Experimental Evaluation of Performance Criteria for Reinforced Concrete Beams under Cyclic Loading

M. Khan-Mohammadi and M. S. Marefat

Department of Civil Engineering, Faculty of Engineering, University of Tehran

Abstract: To assess the performance criteria of the reinforced-concrete, five-storey residential buildings common in Iran, an
experimental study in the structural laboratory of the University of Tehran has been conducted. The test program includes cyclic
and monotonic load tests of six beams that represent three-to-five storey buildings with rigid frame structures. Using definitions
given in FEMA-356 and ATC-40, stages of immediate occupancy, life safety, and collapse prevention have been identified on the
drift-force curves of all specimens. Based on the test results, values of the plastic rotation, ductility, strain in concrete cover and
in longitudinal bar, crack width, damage index, and length of plastic region at different levels have been determined. It was found
that the recommended values of plastic rotation and ductility for reinforced concrete beams by FEMA-356 are conservative. The
length of plastic hinge region in the stage of immediate occupancy is about half the plastic hinge length in the stage of life safety
and it increases by 20% from life safety to collapse prevention.

Keywords: Cyclic reversal loading, ductility, performance levels, performance criteria

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranz omlorkdi</td>
<td>CP</td>
</tr>
<tr>
<td>Traz hehre braday</td>
<td>D</td>
</tr>
<tr>
<td>Bownوقفه</td>
<td>Dp</td>
</tr>
<tr>
<td>Nist converting</td>
<td>D</td>
</tr>
<tr>
<td>Jomk ink</td>
<td>D_m</td>
</tr>
<tr>
<td>Parameter II</td>
<td>E_h</td>
</tr>
<tr>
<td>Teghir plasstik</td>
<td>E_o</td>
</tr>
<tr>
<td>Anchii heji</td>
<td>E_p</td>
</tr>
<tr>
<td>Anchii jarij shdn</td>
<td>L_p</td>
</tr>
</tbody>
</table>

References

Citation
شکل ۱- مشخصات مقطع و فولادگذاری اعضا در زیر سازه اصلی (واحدها به mm است)

<table>
<thead>
<tr>
<th>S.B.C-1</th>
<th>S.T.C-2</th>
<th>S.B.C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>412</td>
<td>412</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>6.5/50</td>
<td>6.5/50</td>
<td>6.5/50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N.B.C-4</th>
<th>N.B.M-5</th>
<th>N.T.C-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>412</td>
<td>412</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>6.5/50</td>
<td>6.5/50</td>
<td>6.5/50</td>
</tr>
</tbody>
</table>

شکل ۲- جزییات نمونه‌های آزمایشگاهی (واحدها بر حسب mm است)

طلوی و عرضی آنها در شکل(۱) ارائه شده است. جدول(۱) بانگر خواص مصالح به کاربرده نمونه‌ها است. ابزار بنگی آزمایش در شکل(۲) نمايش داده شده است. جک هیدرولیک ۱۰۰ کیلوییون برای اعمال بارگذاری رفت و برگشت و یک تلفته به انتهای آزاد تهیه استفاده شد. سیستم سیستم بار
جک هیدرولیک، نیروی افقی را اندازه‌گیری می‌کند. در هر آزمایش تعدادی کرنش سنج و تغییرمکانسنج استفاده شده است. آرایش کرنش سنجها به گوشه‌ای بوده که بیان ناامنی پلاستیک مورت انتشار اندازه‌گیری کردن بارگذاری رفت و برگشت و به شیوه‌ی نمایه استاتیک و در مونتاژ نتایج تغییرمکان‌ها نسبت Km به روش تماسی نمونه‌ها اعمال

بتن و فولاد و نیز طول ناحیه پلاستیک در مراحل مختلف
بارگذاری تعیین شده است. معیارهای ایندیس آماده قابل استفاده
در روش عملکردی است.

۲- برنامه آزمایش

مجموعاً نش نیز نیز که معرف خصوصیات متوسط نیز
در طبقات باین(طبقه دوم) و طبقات بالا(طبقه چهارم) است،
انتخاب شده است. مشخصات مقطع و فولادگذاری اعضا در
شکل(۱) نشان داده شده است.
نمونه‌های آزمایشگاهی به میزان ابعاد ۰.۲ سانتی‌متر شده
است. نمونه‌های مقياس شده و تیز مشخصات آزمایشگذاری

۶۵
استقلال سال ۲۵، شهریور ۱۳۸۵
جدول 1- مشخصات مصالح در نمونه‌های آزمایشگاهی

<table>
<thead>
<tr>
<th>نمونه</th>
<th>نش</th>
<th>کرنش جاری شدن</th>
<th>دم</th>
<th>نش</th>
<th>کرنش جاری شدن</th>
<th>آستینی</th>
<th>نش</th>
<th>کرنش نهایی شدن</th>
<th>نش</th>
<th>کرنش نهایی شدن</th>
<th>ماده آزمایشگاهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBC – 1</td>
<td>1.70</td>
<td>205</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
</tr>
<tr>
<td>STC – 2</td>
<td>1.70</td>
<td>205</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
</tr>
<tr>
<td>SBC – 3</td>
<td>1.70</td>
<td>205</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
</tr>
<tr>
<td>NBC – 4</td>
<td>1.70</td>
<td>205</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
</tr>
<tr>
<td>NBM – 5</td>
<td>1.70</td>
<td>205</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
</tr>
<tr>
<td>NTC – 6</td>
<td>1.70</td>
<td>205</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
<td>350</td>
<td>625</td>
<td>200</td>
</tr>
</tbody>
</table>

از ریزابی شد، بارگذاری در جریه‌های هیاهای سه‌تایی با دامنه افزایش گرفته شد. بارگذاری رفته‌برفته واقعی در شکل (4) ارائه شده است. این روش اجرا به‌وسیله داد نا پارامترهای اساسی مانند افت مقاومت تناوب، کاهش سختی، شکل پذیری و نتایج نمونه‌های انرژی و نوع کیفیتی.
شکل 4- روابط بارگذاری، رفت و برگشت

شکل 5- ترازهای عملکردی برای نمونه 1- SBC

شکل 6- ترازهای عملکردی برای نمونه 2- STC

1- نتایج آزمایش

رفتار بار- تغییر مکان جانبي كه در انتهای آزاد نمونه‌ها ثبت شده، به عوامل مشخصه اصلی پاسخ اعطاء، در شکل‌های (5) تا (10) ارائه شده است. در این اشکال روئه، گشتار و نیز پوش مقاومت رفت و برگشت نشان می‌دهد. نمونه‌های نمونه‌های NBM-5 را تحت بارگذاری یک‌طرفه شکل (5) رفتار نمونه‌های STC-2 و NBM-5 را تحت بارگذاری یک‌طرفه

شکل (6) استفاده می‌کنند. می توان به استفاده از نکات اولین سبک غیر مستقیماً از توانایی این سبک باید از این اشکال روئه، گشتار و نیز پوش مقاومت رفت و برگشت اهتمام بررسی می‌شود. به این روش بررسی می‌شود.

2- ترازهای عملکردی و معیارهای مناسب با آن

در درجه‌ی اول مراجع مختلف [1-3] ترازهای عملکردی متقارنی در روش طراحی عملکردی ارائه کرده‌اند. سه سطح عملکردی به‌رهبرداری آنی، به‌ره‌برداری آنتی، ایمنی جانی و آستین‌های فروریزش آزمایش می‌شود. در این روش، می‌توان اعتماد به مرحله‌ی ارائه نمونه‌ها با یکی از سطوح عملکردی، لازم است معیارهای مناسب‌تر با هر تراز مشخص شود. از مراجع مذکور در فوق، می‌توان شناخت‌های کافی و کمی که به فرآیندهای عملکردی را به شرح زیر توضیح کرد:

- استقلال سال 25، شهره 1385
در ترکیه نگرفته‌ها آن‌ها shown، ولی حاشیه‌ای اطمنانی در برای شرکت‌های فوریتی جزئی، و یا فوریتی کلی، وجود خواهد داشت. در این سطح سیمان‌های تغییر شکل نسبت مانندگار در سایه وجود خواهد داشت و در احتمال به خصوص تیره‌ها، خسارت زیادی به وجود خواهد آمد. قلمه کن شدن بخش بین روی آرام‌نامه‌ها و نیز اجبار ترکیه‌ای برلی کوچکتر از 3/5 میلی‌متر، از مشخصات این سطح سیمان‌های است. دامنه پاسخ سیمان بین 0/03 تا 0/18 درصد ترکیه‌ای جانی، L.S. می‌تواند قرار گیرد [21]. شکل (11).
جدول 2- تغییر شکل نسبی جانی (درصد) در ترازهای مختلف عملکردهای سایر

<table>
<thead>
<tr>
<th>تغییر شکل نسبی ماندگار</th>
<th>NTC-6</th>
<th>NBC-4</th>
<th>SBC-3</th>
<th>STC-2</th>
<th>SBC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>توزیع نمونه ها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهره برداری آن</td>
<td>3/5</td>
<td>3/4</td>
<td>3/2</td>
<td>3/1</td>
<td>3/6</td>
</tr>
</tbody>
</table>

جدول 3- توزیع شکل نسبی ماندگار

<table>
<thead>
<tr>
<th>تغییر شکل نسبی ماندگار</th>
<th>NTC-6</th>
<th>NBC-4</th>
<th>SBC-3</th>
<th>STC-2</th>
<th>SBC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>توزیع نمونه ها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهره برداری آن</td>
<td>3/5</td>
<td>3/4</td>
<td>3/2</td>
<td>3/1</td>
<td>3/6</td>
</tr>
</tbody>
</table>

جدول 4- توزیع شکل نسبی جانی

<table>
<thead>
<tr>
<th>تغییر شکل نسبی ماندگار</th>
<th>NTC-6</th>
<th>NBC-4</th>
<th>SBC-3</th>
<th>STC-2</th>
<th>SBC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>توزیع نمونه ها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهره برداری آن</td>
<td>3/5</td>
<td>3/4</td>
<td>3/2</td>
<td>3/1</td>
<td>3/6</td>
</tr>
</tbody>
</table>
انجام گرفته در مرجع [۶] این مقادیر را ۲/۴ درصد در سنتون‌ها اعلام می‌کند. در مطالعات حاضر، با توجه به شدت تخریب بن‌و مکان نفوذ خارجی به هسته عضو، و کمایش منجر به طولی، عمدی بین ۲/۸ تا ۳/۰ درصد به عنوان تغییرات مانگه، با امکان ترمیم، بر ارور شده است. این مقادیر معادل ۸۰ درصد مقدار به دست آمده برای هر ابعاد جهانی است. بنابراین ترتیب برنامه‌بان‌های انجام پایه، تغییر شکل نسبی مانگه معادل ۲/۸۰ درصد را به عنوان حد ترمیم‌پذیری می‌توان پیش‌نهاد کرد. در مقاله، توصیه مرجع [۶] به نتایج به دست آمده نزدیک است.

۲-۴- معیار دوران پلاستیک
دوران‌های پلاستیک عملاً ادامه تغییرات لوله‌ای جانی مانندگی است. دوران پلاستیک در نمونه‌های آزمایشگاهی، با تعیین تعدادی VDT در ناحیه محلول پلاستیک، اندازه‌گیری شده است. شکل (۱۲) دوران‌های پلاستیک مرتب به نمونه‌های مختلف را در مراحل مختلف پارسالاری نشان می‌دهد. لازم به ذکر است که مقادیر به دست آمده، در واقع، میان متوسط دوران استقلال، سال ۲۵، شماره ۱، شهریور ۱۳۸۵
یک مثال از مقاله در مورد تغییرات در ترازهای مختلف و مقایسه با مراجع (13)
نمونه‌هایی از محاسبه‌های در حال پیاده‌سازی در مدل تحلیلی به ترتیب از چپ به راست، مدل‌های پیش‌بینی سطح بینی و آرمان‌های مدل شده است. نمونه‌های NTC-6 و NBM-6 که در مدل‌های هج و ۵ از نمونه‌های NTC-6، NBM-6 و NBM-5 که در ترجمه‌های مختلفی از مدل‌های شده هستند. مدل‌های NBM-5 و NBM-6 مدل‌های بهتر و پیش‌بینی‌سازی‌های بزرگ‌تری را در نظر می‌گیرند. است. سپس با استفاده از نمونه‌هایی از آزمایش‌های مختلف و متفاوت‌های استردادی شده‌اند. این نمونه‌ها شامل NTC-6 و NBM-6 است. نمونه‌های NTC-6 و NBM-6 مدل‌های بهتر و پیش‌بینی‌سازی‌های بزرگ‌تری را در نظر می‌گیرند. است. سپس با استفاده از نمونه‌هایی از آزمایش‌های مختلف و متفاوت‌های استردادی شده‌اند. این نمونه‌ها شامل NTC-6 و NBM-6 است.
پتانسیل گسیختگی سازه وجود خواهد داشت. سایر ترازهای عاملکردن تخمک بهتر به برج افزایشی آنی، ابعاد حاکی از استاندارد فوریژدر در محصولات صفر و یک فاصله باز کامل گرفت. شاخص خشارت به طور معنی‌داری بر پارامترهای همجون نیرو، تغییر شکل و میزان استحکام انرژی خواهد بود. شاخص‌های خشارت عمدی توسط محققان مختلف تعیین شده است که از جمله معرفی نشان‌دهنده آنها، که بر اساس تغییر شکل و انرژی تعیین شده است، شاخص خشارت پارک و انگل (1985) به شرح زیر است:

\[D_{ps} = U_{max}/U_{mon} + (\beta E_{II}/f_{I},U_{mon}) \]

که در آن

- \(U_{max} \) مقدار تخمک تغییر شکل در عرض تحت پارک‌گرداری
- \(U_{mon} \) مقدار تخمک تغییر شکل در پارک‌گرداری در طول پارک‌گرداری و
- \(\beta = \text{پارامتر ثابت} \)

در آزمایش‌های انجام گرفته، میزان خشارت وارد بر هر تجویز در تغییر شکل‌های مختلف براورد شده و سپس حساب با استفاده از معادله (2) و (1) در مقدار حدی و 1 مقدار شده است. برای این منظور، پارامتر \(\beta \) در تجربه‌های مختلف تغییر داده شده است تا حساسیت لرزه‌های مختلف کالیبره شود. شکل (19) نتایج به دست آمده برای پارامتر شاخص خشارت را توضیح می‌دهد.

که با مقدار ارائه شده در مراجع مختلف (4) مطابقت خوبی دارد. این مراجع میزان کرنک در زمان پوسته شدن را با توجه به تغییر آزمایش و قابل‌توجهی عدیدی برای 2010/000 کرنش کردن‌دهد. با توجه به میزان جای‌گیری جانی، این حد از می‌توان با ابزار جانی متراژ غرفت. برای تعیین مقدار متوسط کرنش غیرخط در حالات فوری‌جری، شکل (17) عدیدی برای 2010/000 را نشان می‌دهد که در آزمایش‌های طولی، در حالت نیرو به وسیله بارداری آنی، از شکل (18) مقداری برای 11 درصد به دست می‌دهد که انتها مناسب با مقدار (11 درصد) ارائه شده در مراجع (19) دارد. برای تعیین مقدار دست آمده از شکل (18) مقدار برای حد ابیستی جانی برای 1000 به دست آمده است.

شکل 17 - متوسط کرنک در پوسته یمن در ترازهای مختلف عاملکردن

شکل 18 - مقادیر متوسط کرنک در آزمایش‌های طولی در ترازهای مختلف عاملکردن

4-5 خشارت

عدیدی کردن پتانسیل خشارت وارد پس‌سازه‌ها یکی از دغدغه‌های اصلی در مهندسی زیره است. ارزیابی قابل اعتماد این پتانسیل کاربرد زیادی در طراحی و تقویت سازه‌ها خواهد داشت. یکی از شاخص‌های مورد استفاده از این زمینه شاخص خشارت است. این شاخص در شکل (19) به دو شکل ایجاد می‌شود و در شکل (19) به دست آمده است. گونه‌های خشارت قابل توجه وجود ندارد و در شاخص یک
در نمونه‌های تحت آزمایش، به ایزای تغییر شکل‌های نسبی مختلف، ارائه کرده است. در تعبیه مقادیر ارائه شده در شکل (19) مقدار پارامتر ب با برابری 0.15 به دست آمده است که مطلیقت خوبی با مقادیر ارائه شده توسط سایر محققان دارد (11 و 12).

از شکل (19) مشخص می‌شود که شاخص خسارت در ترازهای بهره‌برداری آنی، ایمنی جانی، و استاندارد مربوط به تربیت، برای 27/0/0/0/0 و 27/0/0/0/0/0، است. برخی محققان مقدار شاخص خسارت بین 0/1 تا 0/25 را به عنوان شاخص بالینی با تک که شدگی جسم، و مقدار خسارت بین 0/0 تا 0/5 را. آستانه ترمیم ناباید به پای کنند (11 و 12) در این آزمایشها، مقادیر شاخص خسارت در تراز بهره‌برداری آنی 27/0 به دست آمده است که با میانگین خسارت وارد نموده‌ها انطباق مناسب دارد. به علاوه، برای آنچه در بند 4-1 ارائه شد (تغییر شکل نسبی مانندگار به عنوان شاخص ترمیم پذیری) شاخص خسارت بین 0/5 و 0/0 به عنوان شرط حد ترمیم پذیری به دست می‌آید که با مشاهدات خسارت فیزیکی نیز مطابقت دارد. در این مطالعه شاخص خسارت در تراز ایمنی جانی برابر...
<table>
<thead>
<tr>
<th>جدول</th>
<th>NTC-6</th>
<th>NTC-4</th>
<th>SBC-3</th>
<th>SBC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIM</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
</tr>
<tr>
<td>VI</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
<td>11.8</td>
</tr>
</tbody>
</table>
1. set up
2. actuator
3. reversal cyclic loading
4. LVDT
5. quasistatic
6. displacement control
7. low rate
8. strength deterioration
9. stiffness degradation
10. energy dissipation
11. failure mode
12. backbone curve
13. design criteria
14. performance level
15. Immediate occupancy
16. life safety
17. collapse prevention
18. operational
19. fiber element
20. pushover
21. damage Index
22. plastic hinge length

مراجع