رسم نمودارهای CCCT و بررسی اثر تغییرشکل روی استحاله NiCrMoV مارتنزیت و بینایت در فولاد

پرداختن جمال، عباس نجفی زاده **، مرتضی شمعیان ***، رضا شاطری

دانشکده مهندسی، دانشگاه صنعتی اصفهان

مجمع فولاد آبیاری اصفهان

چکیده - در این مقاله در نمودار CCCT که استحاله‌ها را در حین سردشدن پیوسته، همراه تغییرشکل آسیب‌نشین می‌دهد بررسی و با CCCT نمودار (بدون همراهی تغییرشکل) مقایسه شد. همچنین علت افزایش دمای B توسط B_0 و M_0 به نظر ترمودینامیکی و ماتالوژیکی بررسی شد. بررسی‌های ترمودینامیکی نشان داد که هنگام یافتن افزایش تحرک مکانیکی و کاهش انرژی آزاد کل استحاله می‌شود و سپس می‌شود که امکان شروع استحاله در دماهای بالاتر فراهم شود. بررسی‌های ماتالوژیکی مشخص کرد که اگر دمای تغییرشکل به گونه‌ای انتخاب شود که استحکام ساختار درون دانه‌های آسیب‌نشین اولیه بر اثر تغییرشکل اعمال شده افزایش یابد، آن گاه برث لازم برای استحاله‌های مارتنزیت و بینایت به سختی صورت می‌گیرد و لذا B به دلیل این ردیابی بهینه‌تر است. بررسی‌ها نشان داد که بر اثر تغییرهای CCT به همراهی محکم‌تر می‌شود که به سمت چپ مشی تر می‌شود که این نشان می‌دهد جوانه زنی فاز بینایت راحت‌تر از مارتنزیت صورت می‌گیرد.

واژه‌گان کلیدی: CCCT، تغییرشکل گرم، مارتنزیت، بینایت

*** - استاد
** - کارشناس ارشد
* - استاد

استقلال، سال 1385، شماره 1385
Abstract: In this study, two CCCT diagrams are drawn to be compared with a CCT diagram. The CCCT diagrams represent continuous cooling transformations in stress assisted state. The increased M_d and B_d temperatures of CCCT diagrams were also compared with those of the CCT diagrams and the cause was investigated from both thermodynamic and metallurgical viewpoints. Thermodynamic examinations revealed that stress causes the mechanical driving force to increase but the total free energy of transformation to decrease; hence, M_d and B_d will rise. Metallurgical investigations showed that if deformation temperatures are selected in a manner to increase the structural strength of the original austenite grains prior to deformation, the shear force required for martensite and bainite transformations will arduously obtain; hence, M_d and B_d will fall. However, if recrystallization or full recovery occurs during or after deformation, interior grain structure softens and the shear force required for martensite and bainite transformations will readily obtain; hence, M_d and B_d will rise. It was also found that the nose in CCCT curves are shifted to the left as compared to that of CCT curves. This indicates that deformation of steel enhances bainite formation more readily than that of the martensite phase.

Keywords: CCCT, CCT, Hot deformation, Martensite, Bainite.
جدول 1- ترکیب شیمیایی فولاد مصرفی NiCrMoV

<table>
<thead>
<tr>
<th>%C</th>
<th>%Si</th>
<th>%Mn</th>
<th>%Cr</th>
<th>%Mo</th>
<th>%Ni</th>
<th>%V</th>
<th>%P</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>0.16</td>
<td>0.5</td>
<td>1.3</td>
<td>0.16</td>
<td>0.35</td>
<td>0.0045</td>
<td>0.0045</td>
<td></td>
</tr>
</tbody>
</table>

این مکانیزم وجود جالت C شکل پینایت را در نمودار TTT که نشان می‌دهد. بودن استحالة پینایت است این منو توجه کند. عده‌ای بر ترکیب بودن استحالة پینایت از این دو مکانیزم معتقدند. (16) مقدار کرنش در (16) رخ کرنش (76) در عملیات ترمومکانیکی و اندازه دانه قبل استاتیت (19) اثر زیادی روی استحالت‌های فاژی دارد. همین طور ثابت شده است که در اثر کرنش، مکانیزی جوئانه زنی مارتنزیت و پینایت افراد خواهد یافت. (16-17) مقالات، مکانیزم مرزی مختلفی برای جوانه زنی مارتنزیت و پینایت بیان می‌کند. (15، 16) تحقیقات سوزر و کوک نشان داد که در فولاد NiCrMoV، Fe-Fe سه دهانه با تنظیم 10 بهره جایی لازم است که توجه داشته که تهیه‌گر مرزی مارتنزیت از آنجا شروع شود (21). بعضی از محققین نقاطه‌بندی بررسی را مراکز مرز جوانه زنی مارتنزیت می‌دانند. (17، 18) مرزهای همکارانش در فولاد زنگ نزن تهیه کننده جوانه زنی هسته‌های مارتنزیت. در نقاطه‌بندی‌های جوانه زنی سه‌گانه مارتنزیت، در نقاطه‌بندی‌های حساس به طبقات_دوقلوی‌ها، ایجاد می‌شود (17). کوه و الس نقاطه‌بندی‌های دو‌گانه بررسی در استاتیت شبه‌پایه مکانیزم مرزهای دانه‌بندی و پینایت. که این باندهای برشی به شکل خاصی در نقاط مترک از حساب‌های اشکالی در آشکار شده. (18) این روابط روی به باندهای اشکالی که به شکل خاصی از حساب‌های اشکالی در آشکار شده. (18) برآنگی‌ها (19، 20) و این نقاطه‌بندی‌های جوانه‌های زنی مارتنزیت دارد. در مورد استحالة مشخصات اولیه زیادی وجود دارد. در مکانیزم مختلف استحالت پینایت وجود دارد. یکی مکانیزم بدون همبستگی جوئانه‌ی خاکی (مارتنزیتی)، بدیگر مکانیزم بازازار. (21) مکانیزم اول بر اساس یک برخی از صحنه ثابت بنا شده است و توجه وجود دارد. در این مکانیزم نشان داده کشی کاردیده‌ی بنا به یک تیغه‌ی تغییر جوئانه که می‌شود (21-31).
آسیب‌های مزاحم کمتر باشد M_i کمتر می‌شود که این جدایی‌های M_i کمتر می‌شود. بعضی از آسیب‌های مزاحم است که تغییر شکل سبب افزایش مکان‌های هسته‌گذاری مارترنیز (تقاطع‌های آن‌ها و پایه‌ها). مانند، خطاهای اندازه‌گیری و مکان‌های پردنده از نظر جدایی و بین آسیب‌های دادسته‌ای و پردنده از M_i ناپایداری می‌شود. لذا انتخاب می‌تواند تغییر شکل سبب افزایش M_i و H_i بموجب در حالی که به بعضی مراحل ناحیه‌ای که تغییر شکل یک کاهش مشخصی را در B_i و M_i ایجاد می‌کند. در این تحقیقات عمدتاً کاهش M_i و H_i به افزایش استحکام آسیب‌ها و چرک‌گیری در برش لازم برای استحکام‌های مارترنیز و افزایش ابزار استحکام در روزهای آلبانی B_i و M_i بررسی کردنی را تحت تاثیر را به دستگاه کشش در بدون داشته باشد M_i و H_i تغییر شکل سبب افزایش استحکام می‌شود. M_i و H_i تغییر شکل باعث شدن استحکام را به دستگاه کشش در حالت انتظاری M_i و H_i را کاهش می‌دهد.

فیلرتو و کلاسارد [38] در دو مدل‌های را برای ارتباط مقاومت شکل‌آسیب با شکل‌آسیب ناحیه در دو ناحیه M_i و H_i در انتظاری M_i و H_i را کاهش می‌دهد. فیلرتو اعداد کرده که مقاومت به تغییر شکل سبب جدایی در استحکام می‌شود که استحکام آسیب‌ها و M_i و H_i را کم می‌کند. در این راستا انسیل [38] آزمایش‌های را طراحی کرد که در آن با نرخ‌های سردر کرون منتفی، تمامی تئوری‌ها و دانش انجام استحکام‌های مارترنیز سرد شد تا مشاهده پدیدار و افزایش شدت کوپنگ کمتر شود.

آسیب‌پذیری نشان می‌دهد [38].

تحقیقات دیگر نشان داد که عناصر آلیاژی سبب افزایش استحکام آسیب‌ها و M_i و H_i را کاهش می‌دهد. ونگ [38] نشان داد که اگرچه عناصر ریز پایین‌کننده‌های فرتیل باعث افزایش M_i و H_i می‌شود، ولی، افزودن بیشتر آنها سبب کاهش M_i و H_i و هرل [38] نشان داد که هر چه نرخ کوپنگ از دمای 250 به بالاتر M_i و H_i است، بیشتر شد. M_i و H_i مقدار جدایی‌های کمتر که در M_i و H_i و به دلیل افزایش مقاومت افزایش محاسبه پذیری از دمای 5 کمتر است.

- روش آزمایش

در این تحقیقات از فولاد $35NiCrMoV12$ استفاده شده است. ترکیب شیمیایی این فولاد در جدول (1) ارائه شده است.

<table>
<thead>
<tr>
<th>ماده ساختر</th>
<th>ارائه</th>
<th>ارائه</th>
<th>ارائه</th>
</tr>
</thead>
<tbody>
<tr>
<td>$35NiCrMoV12$</td>
<td>رنگ</td>
<td>سیاه</td>
<td>شفاف</td>
</tr>
</tbody>
</table>

1385

استقلال، سال 1385، شماره 1

۱۵۲
درجه حرارت-زمان تغییر طول-زمان

شکل 1- دما و زمان شروع استحاله پیمانی (T1, t1) دما و زمان شروع استحاله مارتنزیت.
برچسبگرفتن داده شده با فلش احتمالی ناشی از رسوب گذاری کاربردها یا نیزنده است

جدول 2- مشخصات آزمایش‌های CCCT در دو حالت تغییر شکل دهی آستنینت اولیه

<table>
<thead>
<tr>
<th>فشارگرم پیوندها</th>
<th>نمودار 1</th>
<th>T_{def} = 1100^\circ C, T_{ms} = 1200^\circ C</th>
<th>ε = 0.1</th>
<th>ε = 0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمودار 2</td>
<td>T_{ms} = 1200^\circ C, T_{te} = 900^\circ C</td>
<td>ε = 0.1</td>
<td>ε = 0.92</td>
<td></td>
</tr>
</tbody>
</table>

در این تحقیق در نمونه-های CCCT هر ماده با تغییر شکل نکته مرحله‌ای برای این فولاد رسوم شده است. آزمایش‌های دیالامتری برای رسوم نمونه‌ها با استفاده از دستگاه آزمایش‌های دیالامتری Di805A/D و فشارگرم را دارد. هدف نمونه‌ها برای انجام آزمایش‌ها به صورت استوانه با مقدار 2 (D=5,H=10) می‌باشد. که به هنگام استوانه‌ای ارتفاع نمونه از D قطر نمونه است. روند‌کار پورشه بوده است. آزمایش‌ها بدون تریب بود که نمونه‌های استوانه‌ای در داخل دستگاه با ترمز گرم کردن 10\degree C/Sec 6/6 تا دمای 1000\degree C گرم شدند و به مدت 5 دقیقه تغییر شکل داشتند و بعد از آن نمونه‌ها به دمای تغییر شکل (900\degree C) بردند و تغییر شکل به صورت جدول (2) انجام شد. سپس نمونه‌ها با ترخه‌ای سرد کردن مشخص شده روی نمونه‌ها تغییر شکل دیالامتری دیالامتری محیط سرد شدند. ترخ کریستال در همه نمونه‌ها به شکل 4/2 و مقدار کرنش 92/2 بوده است. نمونه‌های دما-زمان-تغییر طول-با دستگاه CCCT در شکل‌های (2) و (3) داده شده است.
شکل ۲- نمودار CCCT فولاد NiCrMoV در حالت یک مرحله کرنش روی آستانه اولیه در دمای C۱۱۰۰ درجه سانتی‌گراد در سری S۱۹/کرنش۲/۹۲٪ B، به معنای بینایت و M، به معنای مارتنزیت است.

نقاط نقطه چین، نقاط آزمایش نشده و احتمال را نشان می‌دهد.

شکل ۳- نمودار CCCT فولاد NiCrMoV در حالت یک مرحله کرنش روی آستانه اولیه در دمای C۹۰۰ درجه سانتی‌گراد با نرخ کرنش S۱/۹/۹۲٪/۱ کرنش۲/۹۲٪ B، به معنای بینایت و M، به معنای مارتنزیت است.

نقاط نقطه چین، نقاط آزمایش نشده و احتمال را نشان می‌دهد.
ب. نمودار CCT از فولاد NiCrMoV

نمودار CCT فولاد NiCrMoV12

در مقاایسه دو نمودار CCT غیره و CCT CCCT می‌توان طوری که دیده می‌شود در نمودار CCT دمای M₆ و Bₚ در دو مقدار قابل ملاحظه‌ای افزایش یافته است و همین حالت نشان می‌دهد. دماغه احتمالی آبیایش که با چنین افزایش سطح زمان حساسیت به شرایط متفاوت شده است. در زیر به تحلیل آنلایش‌های انجام شده پرداخته می‌شود.

ا) دو نمودار CCT می‌توان افزایش نمودار CCCT نشان داد.

b) ذیلی ترمودبینامیکی افزایش

تغییرات خاصی مشاهده نمود.

در نمودار CCCT و CCT می‌توان افزایش دیده می‌شود در نمودار CCT دمای M₆ و Bₚ در دو مقدار قابل مشاهده افزایش یافته است.

و در نمودار CCCT می‌توان افزایش دیده می‌شود.

در نمودار CCCT می‌توان افزایش D₉ و M₆ را دید. در حالتی که همان طور که در نمودار CCCT می‌توان افزایش دیده می‌شود در نمودار CCCT دمای M₆ و Bₚ در دو مقدار قابل مشاهده افزایش یافته است.

ف. تغییرات مشخصی مشاهده نمود.
شکل ۵- تفاوتی نشان دهنده انرژی برای انرژی مانگیکانی برا در فرآیند استحالة بین می‌کند.

بردگاه‌های ریشی در دامنه به دمای τ_{max} تنش پرتو، پوست این تنش را به تغییر داده و راستای انقلات برخورد صفحه را تغییر می‌دهد لازم به دمای d کمی از برداشت انتقال کره در صفحه ثابت فری می‌کند. و شالر مولفه‌های نگهداری و برخی است.\[16\]

انرژی آزاد کل (بردوی مانگیکانی کل) بدون حضور تنش فقط شامل یک مولفه نیروی مانگیکانی شیمیایی است که مربوط به پارامترهای دامنه است. هادسیا این نیروی مانگیکانی را به صورت معادله (۱) معرفی کرده است.

\[
\Delta G_{\text{Chem}} = \sigma_N \xi + \tau_S
\]

که تنش عموم بر صفحه σ_N و مولفه تنش τ_S روی صفحه رابط که موادی با جهت انتقالهای برخی تاشی از تغییر شکل است. \[5\] کرنیشهای $\pm \sigma$ به ترتیب به عنوان مولفه‌های نگهداری و برخی تغییر شکل عمل می‌کنند.\[16\]

کار انجام شده توسط تنش برخی، همیشه شدت انتقال است. در حالی که مولفه‌های دوم که علامت σ_N دارد برای فاکتورهای ΔG_{chem} طی طبیعی کلاس. لذا اثر اصلی تنش روی مانگیکانی در طول هیدروترباشی. در فاکتورهای جهت همیشه و برخی از اینکه توانمندی که در فاکتورهای جهت کشش قرار گیرد یا فشار ناپذیر محورهای تماس نشته در انتقالهای جابه‌جایی، سبب افزایش ΔG_{chem} و کاهش d_k می‌شود. در نتیجه استحالة بیانی از دامنه بالاری آغاز می‌شود. ویژن فشار به هیدروترباشی سبب کاهش دامنه استحالة می‌شود.\[16\]

شکل (۶) تغییرات انرژی آزاد را بر حسب دما بیان می‌کند.

\[
\Delta G_{\text{Chem}} = a(T-T_f) + b(T-T_f)^2
\]

که مقدارهای a و b به ترتیب \[1] \[10^{-5.5}\text{MPaK}^{-1}\] و \[3.56 \times 10^3 \text{MPaK}^{-1}\] هستند. T_f دمایی است که σ_N به دست آمده. یافته‌های یافته‌های آزمایشی نشان دهنده انرژی مانگیکانی برا در فرآیند استحالة بین می‌کند.

لاک اثربخشی مانگیکانی بر فرآیند استحالة بین می‌کند. همان طور که در شکل (۶) دیده می‌شود استحالة بینلاین، بدون اعمال تنش در دمای T_0 انرژی می‌شود. در دمای این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و وجود دارد. در اعمال تنش نیروی مانگیکانی و این فاکتورهای شیمیایی و مانگیکانی می‌شود و
پیش‌بینی برای جویانه‌های فاصله‌ای مارنیکت و آستینت با هم برای می‌شود.

از دیدگاه فیشر، نیز تابعی از کرنش عمود (\(T_o\)) و کرنش برگ (\(T_r\)) نسبت به صفحه رابط است. که معادله آن را به صورت معادله (3) آنان کرد:

\[
\Delta G_{\text{Mech}} = \sum \frac{1}{2} (\delta + \sqrt{\delta^2 + \gamma^2})
\]

5- دیل متالورژیکی و توجه تناقض

همان طور که در مقدمه گفته شد عمل اصلی کاهش \(M_4\) افزایش استحکام آستینت بین شد (20).

تغییر شکل سبب افزایش جابجایی و عیوب شکنی‌های همجنون تاخیرزی. جای خالی، با ورود و نابودی، خطاهای ساختنی و مدلفیتی می‌شود. لذا در شبکه کارسختی افزایش \(M_4\) با و استحکام شبکه آستینت زیاد می‌شود. از طرفی در مقدارهای

مارنیکت و آستینت که نیاز به یک بریش شبکه ای می‌باشد (20) و (21) بریش شبکه ای مربوط به یک آستینت با استحکام تسلیم یا دیگر افریاکشن صورت می‌گیرد. لذا دمای \(T_o\) و \(M_4\) با آستینت تغییر کرده و آستینت آستینت کاهش می‌یابد.

6- تفاوت نوع تغییر شکل‌های اعمال شده و اثر آن

\(B_d\) و \(M_d\) روی دما دما

در مقایسه حضور دو نوع تغییر شکل با نرخ کرنش ثابت \(18 \%) و کرنش 9/20 إنجم شود که یکی در دمای
شکسته می‌شوند و نامی جایی‌ها آزاد می‌شوند و نامی جایی‌ها
با یکدیگر در دمای 900°C این نمونه‌ها آزمایشی در شکل‌های (۷) و (۸) و تصاویر میکروساختاری آنها در شکل‌های (۹) و (۱۰) آمده است. تغییر
شکل انجام شده در ۹۰۰°C در این فولید مطابق مقاله
دیگر نویسنده [۲۳] همراه تبلور مجدد دینامیکی است.
تصویر (۷-الف) نیز همین مسئله را نشان می‌دهد که حتی نمونه
کوئن شده دارای دهانه تبلور مجدد دینامیکی یافته است. ولی
این فولید تحت تغییرشکل در ۹۰۰°C همراه فراوردن نرم شدن
بازبایی دینامیکی و تبلور مجدد دینامیکی مراجع [۲۳] در
۹۰۰°C است. لذا به طور کامل
بازبایی دینامیکی می‌شود. مطالعه عکس (۸-الف) که نمونه در
حاله کوئن شده است و بازبایی دینامیکی را نشان می‌دهد. سایر
نمونه‌ها در دمای تغییرشکل ۱۰۰۰°C که در حالت غیرکوئن‌اند،
در زمان‌هایی سرخرده (۱۵۰۰ و ۹۰۰ دقیقه) همگی علائم برج
تبلور مجدد دینامیکی در حین سرخرشند. بعد از تغییر شکل تبلور
مجله استانداردی یافته‌اند. لذا فرآیند نرم شدن در دمای تغییرشکل
۱۱۰۰°C به طور کامل انجام می‌شود. در سایر نمونه‌های
تغییرشکل یافته در ۹۰۰°C هم تبلور مجدد استانداردی در حین
سرخرشند انجام می‌گیرد لذا نمونه‌ها به خوبی نرم می‌شوند. در
نتیجه در تمام نمونه‌های آزمایشی شده در دمای تغییرشکل
(۷۰۰°C و دیگر) انجام استانداردی (استانداردی) انجام
۱۰۰۰°C و ۹۰۰°C بازبایی دینامیکی کامل
گرفته و فقط در حالت کوئن ۹۰۰°C بازبایی دینامیکی کامل
انجام می‌گیرد. این به معنی این است که نمونه‌ها قبل از شروع
اضحالهای مارتریت و بینایت به خوبی نرم شدن و دانسته و
توسعی نامی‌ها در بیشتر بخش‌ها در انتهای است
تعدادی از نامی‌جایی‌ها در سیستم گردد به سطح رسیده‌بی‌وا
هدیگر را خصش می‌کند و باعث کاهش کارکردی نمونه
می‌شود. مرزهای فرعی در اثر پیدایش جدید و به‌سازی شدن در
بازبایی دینامیکی (۱۵) و همین طور فرعی‌های دارای اثر فراور
تلور مجدد افزایش می‌یابد و دانسته‌های جدید با تعداد
نامی‌جایی‌ها کمتر ایجاد می‌شوند. قطعه‌ای ایجاد شده در اثر
برخوردار نامی‌جایی‌ها با روش‌های کاربردها و تبیین‌های در این فولید.
شکل 7- ریز ساختار آنییت اولیه در آزمایش‌های CCCT بعد از اعمال یک مدل تغییر شکل با $S' = S = 0.02$ و $n = 2$ (کنونج) در دمای $1100^\circ C$، که با محصول اج سید پیکریک فوق اشباع، مزه‌های دانه مناسب سرد از زمان سرد شدن و عدد اندازه دانه در هر میلیون عبارت است از:

\[n = \frac{A}{4}, \quad 214^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]

\[n = \frac{4}{219}, \quad 210^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]

\[n = \frac{1}{4}, \quad 33^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]

شکل 8- ریز ساختار آنییت اولیه در آزمایش‌های CCCT بعد از اعمال یک مدل تغییر شکل با $S' = S = 0.02$ و $n = 2$ (کنونج) در دمای $900^\circ C$، که با محصول اج سید پیکریک فوق اشباع، مزه‌های دانه مناسب سرد از زمان سرد شدن و عدد اندازه دانه در هر میلیون عبارت است از:

\[n = \frac{A}{4}, \quad 174^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]

\[n = \frac{1}{4}, \quad 16^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]

\[n = \frac{24}{100}, \quad 16^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]

\[n = \frac{A}{4}, \quad 0.97^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]

\[n = \frac{24}{100}, \quad 24^\circ C \leq T \leq S' \leq S = 0.02 \quad \text{(کنونج)} \]
شکل 9- ریزساختار پیبات و مارنیزیت در آزمایش‌های بعد از اعمال یک مرحله تغییر شکل با $CCCT_{100^\circ C}$ در زمان‌های مختلف سرد شدن. که با محلول انج نایتال/۲ ریز ساختار پیبات و مارنیزیت در آن ظاهر شده است.
الف) $214 \frac{C}{Sec}$

شکل 10- ریز ساختار پیبات و مارنیزیت در آزمایش‌های بعد از اعمال یک مرحله تغییر شکل با $CCCT_{900^\circ C}$ در زمان‌های مختلف سرد شدن. که با محلول انج نایتال/۳ فاز پیبات و مارنیزیت در آن ظاهر شده است.
الف) $174 \frac{C}{Sec}$ (کوننجر، ب) ؛ ج) $0.02 \frac{C}{Sec}$ (کوننجر، د)

استقلال سال ۳۵، شماره ۱، شهریور ۱۳۸۵

160
7- علت انتقال دماه بیانیت در نمودار CCCT
نسبت به نمودار

تبین و مجدداً انگیزه گرفته در نمونه سبب افزایش مرزه‌های دانه می شود. باربیایی کامل نیز سبب افزایش مرزه‌های فرسای در شبکه آستینی می‌شود. برای شروع استحکام بیانیت لازم است فاز فریت در نقطاهای ده اثر نوسانات انمخ مقدار کربن آنها کم می شود جوانه بندن. مطالعات، مرزه‌های فرعی و مرزه‌های اصلی نقاط مرجع محصول می‌شود (23). در نتیجه، جویانگین ناهمگنی اعمال شده تحریک حاضر سبب افزایش مناطق شده. انتقال میدان بیانیت تقیف شود از طرفی به نظر می‌آید جوانه زنی مارتینیک ارتباطی به مرزه‌های دانه ندارد (15) و از نقاط درون دانه تنظیم باندهایهای بررسی (18، 22، 23، 27) ماکرولیوپیون‌نیسته‌های جایی (15، 27) دوکلیه‌ای مکانیکی نما که مرکزی از نقطه انتقالی ابسانگی (18، 27) بیانیت جوانه می‌زند. عملیات باربیایی و به‌خصوص تبیین مجدد دانسهای باندهایی نمی‌شود. شکل را کاهش می‌دهد (33). همین طور مناطق با دانسهای بالایی نهایت جایی و خطای ابسانگی نیز از این تبیین مجدد و باربیایی کاهش می‌یابد. در نتیجه اندازه‌گیری و میدان نمودار در مقابلی بین د نمودار و CCCT در نمونه‌های آرامش بند (در همان نرخ سرعت‌درکن در CCCT نمودار حجم آستینی استحکام داده به بینایی بیشتر از حجم آستینی استحکام داده به مارتینیک باشد.

8- علت عدم وجود فریت و برخی در نمودار CCCT

در این فرآیند بر اساس نمودار CCCT در نرخ‌های سرعت‌درکن در حجم آرامش بند (200/170 C/S) و 100/170 C/S (سرعت‌درکن از دمای 1655 C تا دمای محیطی طبیعی 200 سانتیمتری) این فریت و برخی تکیه همگی شود. گفته شده در روتورهای فلزی نورتان نرس می‌باشد. بینایی برخی از ابسانگی است و نه در مرکز ار انری ژن نیز ساختر بیانیت مارتینیک و بینایی باربیایی در در مرکز بیناییت در موجود نمودار در نمونه از بیناییت بیشتر می‌شود. این روند در شکل‌های میکروسکوپی (6)، (7)، (8) و (10) دیده می‌شود.
جدول 3- عدد اندازه دانه ASTM نمونه‌های CCCT در شرایط مختلف سرد شدن

<table>
<thead>
<tr>
<th>اندازه دانه</th>
<th>عدداندازه دانه</th>
<th>نمونه</th>
<th>کوکیج</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 میلی‌متر</td>
<td>8/7</td>
<td>1/2</td>
<td>5</td>
</tr>
<tr>
<td>1-2 میلی‌متر</td>
<td>4/7</td>
<td>7/9</td>
<td>1/2</td>
</tr>
<tr>
<td>2-3 میلی‌متر</td>
<td>1/3</td>
<td>7/8</td>
<td>0</td>
</tr>
</tbody>
</table>

مارترزینیت و بیتا‌نیست شرط تبعیض کننده روی افزایش و یا کاهش دماه B₃ و M₅ در نمونه CCCT نسبت به نمونه ASTM است. استحکم درونی دانه‌های استاتیکی اولیه است. اگر بزرگ تغییر شکل دانه باشد هم در دماهای زیادتر از مکانیزم بزرگ شود، زیرا به دلیل این که قدرت انجام تغییر شکل استاتیکی دانه و نسبت به دانه‌های که قدرت تغییر شکل استاتیکی واقعی دارند برتری می‌اندازند. این پدیده را تغییر شکل دانه‌های می‌گویند.

10- نتیجه‌گیری

در این مطالعه برای فولاد 5% נیکر و MoV12 در نمونه CCCT برای این فولاد مقایسه شد و مشخص شد که دماهای B₃ و M₅ افزایش یافته است. در مطالعه CPG در CCCT و دماه پایین دانه در CCCT کمی به سمت چپ منتقل شده است و دماه سطح بینایت در این نمونه و سیم تر شده است. در این مطالعه افزایش دماه B₃ و M₅ در این نمونه تغییر شکل اعمال شده است.

شده از نظر تغییر شکل استاتیکی بچه شده.

تغییر شکل سبب افزایش مکان‌های جوانه زنی مارترزینیت (باندهای تغییر شکل و مکان‌های تجمع نانه جایی) و بیتا‌نیست (مزه‌های فرعی و اصلی) می‌شود. ولی این دلیل کافی برای افزایش دماه سرعت جوانه زنی

استقلال، سال 1385، شماره 3، شماره 1، شماره 1385

124
1. compression continuous cooling transformation
2. high isostatic pressure
3. continuous cooling transformation
4. twin-fault intersection
5. dense bundles of stacking fault
6. displasive

7. reconstructive
8. mechanical stabilization of austenite
9. shape change
10. bin
11. habit plane
12. dilational

Mراجع

