روز ۱۶ اسفند به دلیل بارندگی بی‌شمار و فراکتر بودن برای بررسی توزیع مکانی انتخاب شد. معادله کلی میان‌بینی به صورت معادله_۲۵‌ام_تعادل_از_است: سطح تهاجم‌های روان‌های مختلف در براورد فاکتور وزن معادله زیر است:

\[Z^*(x) = \sum_{i=1}^{n} \alpha_i Z(x_i) \]

که در آن:
- \(Z^*(x) \): مقدار بارندگی در مکان‌های دو دهم مجهول
- \(Z(x_i) \): مقدار بارندگی در مکان‌های دو دهم
- \(\alpha_i \): مقدار وزن انتخاب
- \(n \): تعداد کل انتخابات

برای براورد نا‌آری مقدار مجهول, معادله زیر ویژه برقرار باشد:

\[\sum_{i=1}^{n} \lambda_i = 1 \]

استقلال، سال ۱۳۸۴، شماره ۱، جلد اول، شهیدرود ۱۳۸۴.
کمتر مقادیر پراورد شده نسبت به مقادیر مشاهده‌ای است. در MBE و MAE شرایطی که برای کاهش مقدار مهندسی یافته می‌شود مطلوب است که مدل مورد نظر مقدار ارتباط برتری داشته باشد. هم‌اکنون MBE نشان دهنده میانگین خطای پراورد و MAE نشان دهنده میانگین مقادیر مشاهده‌ای و میانگین مقادیر پراوردی است و لذا درجه پراورد بالا دست ۳ با پایین دست ۱ را بیان می‌کند.

۵- تحلیل خوشه‌ای
روشهای مختلف برای رده بندی مشاهدات یک جامعه به صورت چندین گروه موجب است. انتخاب این روش به معلوم بودن یا مجهول بودن تعداد گروه‌ها. تعادل گروه‌های هدف و موقعیت گروه‌های مشاهده در داخل مشاهدات مورد استفاده قرار می‌گیرد [16]. تحلیل خوشه‌ای برای متفاوت در داخل مشاهدات مورد استفاده قرار می‌گیرد [17]. در این مقاله از تحلیل جمع طبقه‌بندی مدل مشخص نبود تعادل گروه‌ها از قبل استفاده شده است [17]. در این روش با محاسبه فاصله هر فرد از سایر افراد شروع و سپس گروه‌ها بر اساس فاصله تجمع یک تپسیس شکل می‌شود. پس از تغییر فاصله که معمولاً به یک یا دو گروه یکسانمیتری یا مربع اقدام می‌شود و این روش مشابه شده دیگر اندازه گیری می‌شود گروه‌های همگن با یکی از روشهای نزدیک‌ترین همسایه ارتباط بین گروه‌ها، آزمون صحت گروه بندی از روشهای ایده‌آل است. برای Ward's استفاده شده. این روش از نظر زمانی که تعادل و اعضای گروه‌ها مشخص شده باید برای بررسی صحت گروه‌ها استفاده

\[C(h) = h^k \cdot \log(h) \]
\[C(h=0) = 0 \]

که در آن:
\[h \] فاصله بین چفته‌ای است.
\[C(h) \] تابع کرویت آریانس.
\[\theta \] برآمتر بیراپش.
\[m-1 = K \] درجه مشتق نسبی تابع اسپلاین در نقاط مشاهده‌شده.

4- روش و معیار ارزیابی روشهای مختلف میانگین بر اساس روش اعتبار سننی تقلید اریازی می‌شوند. در این روش یک نقطه به‌طور موفقیت لحاظ شده و با اعمال روش میانگین مورد نظر برای آن نقطه مقادیر مسایل مورد خطای می‌شود. بنابراین نقطه حذف شده به جای خود برگردانده شده و به همین ترتیب برای یکی نقاط به صورت مرحله ای پراورد صورت می‌گیرد. در پایان یک جدول به دو سطح مقادیر واقعی و پراورد شده، به دست می‌آید. بنابراین داشتن این دو مقدار می‌توان میانگین فقر مطلوب خطا (MAE) و میانگین خطای انحراف (MSE) روش میانگین را پراورد کرد.

\[MAE = \frac{1}{n} \sum_{i=1}^{n} |Z*(x_i) - Z(x_i)| \]
\[MSE = \frac{1}{n} \sum_{i=1}^{n} (Z*(x_i) - Z(x_i))^2 \]

که در آنها:
\[MAE \] میانگین مطلق خطای (خطا).
\[MSE \] میانگین خطای انحراف (انحراف).

اصول‌های مسیرنگی روشهای دارای کمترین مقادیر MBE و MAE است [15]. پس از محاسبه مقادیر خطای انحراف، هر چقدر این دو معیار به صورت نزدیک‌تر باشند، نشان دهنده اختلاف

۶- مراحل کار و نتایج
در ابتدا داده‌ها از نظر همگنی و کوئیت مورد بررسی قرار گرفتند و استیگن‌های دارای داده‌های پرت و مشکوک ۱۰۰ استقلال، سال ۱۳۴۷، شماره ۲، جلد اول، شهریور ۱۳۸۴.
از 75 برای کلیه مناطق و (MAE) قابل قبول است.

در مطالعه بعدی، به مطور بررسی امکان استفاده با مناطق فیزیکی و تغییرات زیادی ارتفاع در

SPSS می‌تواند به استفاده از این تalfa کلاستری (با استفاده از تکنیک تحلیل تداخل) و روش

طرح‌های وکتور و روش جغرافیایی و ارتفاع اجسام شد که منطقه

با روش تحلیل تک تنش خصوصی صحت تیمی کمی (با متوسط منطقه ای

در مورد افزایش بیشتر است) تابع تئوری (14) انرژی کمی و حدود را می‌تواند به حداکثر کاهش کمی که

می‌تواند در پایه‌های این روش قابل پذیرش داد. در این تناقض، (4) نشان می‌دهد، مقادیر بروز و مشاهده در

روش 2-1 و 1/4 به 0/1000 می‌تواند به عواطف دیگر را در

همسیستی بیشتری می‌یابند. مقایسه تغییرات (8) تأثیر بیشتری بر روی کاهش اختلاف میانگین مقادیر مشاهده‌ای

MEB و افزایش داده در طی پویایی این روش 2 می‌تواند به

MEB و MAE در شکل (5) نشان می‌دهد که افزایش تعداد و تراکم ایستگاه‌ها.

با افزایش تعداد ایستگاه‌ها، در مورد افزایش دقت روش کریگینگ، تحلیل واریوگرافی گرمی، می‌تواند به

در حالت (12) و تئوری (2) ایستگاه

مهک تغییر طبقه‌بندی آن در این تناقض صورت گرفت. واریوگرام خصوصی و همکاران (12) که به

محاسبه شده، نشان داد، نتیجه این دقت روش کریگینگ نیز

از تناقض C و A. واریوگرام‌ها ساختار مکانی

نشان داد که به جز در ناحیه A واریوگرام‌ها ساختار مکانی

استقلال، سال 24، شماره 1، جلد اول، شهرویور 1384 66

WMA

استفاده (ایستگاه) حذف شدند. این تحقیق در WMA-3

با توان‌های 2 و

WMA-3 (TPSS-3)

مورد بررسی قرار گرفتند. این تحقیق برای سه حالت

داهده شبه ایستگاه‌ها سازمان هواشناسی (حالت 1)

داهده شبه ایستگاه‌ها وارزت نیرو (حالت 2 و ترکیب

شبه در حالت (3 انجام شد، جدول (1). نتایج آزمون روش‌های

میانی در جدول (2) ارائه شده است. همانطور که در جدول

نشان می‌شود، افزایش تراکم ایستگاه‌ها دقت روش‌ها نا

حالی افزایش بیانگی نشان گرفت (TPSS-2) می‌تواند به

MEB و افزایش داده است با به نحو صورت

بر اساس قابل قبولی منطقه بود.

با افزایش تعداد ایستگاه‌ها، این فرض که تیمی کمی به

می‌تواند دقت میانگین افزایش دهد. بنابراین

منطقه ایستگاه‌ها ایستگاه (TPSS-2) می‌تواند به

همک تغییر طبقه‌بندی آن در این تناقض صورت گرفت. واریوگرام‌ها ساختار مکانی

نشان داد که به جز در ناحیه A واریوگرام‌ها ساختار مکانی

استقلال، سال 24، شماره 1، جلد اول، شهرویور 1384 66

WMA

استفاده (ایستگاه) حذف شدند. این تحقیق در WMA-3

با توان‌های 2 و

WMA-3 (TPSS-3)

مورد بررسی قرار گرفتند. این تحقیق برای سه حالت

داهده شبه ایستگاه‌ها سازمان هواشناسی (حالت 1)

داهده شبه ایستگاه‌ها وارزت نیرو (حالت 2 و ترکیب

شبه در حالت (3 انجام شد، جدول (1). نتایج آزمون روش‌های

میانی در جدول (2) ارائه شده است. همانطور که در جدول

نشان می‌شود، افزایش تراکم ایستگاه‌ها دقت روش‌ها نا

حالی افزایش بیانگی نشان گرفت (TPSS-2) می‌تواند به

MEB و افزایش داده است با به نحو صورت

بر اساس قابل قبولی منطقه بود.

با افزایش تعداد ایستگاه‌ها، این فرض که تیمی کمی به

می‌تواند دقت میانگین افزایش دهد. بنابراین

منطقه ایستگاه‌ها ایستگاه (TPSS-2) می‌تواند به

همک تغییر طبقه‌بندی آن در این تناقض صورت گرفت. واریوگرام‌ها ساختار مکانی

نشان داد که به جز در ناحیه A واریوگرام‌ها ساختار مکانی

استقلال، سال 24، شماره 1، جلد اول، شهرویور 1384 66

WMA

استفاده (ایستگاه) حذف شدند. این تحقیق در WMA-3

با توان‌های 2 و

WMA-3 (TPSS-3)

مورد بررسی قرار گرفتند. این تحقیق برای سه حالت

داهده شبه ایستگاه‌ها سازمان هواشناسی (حالت 1)

داهده شبه ایستگاه‌ها وارزت نیرو (حالت 2 و ترکیب

شبه در حالت (3 انجام شد، جدول (1). نتایج آزمون روش‌های

میانی در جدول (2) ارائه شده است. همانطور که در جدول

نشان می‌شود، افزایش تراکم ایستگاه‌ها دقت روش‌ها نا

حالی افزایش بیانگی نشان گرفت (TPSS-2) می‌تواند به

MEB و افزایش داده است با به نحو صورت

بر اساس قابل قبولی منطقه بود.

با افزایش تعداد ایستگاه‌ها، این فرض که تیمی کمی به

می‌تواند دقت میانگین افزایش دهد. بنابراین

منطقه ایستگاه‌ها ایستگاه (TPSS-2) می‌تواند به

همک تغییر طبقه‌بندی آن در این تناقض صورت گرفت. واریوگرام‌ها ساختار مکانی

نشان داد که به جز در ناحیه A واریوگرام‌ها ساختار مکانی
جدول 1- مقایسه حالت‌های مختلف از نظر تعداد و تراکم استگاه‌های باران سنجی

<table>
<thead>
<tr>
<th>تراکم (یکی از هر 100 هزار کیلومتر مربع)</th>
<th>تعداد استگاه</th>
<th>مساحت کل (کمی)</th>
<th>وضعیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>حالات 1</td>
<td>2</td>
<td>570000</td>
<td>8</td>
</tr>
<tr>
<td>حالات 2</td>
<td>3</td>
<td>750000</td>
<td>53</td>
</tr>
<tr>
<td>حالات 3</td>
<td>7</td>
<td>800000</td>
<td>61</td>
</tr>
</tbody>
</table>

جدول 2- مقایر باران MBE و MAE (به میلی‌متر) حاصل از روش‌های میانی برای پارادگم‌های روز 16 اسفند 1991

<table>
<thead>
<tr>
<th>Method</th>
<th>WMA-3</th>
<th>TPSS-3</th>
<th>TPSS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBE</td>
<td>MAE</td>
<td>MBE</td>
<td>MAE</td>
</tr>
<tr>
<td>8/0</td>
<td>9/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>8/1</td>
<td>8/6</td>
<td>1</td>
<td>1/7</td>
</tr>
<tr>
<td>8/2</td>
<td>8/2</td>
<td>1/7</td>
<td>1/7</td>
</tr>
</tbody>
</table>

جدول 3- نتایج بررسی تقسیم بندی‌های مختلف منطقه در روش‌های میانی

<table>
<thead>
<tr>
<th>نواحی</th>
<th>MAE Mean of Rainfall</th>
<th>میانگین پارادگم</th>
<th>MBE (میلی‌متر)</th>
<th>MAE (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin-3</td>
<td>75</td>
<td>1/6</td>
<td>19/1</td>
<td>0/3</td>
</tr>
<tr>
<td>Basin-4</td>
<td>61/3</td>
<td>9/7</td>
<td>9/9</td>
<td>2/4</td>
</tr>
<tr>
<td>Basin-5</td>
<td>49/7</td>
<td>9/7</td>
<td>4/5</td>
<td>2/3</td>
</tr>
<tr>
<td>Basin-6</td>
<td>49/7</td>
<td>9/7</td>
<td>3/3</td>
<td>2/3</td>
</tr>
<tr>
<td>B</td>
<td>49/7</td>
<td>9/7</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>C</td>
<td>49/7</td>
<td>9/7</td>
<td>1/5</td>
<td>2/3</td>
</tr>
<tr>
<td>A</td>
<td>49/7</td>
<td>9/7</td>
<td>1/5</td>
<td>2/3</td>
</tr>
<tr>
<td>Basin-2</td>
<td>49/7</td>
<td>9/7</td>
<td>1/5</td>
<td>2/3</td>
</tr>
<tr>
<td>Basin-1</td>
<td>49/7</td>
<td>9/7</td>
<td>1/5</td>
<td>2/3</td>
</tr>
</tbody>
</table>

میلی‌متر مربع و سیل 17/12 میلی‌متر مربع و با شاخه تأثیر 176/2 درجه گرافیا است و برای واحد C با رشته‌های باز بوده‌ها، مدل کروی با مقدار 0 برای 45/4 میلی‌متر مربع و سیل براز 3 60 میلی‌متر مربع و با شاخه تأثیر 50/5 درجه گرافیا، یک منطقه را دارد. پدش از شناسایی مناطق همگن A و B با رشته‌های C، با پیش‌بازی GIS و برای باز بوده‌ها 1369 در سه‌های پیش‌بازی 0 برای 50 هر کیلومتر 20 افزار TPSS-1 به پیش‌بازی داده شد. این استگاه‌های 100 توزیع برای پارادگم‌های یک نواحی و نشان می‌دهد.
$R^2 = 0.5$

$R^2 = 0.71$

TPSS-2

WMA-3

Case 3

Rosh (ب) Rosh

نمودار مقادیر مشاهده‌ای و برآوردی در حالت 3 (الف) روش 3 (ب) روش 2

شکل 4 - نمودار مقادیر مشاهده‌ای و برآوردی در حالت 3 (الف) روش 3 (ب) روش 2

استقلال سال ۱۴۰۲ شماره ۱، جلد اول، شهریور ۱۳۸۴

128
روش
شکل ۵- نمودار تغییرات MAE و MBE در تراکم‌های مختلف برای باران‌گی روز ۱۶ اسفند ۱۳۶۹

شکل ۶- نقشه تقسیم منطقه بر اساس حوزه‌های اصلی منطقه

استقلال، سال ۲۴، شماره ۱، جلد اول، شهریور ۱۳۸۴
شکل 7- نقشه تقسیم منطقه بر اساس تحلیل خوش‌های

شکل 8- نمایه‌های بارندگی روز 16 اسفند 1369 در مرز منطقه مورد مطالعه

برای بررسی عمق‌تر و انتخاب روش مناسب، این روش‌ها برای بارندگی روز 22 اسفند 1369 تیز که دارای پراکنش و فراگیری کمتری نسبت به روز 16 اسفند است، در تراکم‌های مختلف اجرا شد. نتایج ارزیابی نشان می‌دهد که در این روز تیز روش تیز-بیشتری از مکان و افزایش تراکم بین افزایش دقت براورد می‌شود، شکل (11). ضمن آنکه تقسیم بندی منطقه با روش تحلیل کلاستر دقت براورد را

شکل ۹- نم نگیرنده بارندگی روز ۱۶ اسفند ۱۳۶۹. (الف) در منطقه B (ب) در منطقه C (د) در منطقه A

استقلال: سال ۲۴، شماره ۱، جلد اول، شهریور ۱۳۸۴
برای برداوردن متغیر‌های اقلیمی روزانه در روش متغیرهای متعدد WMA باشند. با توجه به این که مقدار WMA در روش MBE کوچکتر بوده و مقدار است TPSS و روش استفاده کرد.

2. در صورت بررسی بودن رزگینی نتایج آزمایش اقلیمی و تغییرات اقلیمی به‌شکلی دارد و نمی‌توان روش مناسب در یک منطقه را به‌صورت دقیق تعیین داد.

نتیجه‌گیری

به طورکلی نتایج یافته ان است که:

1. برای پراوردن متغیرهای روزانه در بارش‌های اقلیمی منطقه جنوب غرب کشور، روش TPSS با نتایج به‌طور خوب تاکستانی است. در WMA و کریگینگی، مجموع مناسب است. این و تغییرات و تغییرات اقلیمی به‌شکلی دارد و نمی‌توان روش مناسب در یک منطقه را به‌صورت دقیق تعیین داد.

نتیجه‌گیری

به طورکلی نتایج یافته ان است که:

1. برای پراوردن متغیرهای روزانه در بارش‌های اقلیمی منطقه جنوب غرب کشور، روش TPSS با نتایج به‌طور خوب تاکستانی است. در WMA و کریگینگی، مجموع مناسب است. این و تغییرات و تغییرات اقلیمی به‌شکلی دارد و نمی‌توان روش مناسب در یک منطقه را به‌صورت دقیق تعیین داد.
شکل 11- نمودار نتایج ارزیابی روش‌های مبناپی برای پارادکس ۲۲ اسفند ۱۳۶۹ در ۳ تراکم مختلف (الف) و (ب)

MBE و MAE
واحدهای همگن باعث بهبود نسبی همیستگی مکانی شده است. هرچند روش کریگینگ دقت کمتری نسبت به روش TPSS-2 ارائه می‌کند.

در مورد بارندگی روز ۱۶ اسفند که دارای فراکریک مکانی است نیز روش TPSS-2 دقت پیشتری ارائه می‌کند. در این روز نیز تفسیم منطقه به واحدهای همگن باعث افزایش دقت براورد شد.

واژه‌نامه

مراجع

۱. مدیری, ح. میلی, زمین آمار، انتشارات دانشگاه صنعتی امیرکبیر، ۱۳۷۳.

۸. Hargrove, W.W., “Interpolation of Rainfall in Switzerland Using a Regularized Splines with
Relationship With the North Atlantic Oscillation,”

18. Uvo, C.B., “Analysis and Regionalization of Northern European Winter Precipitation Based on its