تحلیل تغییر شکل ترموelasیتك پلاستیک ورق در فرآیند شکلدهی خمکاری شعله‌ای

سید جلال همتی، مهدی علی نازی، مهندی معرفت و رضا تقدایدی
دانشکده فنی و مهندسی، دانشگاه تربیت مدرس
دانشکده مکانیک، دانشگاه صنعتی شریف

چکیده - فرآیند خمکاری شعله‌ای یکی از روش‌های شکلدهی ورقه‌ای فولادی است. در این فرآیند با اعمال گرمای ناشی از شعله مسئول گازی و سیس کننده کنترل شده در راستای مسیرهای معین روی ورق، به آن شکل می‌دهند. با توجه به ابزار ساده به کار رفته در فرآیند، روش اقتصادی و جدایی‌برنده است. در حال حاضر این فرآیند به صورت دستی و براساس تجربه کارکنان‌ها ماه‌ها و ماه‌های مدیریت و عدم اتوماسیون فرآیند، به‌طوری‌که ارائه آورده این است. در این مقاله روش برای شیب‌های سازی تغییر شکل ماده در خن در فرآیند ارائه می‌شود. با توجه به ماهمیت فیزیکی فرآیند از تحلیل تغییر شکل بررسی ترموelasیتك استفاده شده است. در این روش راه حل تحلیلی جدیدی برای تحلیل انتقال گرمای در ورق اعمال شده است. حاکی تحلیلی انتقال گرمای به‌طور کامل حسی و ساده اجرای محاسبات تغییر شکل ورق در محیط نرمافزارANSYS، قادر به توضیح و تفسیر مشاهده‌های تجربی‌اند. در مقایسه با نتایج سایر محققان و انداده‌های تجربی، نتایج بدست‌آمده به صورت

واژگان کلیدی: شکلدهی ورق، فرآیند خمکاری شعله‌ای، تحلیل ترموelasیتك پلاستیک

Thermo-Elastic-Plastic Analysis of Plate Forming Process by Flame Bending Method

Seyyed Jalal Hemmati, M.A. Niazi, M. Maarefat, and R. Naghdabadi
Faculty of Engineering, Tarbiat Modarres University
Mechanical Engineering Department, Sharif University of Technology

Abstract: Flame bending process is one of the forming processes of steel plates. During this process, plate is formed with heating by gas torch flame followed by controlled cooling along specified paths. Considering simple tools used in the process, it is a popular and economical forming method. At present, this process is manually done on the basis of skilled technician’s
Experience. Experimental and non-automated procedures decrease productivity of the process. In this paper, a method is proposed for simulation of material deformation. Regarding the physics of the process, large deformation thermoelastic-plastic analysis has been applied. In the simulations, a new analytical solution is used for thermal analysis of plate. The analytical solution along with finite element analysis of the deformation in ANSYS program is able to interpret experimental observations. The simulations show reasonable results, compared with the analytical results by other researchers and with experimental data. The method and simulation results can be used to study the process automation.

Keywords: Plate forming, Flame bending process, Thermo Elastic Plastic Analysis

experience. Experimental and non-automated procedures decrease productivity of the process. In this paper, a method is proposed for simulation of material deformation. Regarding the physics of the process, large deformation thermoelastic-plastic analysis has been applied. In the simulations, a new analytical solution is used for thermal analysis of plate. The analytical solution along with finite element analysis of the deformation in ANSYS program is able to interpret experimental observations. The simulations show reasonable results, compared with the analytical results by other researchers and with experimental data. The method and simulation results can be used to study the process automation.
تشيیع اجزای محدود فرآیند با برنامه‌های تجاری مختلف

روش تحلیل و فرضیات
در فرآیند گرمایش شعله‌ای ماده تحت اثرات گرمایی و وزن خود، دچار تغییر شکل دائمی می‌شود. تقریباً تمام تغییرات پلاستیکی ماده در فضای مشترک شعله با سطح ورق اتفاق می‌افتد.

شکل ۱ - ورق تحت اولیه و سطح نهایی پس از فرآیند خمکاری شعله‌ای
शکل ۲ - تغییرات از ورقهای شکل داده شده به روش خمکاری شعله‌ای

ق(ر) = q_{\text{max}} \exp(-\gamma \cdot r^2) \tag{1}

q_{\text{max}} = \frac{q_{\text{eff}} \cdot \gamma}{\pi} \tag{2}

که q_{\text{max}} به مقدار اصلی شعله، q_{\text{eff}} به محاسبه می‌شود و \gamma به ترتیب توان مؤثر و ضریب نمی‌کننده شعله بوده و به
پارامترهای شعله معروف‌اند. در این‌جا تحقیق پارامترهای ورودی پردازی پرآرای تحلیل ترمومکانیک پلاستیکی عبارت‌اند از: سرعت حرکت مشعل (\(v\)), توان مولتی (\(q_{\text{eff}}\)) و ضریب تحرک شعله (\(p\)). ابعاد ورق در مرحله مدلسازی و مش بندی به عنوان پارامترهای ورودی معرفی می‌شوند. با توجه به مشعل و غیرخطی بودن تغییر شکل ماده، تحلیل به صورت گان به گام انجام می‌گیرد. تحلیل گرمایی فرآیند بر اساس الگوریتم توصیف شده در [11] و با استفاده از امکانات برنامه‌نویسی والبر در ANSYS ترتیب داده شده است. در مرجع فوق راه حل تحلیلی جدیدی [12] برای
تحلیل گرمایی فرآیند به کار رفته است. در تحلیل گرمایی از تبادل گرمایی ورق با هوا اطراف به صورت همرفته و تابش صرف نظر شده و بنابراین در رختی که کار دیگری هم استفاده نمی شود. همچنین خواص ورادار استفاده از دما و شکاف در زمینه گری، بس از محاسبه شار گرمایی وروش و تحلیل گرمایی دامهای گری تعیین می شود. از میدان دمای گری محاسبه شده به عنوان بازگشتی گرمایی برای تحلیل ترمو الاستیک پلاستیک استفاده می شود. در این مطالعه اثر وزن ورق نیز در نظرگرفته می شود. در یک پایان هر میکروفوتو در روز شده این گری برای محاسبه میدان دمای گری کام بعده مورد استفاده قرار می گیرد. این کار از میدان کل تحلیل ادامه می یابد.

3- مدل اجزای محدود ورق

در فراشید خمکاری شعلهای در راستای محورهای مختلف به خصوص در راستای ضخامت ورق گرادیانه‌ای گرمایی زیادی به وجد می آید. همچنین تحلیل تغییر شکل خرچون ورق به روش اجزای محدود مستلزم حل معادلات پیک سیستمت محوریت محاسبه است. با انتخاب نوع و تعداد اجزا حالت اهتمام است. در شکل (۱) نیروی لاندش شده تابش ورق را نشان می دهد. در تحلیل‌های ترمومکانیکی یک خصگرمایی نزدیکری ورق در نظرگرفته می شود. به دلیل تعقیب گرافیکی و حل نسبت به صفحه ۱۰، نهایی نص تابش ورق تحلیل می شود. به نوعی به خرچون بودن تحلیل و تعداد زبان تابش اجزای مدل، از اجزاء جامد هشتر گری استفاده می شود. این مدل از آنکه شعله با ناحیه منطقه از چر میز به درشت و ناحیه مش درشت تشکیل یافته است تعقیبگیری تغییر شکل پلاستیکی ماده در ناحیه زیر شعله (ناحیه مش ریز) متمرکز می شود. در این ناحیه چگونه شار وردی گرمایی نیز بالاست. گرادیانها در راستای ضخامت ایجاد می کند اندما تغییرات از ووجه گرم شده به طرف پشت ورق

4- خواص مواد

در شیب ساخته‌ای به عمل آمده این تحقیق خواص گرمایی مواد تابش و برای خواص فولاد نرم در صفر درجه سانتی‌گرادر در نظر گرفته می شود. شکل‌های (۸) و (۹) خواص مواد مربوط به فولاد نرم را به صورت نسبی از دما نشان می دهد. در شکل (۸) تابش به ورق در نظرگرفته شده است. همچنین خواص ماده به ورق در نظرگرفته می شود. در این مطالعه اثر وزن ورق نیز در نظر گرفته می شود. در یک پایان هر میکروفوتو در روز شده این گری برای محاسبه میدان دمای گری کام بعده مورد استفاده قرار می گیرد. این کار از میدان کل تحلیل ادامه می یابد.

5- نتایج تحلیل‌های عددي

بر اساس رویه مشورت در بخش‌های قبل دواده هدیه تحلیل ترمومکانیکی پلاستیک تابش داده شده. شرایط گرمایش به کار رفته در این تحلیل‌ها به جدول (۱) ذکر شده است. در این جدول به ترتیب نشان دهنده ضخامت ورق، سرعت مشع، نون مولر و ضرب زمینه شعله‌زدن. برای انتخاب شرایط گرمایش، داده‌های تجربی اندازه‌گیری شده و نتایج آن‌ها شده توسط سیستم محاسبه می شود.

در تحلیل اول ورق مربع شکل به طول و عرض ۳۰۰×۳۰۰ mm در نظر گرفته شده است. محاسباتی به روش تحلیل این مطالعه به ویژه به روش عرضی [۱۰] برای نقاط وسط ورق در جوهر گرم شده و پشت آن در شکل (۸) نشان داده شده‌اند. همانند طوری که در این شکل ملاحظه می شود دمای نقطه مرکز ورق در جوهر گرم شده از لحظه‌ای که مرکز شعله به نزدیکی آن می رسد شروع به افزایش

استقلال، سال ۱۳۸۴، شماره ۲، صفحه ۱۶۳
جدول 1- شرایط گرمایش در نظر گرفته شده برای تحلیل‌های عدیدی

<table>
<thead>
<tr>
<th>No.</th>
<th>h (mm)</th>
<th>v (mm/s)</th>
<th>q_{eff} (cal/s)</th>
<th>γ (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>3</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>4</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>5</td>
<td>2.5</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>7</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>8</td>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>9</td>
<td>4.5</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>10</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>11</td>
<td>5.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

مقایسه‌ای بین توزیع دمای محاسباتی در این تحقیق با نتایج [10] انجام شده است. در این حالت به ازای ثانیه مایع و خواص گرمایی کاهش مواد ملاحظه می‌شود که در روش تحلیلی انتقال گرمایی به کار رفته در این تحقیق، بايد مقادیر ممکن و کمی پس از عبور مرکز مشعل از این نقطه (قريبًا t = 4 sec) دما به حداکثر خود می‌رسد. از این لحاظ به بعد دما شروع به کم شدن می‌کند. آهنگ کاهش دما نسبتا سریع و سپس آهنگ کندی پیدا می‌کند. همچنین در شکل (8)

استقلال، سال 1384، شماره 2، اسفند
معادله (1) برای مدل‌سازی شار و رودی گرم اعمال شده است. توان موثر مشعل 4785 cal/sec ضریب تمرکز آن 50 mm²/sec و سرعت مشعل در نظر گرفته شده است.

خواص گرمایی مواد ثابت و عبارتند از:

\[c_p = 0.098 \text{ cal/}^\circ \text{C} \]
\[k = 0.016 \text{ cal/mm/sec.}^\circ \text{C} \]
\[\rho = 0.00782 \text{ gr/mm}^3 \]

همچنین خواص مکانیکی مواد تابع دما فرض شده است. در تحلیل عدید انجام شده در این مطالعه، شبیه‌سازی نشان دهنده تکراری کم فرض شده نتایج آن را به حال عاملی (کلاسیک) به‌دست آورده است.

شکل 8 سطح زمانی توزیع دما در محاسبه شده به روش انجام تحقیق و روش اجزای محدود در [161] ضریب تمرکز شعله 2.64 mm²/sec انتخاب شده است. مشاهده شود ضریب تمرکز شعله در مرحله 100 mm²/sec تخمین زده شده است. بررسی شعله در این حالت نشان دهنده صادق بوده‌است.

نتایج تحلیل تغییر شکل ورگ در این تحقیق نقش می‌تواند با تراکم اکلیس در محاسبات بررسی شود و روش تکنیک بالا کار کرده در مرجع فوق باران از [10] استفاده شده است. بررسی تحلیلگر تغییر شکل رهبری مولف تدوین کرده و برای جلوگیری از داده پیدا کردن مدل بررسی می‌باشد. روش «انگرالگر که انجام انجام شده» بررسی کاربرد است. محققین مشابه مدل و جریان روش انجام شده برای انجام گیرشی ذکر شده است. لذا برای بررسی بیشتر نتایج به دست آمده از روش فعالی با تناوب مرجع [10] بک تحلیل کاملاً وارد روش استیک پلاستیک نیز برگرفته‌های داشته شده است. در این تمرین به شکل عنوان شده است. به ازای 2/0 % نتیجه‌های نسبت شکل تغییر می‌کنند. وقتی که شکل انجام انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل تغییر می‌کنند. وقتی که شکل انجام انجام شده است. در این مدل از شکل عنوان شده است. به ازای این نتایج شکل
شکل ۹- مقایسه تغییر شکل روزنامه‌ای به شروع ورق محاسبه شده در [10] و این تحقیق

شکل ۱۰- مقایسه انقباض صفحه‌ای ورق محاسبه شده در [10] و این تحقیق

شکل ۱۱- مقایسه کرنش پلاستیک در راستای ضخامت ورق

راستا دچار کرنش فشاری پلاستیک می‌شود. در شکل (۱۱) کرنش پلاستیک در راستای ضخامت ورق در نقطه مرکز ورقرسم شده است. با توجه به اینکه در مرکز و جهت گرم شدهبیشترین کرنش پلاستیک منفی گزارش شده است، به نظر می‌رسد نتایج تحقیق فعلی در مورد انقباض صفحه‌ای،
مدلزاً شار ودروزی انتخاب کرده است. شرایط گرمایش در
مثال لی عبارت‌اند از:

\[v = 1.2 \text{ [mm/sec]} \]
\[q_{\text{eff}} = 800 \text{ [cal/sec]} \]
\[\gamma = 0.164 \text{ [cm}^{-2}] \]

در شکل (۱۲) منحنایی دما-زمان مربوط به هر دو تحقیق
تشانه داده شدهاند. همان طوری که ملاحظه می‌شود منحنی‌ها
کاملاً به هم منطقتاند. در شکل (۱۳) نیز نموداری خازن-زمان
برای نقشه مکر ورق در و فرم شده، رسم شدهاند. این
نمودارها نشان می‌دهد که مقادیر خیز پیش به سرعت در هر دو
روش یکسان خواهند بود. از نتایج به دست آمده در نوشتات
این‌بار ملاحظه می‌شود یک دارایی خاص مک승وس اولیه خواهند
شد. همچنین از جدول (۱) مجدداً ضریب تمرکز شعله‌ی
روش لی کمتر و لذا بیشتر شعله بیش از مقدار نظری آن در
روش عفونی در نظر گرفته می‌شود. همان طوری که اندازه
می‌روید از یک یک میدان دما یکسان، مقادیر خیز پیش به سرعت
تیز برابر است.

شکل (۱۵) نمودار مولفه کرنش پلاستیکی عرضی ورق به
ازای زمان‌های مختلف را نشان می‌دهد. در این حالت نیز مقادیر
کرنش کمی بیش از مقادیر پیش به سرعت در تحقیق لی است.
علت این امر می‌تواند در وضعیت بودن پیشرفت تغییر شکل در
روش تحقیق عفونی و در نتیجه میزان کرنش بیشتر ماده دانست.
قابل ذکر است که این اثر به طور تجربی آناده گیری نشده است.

جانگ [۵] برای تحلیل شرایط فرانیزی از راه حل تحلیلی
روزناتن استفاده کرده است. در این روش مشخص به عنوان گرمایش
نقشه‌ای مدلسازی می‌شود. بنابراین در این مدل باید ضریب
تمدید شعله را کالری‌سیونی عضدي از توزیع تجربی دمای
گزارش شده در [۵] تعیین کرد. بر این اساس در دو جدول (۱)
پارامترهای شعله نظر شرایط گرمایش جانگ در رديف سوم
آورده شدهاند. طول و عرض ورق در این حالت به ترتیب ۷۰۰ و
۵۰۰ میلی‌متر مستعد.

\[(\text{از چپ به راست}) \]

(با پارامترهای گرمایش مربوط به پیش بینی می‌کنند. در صورتی که
با شرایط گرمایش مربوط به روش کاملاً عادید اند [۱۰] این
پیداکه تحقیق نمی‌اند.

در شکل (۱۱) ملاحظه می‌شود علی رغم هماهنگی کافی
در رفتار پیش به سرعت ورق، نتیجه روش عملی برای کرنش
پلاستیکی کمی بیش از نتیجه کاملاً عادید و روش اینجا محسوب
شد (۱۰) و این رسالتاند. در هر دو تحقیق انجام گرفته در
این مطالعه (تحقیقاتی کاملاً عادید و تحقیق نقدی) خواص
مواد شبیه خواص در نظر گرفته شده در مطالعه اینجا مستند
بعضی خواص گرمایش تابع خواص مکانیکی به صورت ناب
دام فرض شدهاند. این نتایج که رفتار ماده ترمودی الگوی
پلاستیکی در نظر گرفته شده است. به توجه می‌رسد این
مطالعه کاهش شعله می‌تواند یک دستی که از طرف دیگر اندازه
می‌رود عکس اگرگری کاهی‌ده در نتایج مطالعه اینجا به طور
قابل ملاحظه‌ای موتر باشد. نتایج تحلیل کاملاً عادید انجام
گرفته، نشان دهنده این امر است. این روش به رضم ذخیره
زمان پردازش تا نهایی نتیجه را تحت تاثیر قرار می‌دهد. البته با
توجه به همدلی خوب تجربی در دو مطالعه دقت محاسبات
منطقی نظر می‌رسد.

در دو منابع تحلیلی، وریز به ابعاد ۲۰۰۰×۲۰۰۰ در نظر
گرفته شده است. شرایط گرمایش در این مطالعه طوری انتخاب
شد که توزیع دما محاسباتی بر توزیع دما گزارش شده
در تحقیق Li [۷] منطقه شود. شود. برای سه سایز فرانیزی از
ترم افزایش به عنوان پارامتر تحلیلگر انتقال گرما و تغییر
شکل استفاده کرده است. ام تی توزیع گوسی نرم‌ال‌را برای

\[127 \]

استقلال سال ۲۴ شماره ۲ استثناء ۱۳۸۲
شکل ۱۴- متحکمیات خیز- زمان تحقیق [۸] و تحقیق فعّال برای مرکز
وجه گرم شده

شکل ۱۵- متحکمیات کرنش پلاستیک- زمان تحقیق [۲۰] و تحقیق فعّال برای مرکز
وجه گرم شده در راستای عرضی

شکل ۱۶- متحکمیات خیز- زمان تحقیق فعّال

شکل ۱۷- متحکمیات محاسباتی خیز- زمان در تحقیق فعّال

جایگاه [۸] و محاسباتی در تحقیق فعّال در y = ۲۰ mm از مرکز وجه گرم شده

استقلال، سال ۱۳۸۴، شماره ۲، اسفند
شکل (18) مقایسه‌ای بین نتایج محاسباتی در این تحقیق با داده‌های تجربی گرمایی صورت گرفته است. همان‌طوری که در این شکل نیز مشاهده می‌شود نتایج شبیه‌سازی انطباق خوبی با داده‌های تجربی نشان می‌دهند.

در این مقاله روی برای مطالعه مکانیزم تغییر شکل ورق در فرآیند خمکاری شعله‌ای ارائه شده. در این روش از راه حل تحلیلی میزان همراه حالت دردست جابجایی گرما به استفاده می‌شود. در تغییر حرکاتی از اعمال زمان ورودی با توزیع گوس نرمال، میزان دما و هدایت به عنوان بارگذاری گرمایی در تحلیل ترم الکتریکی بلافاصله مورد استفاده قرار می‌گیرد. در شبیه‌سازی تغییر شکل ماده، بزرگ و کرنش کوچک می‌شود و نرخ گرمایی ماده ثابت و برای مقدار مربوط به صفر درجه، شکل (6) در نظر گرفته می‌شوند. در این روش برای تغییر پارامترهای شعله از کاربردی این مقدار استفاده می‌شود. برای این منظور به منحنی دما-زمان با دما-مکان تجربی نیاز است.

نتایج شبیه‌سازی همراه با این روش همچنان لحاظ می‌شود. پدیده‌ای خمک مکانیزم و داده‌های تجربی موجود دارند. بدین‌گونه می‌توان از این نتایج استفاده کرد. از این روش می‌توان در مطالعات پراکنده‌ای فرآیند استفاده کرد. در شبیه‌سازی‌های انجام شده تغییر شکل ورق نسبت به گزارش‌های موجود، مواضعی بوده و کرنش بلافاصله به ناحیه زیر شعله پیش بینی می‌شود.

شکل (16) منحنی دما- زمان تجربی و محاسباتی گرماهی را نشان می‌دهد. به این ترتیب پارامترهای جدول (1) و با استفاده از راه حل تحلیلی به کار رفته در تحقیق فعلي، منحنی‌های دما-زمان در شکل (16) نشان داده است. در این شکل، میزان انطباق خوبی با داده‌های تجربی ملاحظه می‌شود. شار مارکزیم تخمینی به روش گرماهی برای 1300 cal/sec گذشت. ملاحظه می‌شود که با جریان مایع مایع در این تحقیق یکسان است. شکل (17) نمودار خیز- زمان برای نقطه مرکز ووجه گرم شده در این شبیه‌سازی را نشان می‌دهد. خیز اندازه‌گیری شده در نقطه مرکز ورق در بردار 5/199 mm پیش از مقدار اندازه‌گیری شده است. با توجه به منحنی دما-زمان می‌توان این نتایج را به مقدار دقیق می‌رسد. این شبکه مجدداً بدیده عکس شدن خیز ورق در لحظات اولیه پیش بینی می‌شود. نکته دیگری که از این شکل مشاهده می‌شود اینکه ورق حالت برگشت فنری را تجربه می‌کند.

بر اساس پارامترهای گرمایی نظر آزمایش‌های جانگ (تحقیل سوم)، تحلیل‌های دیگری تریب داده شده‌اند. در
11. "تعدیل تاثیر گرمایش موثر در شکل دهی ورتحای یدنه کشی به روش گرماپیش خظی"، رساله دکتری، دانشگاه فنی دانشگاه تربیت مدرس.