بررسی پارامترهای مؤثر در تولید مواد مركب زمینه آلومینیومی به روش اکستروزن گرم پودر

محمد رضا طرقمی نژاد** مهدی صبایی*** و محمد محسن مشکار***
دانشکده مهندسی مواد دانشگاه صنعتی اصفهان
پیش مهندسی مواد دانشکده مهندسی دانشگاه شیراز

چکیده- از فرآیند اکستروزن گرم پودر برای تولید کامپوزیت‌های زمینه آلومینیومی تقویت شده با 5% خمصی دره سرامیکی و Al2O3 استفاده شد. نمونه‌ها در محدوده دماها 500 تا 700 درجه سانتی‌گراد و کاهش سطح مقعف 90 و 95 درصد اکستروزن شدند. خواص محصول تولید شده با ادغام نیز از استحکام، انعطاف‌پذیری، سختی و دانسیته نمونه‌ها مورد ارزیابی قرار گرفت. ریز سابخار و سطح شکست نمونه‌ها نیز با استفاده از میکروسکوپ الکترونی روبشی (SEM) بررسی شد. نتایج نشان دادند که فرآیند اکستروزن گرم پودر موجب توزیع مناسب ذرات تقویت کننده در زمینه و دستیابی به دانسیتهٔ نزدیک به دانسیتهٔ نظری می‌شود. احتمال ذرات تقویت کننده افزایش سختی و استحکام را به دنبال خواهد داشت. به نظر می‌رسد که کاهش سطح مقعف 90 درایلی تولید نمونه‌های کامپوزیتی زمینه آلومینیومی با استفاده از فرآیند اکستروزن گرم پودر مناسب باشد. افزایش دمای اکستروزن تا 600 درجه سانتی‌گراد باعث افزایش استحکام کلی نمونه‌ها شد. نتایج نشان داد که فشار لازم برای اکستروزن نمونه‌های گرمی دردی تأثیری از سرعت سنبه است.

واژگان کلیدی: اکستروزن گرم پودر- کامپوزیت‌های زمینه آلومینیومی- ذرات تقویت کننده سرامیکی

*** - استاد
** - دانشجوی کارشناسی ارشد
* - استادیار

استقلال، سال ۲۴، شماره ۱، شهریور ۱۳۸۵

179
Investigation of Parameters Involved in the Production of Aluminum Matrix Composites Using Hot Powder Extrusion

M. R. Toroghinejad, M. Sayadi and M. M. Moshksar
Department of Materials Science and Engineering, University of Shiraz, Shiraz, Iran

Abstract: Aluminum matrix composites reinforced with Al2O3 and SiC particles (5 Vol%) were produced using the hot powder extrusion method. Extrusion temperature and extrusion reduction in area were chosen in the range of 500 to 600 °C and 90 to 95%, respectively. The physical and mechanical properties of the extruded composites such as density, tensile strength, elongation and microhardness were evaluated and discussed as a function of extrusion parameters. The microstructure and fracture surface of the products were examined using SEM. The results showed that the composites were fully densified and reinforcement particles were distributed uniformly in the matrix. Presence of Al2O3 and SiC particles increased both strength and microhardness, but decreased the ductility of the composites. Experimental results for hot extrusion of the compacted powder billets also showed that the extrusion pressure was dependent on the ram speed or deformation strain rate.

Keywords: Hot powder extrusion, Aluminum matrix Composites, Reinforcing ceramic particles
شکل ۱- نشان‌گیری اجزای قالب روزی پایه فولادی

مجهز به سیستم اندازه‌گیری نیرو، جابجایی سبب و کنترل سرعت اکستروژن شدن. طی فرآیند اکستروژن کوره استوانه‌ای در اطراف مجموعه قالب قرار گرفته تا دامی اکستروژن تاکت و کنترل شده باشد. به منظور بررسی تأثیر نرخ کرنش، فرآیند اکستروژن با سرعت‌های ۲۰ و ۴۰ میلی‌متر در دقیقه انجام می‌گردد. از روانساز پایه غرافیتی مولیکوت که قابلیت کار تا دمای ۱۰۰۰ درجه برای کاهش اختلافات استفاده شد. تعدادی از نمونه‌ها بدون ضمن جریان خنک‌کننده و با روش مشابه اکستروژن شدند تا تأثیر حضور ذرات سرامیک در زمینه آلومینومی بررسی شود. رفتار و خواص مکانیکی نمونه‌ها به کمک آزمایش کشک نک معمولی طبق استاندارد ASTM557M-84E1(ظرفیت ۶ میلی‌متر و طول ۳۷ میلی‌متر) تعیین شد. دانشی به نمونه‌های تولید شده طبق استاندارد 88379-88379 ایندازه‌گیری شد. بررسی‌های نسبت‌سنجی ریز ساختاری و سطح شکست به کمک میکروسکوب الکترونی روبشی (SEM) انجام شد. ساختار نمونه‌ها نیز با استفاده از روش نسبت‌سنجی سنتی و ریز و با میانگین گیری از داده‌های ۱۰ سانتی‌سنجی به دست آمد.

د) نحوه فرآیندهای اجزای قالب روزی پایه فولادی

۲۲/۱ میلی‌متر و ارتفاع ۳۰ میلی‌متر فشرده شدند. دانسته‌پذیری فشرده شده در این مخلوط حدود ۷۵ درصد دانسته‌پذیری بوده است. برای اکستروژن گرم، قابلیت‌های مناسب، شکل (۱) طراحی و ساخته شد. به منظور بررسی تأثیر میزان تغییر شکل و قالب با توانایی ایجاد کاهش سطح مقطع ۹۰ درصد تهیه شد. برای کاهش اختلافات ایجاد محصول با سطح تمام شده مناسب، سطح داخلی محفظه نگهدارنده نمونه‌ها قابلیت و سرعتی به صورت مناسب می‌باشد که سپس با عملیات حرارتی مناسب همه اجزاء قالب سخت‌کاری شدند. از آنگاه که اکستروژن گرم مجموعه قالب سبب و محفظه نگهدارنده پایه گرم X3CrMoV51 شوند جنس مجموعه قالب از فولاد گرماخورانی انتخاب شد. برای گرم کردن و گرم نگه داشتن مجموعه قالبها تا دمای ۶۵ درجه در هنگام اکستروژن یک کوره استوانه‌ای شکل مناسب طراحی و ساخته شد. پیش از انجام فرآیند اکستروژن نمونه‌های فشرده شده در یک کوره مناسب دامنه‌ای ۵۰۰ و يا ۲۰ درجه سانتی‌گراد گرم شدند. سپس نمونه‌ها پیسگر شده در قالب اکستروژن به کمک یک پرس بیونر‌سال ۲۰ تا انتقال سال ۲۵، شماره ۱، شهریور ۱۳۸۵

۱۸۱
شکل 2- تصاویر میکروسکوپی (SEM) از ریز ساختار کامپوزیت‌های تولید شده به روش اکسترود گرم بودر

(الف) Al-5%SiC
(ب) Al-5%Al2O3

3- نتایج و بحث

۱-۳ دانسته کامپوزیت‌های اکسترود شده

اندازه‌گیری دانسته نمونه‌های اکسترود شده Al-5%SiC حاکی از آن بود که در این نمونه‌ها هیچ گونه تخلخل حضور ندارد. اما اندکی‌هایی دانسته نمونه Al-5%Al2O3 تخلخل وجود دارد. دانسته تصور می‌شود که این تخلخل مخلوطها محاسبه می‌شود. ۲/۷ گرم کربنات مکعب باید باشد حال آنکه دانسته انداده‌گیری شده ۲/۷ به دست آمده. هر چند که در تصاویر میکروسکوپی تخلخل با صورت مشهود دیده نشد. شکل (۲) تصاویر میکروسکوپی هر نوع کامپوزیت را یک بزرگ‌ترین یکسان می‌دهد. دیده می‌شود که بافت زیمنه در هر نوع نمونه از پیوستگی خوبی برخوردار است و این حفظ SiC در درات Al-5%SiC کاملاً به زیمنه دیده نمی‌شود. در نمونه Al-5%SiC درشت درات Al-5%Al2O3 درشت‌تر و طبیعی‌تر از پراکندگی نامطلوبی نسبت به تویت کردن درات SiC برخوردار است. علاوه بر این تخلخل درات دچار آگلوماراسیون شدند. و در برخی موارد چسبندگی کامل گذاشته نمی‌شود. آلومینوم نمونه‌ها از خصوصیات این نوع درات به شمار می‌رود. 

۱۸۲
شکل 3- چگونگی تغییرات فشار اکسترودن گرم پور در حسب دما برای نمونه‌های کامپوزیتی در سرعت سبب ۲۷ میلی‌سرانه در دقیقه.

الف) در کاهش سطح مقطع ۹۰٪ (ب) Al-5%Al2O3

شکل ۴- محتوی تغییرات فشار اکسترودن بر حسب سرعت اکسترودن Al-5%Al2O3 در محدوده دما ۳۵۰ تا ۵۲۵ درجه سانتی‌گراد صورت می‌گیرد [۱۲]. ضمن اینکه افزایش دما سیون‌نگره موجب افزایش ضریب اصطکاک بین ماده‌ها به جدایی محکم‌نگره و نگهدارنده و قابل نشدن که این خود در افزایش فشار اکسترودن موثر است. با افزایش دما اکسترودن تا ۴۰۰ درجه سانتی‌گراد منجر به دیلی نزدیک شدن به دیلی ذوب آلومینیوم و کاهش شدید در تنش سیلان، فشار اکسترودن به طور محسوس کاهش می‌یابد. وجود ذرات تقویت کننده در زمینه آلومینیومی، همان طور که در شکل (۴-الف) دیده می‌شود، فشار اکسترودن را به دمای حدود ۲۰٪ افزایش می‌دهد که این خود نشان دهنده این واقعیت است که حضور ذرات سرامیکی افزایش استحکام ماده مركب نسبت به آلومینیوم خالص را به همراه دارد [۱۳]. در
برای اکسترژون ماده از درون قالب افزایش می‌یابد. در برخی از آزمایش‌ها تغییر سرعت ضربه از ۸ میلی‌متر بر دقیقه تا ۱۸۰ میلی‌متر بر دقیقه فشار اکسترژون را به میزان ۴۰٪ افزایش می‌دهد. چنین رفتار مشابهی توسط سایر محققان نیز گزارش شده است[۹]. در اکسترژون ریزان در اثر افزایش سرعت اکسترژون تا ۴/۵ سرعت وارد حسابی می‌گردد و به نرخ کرنش است. به خصوص آنکه تابع حسابی به نرخ کرنش (m) در رابطه معروف
\[ m = C \varepsilon \]
در دماهای بالا به طور محسوس افزایش می‌یابد. لذا در یک دموا تابع بالا افزایش نرخ کرنش و یا سرعت تغییر شکل افزایش تنش سیلان و طبقاً آن‌ها افزایش فشار اکسترژون افزایش را به دنبال خواهد داشت.

### ۳-۳ تأثیر پارامترهای اکسترژون بر استحکام کشی

**شکل ۵-الف**) تأثیر دمای اکسترژون بر استحکام نمونه‌های اکسترود شده.

**شکل ۵-یاف**) تأثیر درصد کاوش سطح متغیر بر استحکام نمونه‌های 

برای اکسترژون ماده از درون قالب افزایش می‌یابد. در برخی از آزمایش‌ها تغییر سرعت ضربه از ۸ میلی‌متر بر دقیقه تا ۱۸۰ میلی‌متر بر دقیقه فشار اکسترژون را به میزان ۴۰٪ افزایش می‌دهد. چنین رفتار مشابهی توسط سایر محققان نیز گزارش شده است[۹].

برای اکسترژون ماده از درون قالب افزایش می‌یابد. در برخی از آزمایش‌ها تغییر سرعت ضربه از ۸ میلی‌متر بر دقیقه تا ۱۸۰ میلی‌متر بر دقیقه فشار اکسترژون را به میزان ۴۰٪ افزایش می‌دهد. چنین رفتار مشابهی توسط سایر محققان نیز گزارش شده است[۹].

[۱۴] نتایج آزمایش‌ها حاکی از آن است که نمونه‌های 

برای اکسترژون ماده از درون قالب افزایش می‌یابد. در برخی از آزمایش‌ها تغییر سرعت ضربه از ۸ میلی‌متر بر دقیقه تا ۱۸۰ میلی‌متر بر دقیقه فشار اکسترژون را به میزان ۴۰٪ افزایش می‌دهد. چنین رفتار مشابهی توسط سایر محققان نیز گزارش شده است[۹].

برای اکسترژون ماده از درون قالب افزایش می‌یابد. در برخی از آزمایش‌ها تغییر سرعت ضربه از ۸ میلی‌متر بر دقیقه تا ۱۸۰ میلی‌متر بر دقیقه فشار اکسترژون را به میزان ۴۰٪ افزایش می‌دهد. چنین رفتار مشابهی توسط سایر محققان نیز گزارش شده است[۹].
(الف) تأثیر دماهای اکسترژون بر انعطاف‌پذیری نمونه‌های اکسترژون شده

(ال ب) تأثیر درصد کاهش سطح مقطع بر انعطاف‌پذیری نمونه Al-5%Al2O3

عکسی که با پیشگرم کردن نمونه‌ها در دماهای بالا، ضخامت
لایه‌های آکسیدی روی سطح دانه‌های بودر آلومینیوم افراشی
می‌پایند. این لایه‌های آکسیدی جهت فراوری اکسترژون خرد و
در زمان تناریز می‌شوند که خود عامل افزایش دریافت افزایش
استحکام به حساب می‌آید (9).

شکل (5-ب) تأثیر کاهش سطح مقطع بر استحکام نمونه‌ها
را نشان می‌دهد. با تغییر مقادیر کاهش سطح مقطع از 90 به
Al-5%Al2O3 به مقادیر نایزی افزایش می‌پاید. این اثر در نمونه‌های Al
خلال و Al-5%SiC نیز مشاهده شد.

شکل (6) تأثیر پارامترهای اکسترژون بر خصایص انعطاف‌پذیری

شکل (1) تأثیر دما و میزان کاهش در سطح مقطع اکسترژون را
بر انعطاف‌پذیری (در صدکشیدگی طول نمونه‌ها) نشان می‌دهد.
همانطور که در شکل (6-الف) دیده می‌شود اکسترژون‌های
نمونه آلومینیوم خالص از سایر نمونه‌ها پیشرفت است. در واقع
انعطاف‌پذیری کمی از جمله محدودپذیری کامپوزیت‌های آلومینیوم
آلفا در مقایسه با آلایه‌های آلومینیوم است. ذرات تناریز
کننده سرامیکی به طور فاصله ای در هم اشکال کننده خاصیت تردد
و شکل‌گذاری زیادی پیدا کند از ویژگی‌های مواد سرامیکی است.
تفاوت این رفتار با زمینه آلومینیوم موجب پیدایش تراکم
و حالت نشانه‌های بعدی در اطراف ذرات تناریز شدن می‌شود.

حمض تنش‌های سه بعدی در اطراف ذرات تناریز کننده
سرامیکی کاهش خاصیت انعطاف‌پذیری ماده را به‌دنبال دارد. در
واقع تناریز کننده سه بعدی، تغییر شکل زیمه را در فضاهای بین ذرات
تقویت کننده که در نزدیکی هم قرار دارند محدود می‌کند. این امر
خود موجب تبدیل سیلان و ایجاد تناریزی موضعی بالاتر از نش
تست زیمه شده و باعث می‌شود که نمونه‌ها بدون تأمین تغییر
شکل پلاستیک قابل ملاحظه دچار شکست شوند. در شکل
(1-الف) دیده می‌شود که انعطاف‌پذیری ماده مرکب حاوی ذرات
Al2O3 از انعطاف‌پذیری ماده مرکب حاوی ذرات بالاتر است.
دلیل این امر تناریز یک‌تکها در درات تقویت کننده و
چسبندگی بیشتر درای انعطاف‌پذیری نمونه‌های Al-5%SiC
همچنین دیده می‌شود که با افزایش دما اکسترژون از
500 به
200 درجه سانتی‌گراد، انعطاف‌پذیری نمونه‌ها کاهش یافته است.
به نظر می‌رسد با افزایش دما مقادیر بیشتری از بودر آلومینیوم
اکسترژون شده و این امر موجب کاهش انعطاف‌پذیری نمونه‌ها
گردیده است. تأثیر درصد کاهش سطح مقطع بر روی
انعطاف‌پذیری نمونه‌ها در شکل (1-ب) نشان داده شده است. تأثیر
انعطاف‌پذیری نمونه‌های Al-5%Al2O3 و Al-5%SiC در درای کاهش
انعطاف‌پذیری نمونه‌ها در شکل (1-ب) نشان داده شده است.
انعطاف‌پذیری نمونه‌ها در سطح مقطع کثرت می‌شود. می‌توان
نیز مشاهده شد. دلیل این امر همان ارتباط مشابه‌گی
بین انعطاف‌پذیری استحکام و کاهش انعطاف‌پذیری در مواد مربک
است.
٤ - بررسی سطوح شکست

شکل (٦) تصاویر میکروسکوپ الکترونی روبشی از نمونه‌های شکست آلمینیوم خالص و مواد مركب، Al-5%SiC و Al-5%Al2O3، به همراه شده به روش اکسترژن گرم پودر را نشان می‌دهد. در شکل (٥-الف) دیده می‌شود که شکست نمونه آلمینیوم خالص از نوع شکست ترم به دست آمده است. سطح شکست در این نمونه‌ها دارای حفره‌های ریز بین هم پیوسته و فرورفته‌های بزرگ است. حالکه شکست به صورت مخروطی و فرنجی که از مشخصات شکست ترم در این نمونه‌ها به خوی شده است. شکل‌های (٤-ب) و (٤-ج) سطح شکست نمونه‌های Al-5%Al2O3 و Al-5%SiC را نشان می‌دهند. تجمع حفره‌های ریز در سطح شکست این کامپوزیت‌ها به خوی شده می‌شود. در برخی مناطق ذرات تقویت کننده از جای خود کننده سطح شده و حفره‌های بین‌کننده این دارای ذرات تقویت کننده که در اثر هم چسبیدن آنها و قرار گرفتن مستقیم سوزن Al2O3، فرورونده بروی این ذرات سرامیکی باشد. دیده می‌شود که ٧٥٪ حجمی ذرات تقویت کننده در زمینه آلمینیومهای Al2O3 و SiC مشاهده می‌شود. سختی نمونه‌ها را به ترتیب ٢٣ و ٣٢ درصد افزایش داده است. 

۵- بررسی نتایج سختی سنگی

از آنگاه که در آزمایش ریز سختی سنگی سوزن فرورونده در ناحیه پیمان کوچکی از ماده فرو می‌رود و درصد حجمی ذرات تقویت کننده نسبت به زمینه پیمان کشتر است، محدوده و سبیعی از مقادیر ریز سختی به دست خواهد آمد. به عبارتی، سختی کامپوزیتی تقویت شده با ذرات سرامیکی با میانگین کوچکی از نتایج چندین آزمایش سختی سنگی حاصل می‌شود. جدول (١) مقادیر سختی هر نوع نمونه‌کشتر شده را نشان می‌دهد. مقادیر سختی میانگین داده‌ها که از ١٠ سختی سنگی است. محدوده تغییرات سختی در هر نمونه نیز ارده است. با اضافه شدن ذرات تقویت کننده به زمینه آلومینیوم، سختی نمونه‌های اکسترود شده به طور مشهود افزایش یافته است. افزایش مقادیر سختی در کامپوزیت Al-5%SiC نسبت به Al-5%Al2O3 بیشتر بوده است. ذلیل این است که افزایش شدید درصد ذرات تقویت کننده در اثر هم چسبیدن آنها و قرار گرفتن مستقیم سوزن Al2O3، فرورونده بروی این ذرات سرامیکی باشد. دیده می‌شود که ٧٥٪ حجمی ذرات تقویت کننده در زمینه آلمینیومهای Al2O3 و SiC مشاهده می‌شود. سختی نمونه‌ها را به ترتیب ٢٣ و ٣٢ درصد افزایش داده است.
جدول ۱- نتایج میکرو سختی و بکر نمونه‌های اکسترود شده با کاهش سطح مقطع ۹۰ و ۹۵ درصد در دما ۲۰۰ درجه سانتی‌گراد و سرعت ۲۲ مایل در دقیقه (بار اعمالی N2)

<table>
<thead>
<tr>
<th>ماده</th>
<th>کاهش درسطح مقطع</th>
<th>ریز سختی ویکرز</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>۹۰%</td>
<td>۵۶±۲</td>
</tr>
<tr>
<td>Al-5%SiC</td>
<td>۹۰%</td>
<td>۶۵±۴</td>
</tr>
<tr>
<td>Al-5%Al2O3</td>
<td>۹۰%</td>
<td>۷۰±۱۰</td>
</tr>
<tr>
<td>Al-5%Al2O3</td>
<td>۹۵%</td>
<td>۷۳±۱۰</td>
</tr>
</tbody>
</table>

۱- سرعت اکسترود فشار از درای اکسترود شدن نمونه‌ها کاهش پیدا کرد.
۲- حضور ذرات تقویت کننده SiC و Al2O3 به سختی زمینه آلومینیوم را به ترتیب ۳۲ و ۲۲ درصد افزایش دادند.
۳- به دلیل ریزتریودن اندازه ذرات پراکندگی بهتر و جسم‌گردی بهتر ذرات سرامیکی SiC و Al2O3 ماده مركب Al-5%SiC و Al2O3 نسبت به ماده مركب Al-5%Al2O3 از خود نشان داد.

تشکر و قدردانی

نویسنده‌گان این مقاله میلاد از معاونت پژوهشی دانشگاه شریتز که هرگز این پژوهش را طی طرح شماره EN-1506-C199-A1 نامی کرده‌اند تشکر و قدردانی می‌کنند.

واژه نامه

1. مولیکوت

مراجع

3. Bialo D., Zhou J. and Duszczuk J., “The Tribological Characteristics of the Al-20Si-3Cu-1M, Alloy Reinforced with Al2O3 Particles in Relation to the


10. د. م. د. خواص کامپوزیت‌های سیلیکون-آلومینیومی با استفاده از فرآیند اکسترژن گرم پودر. پایان نامه کارشناسی ارشد، بخش مهندسی مواد، دانشگاه مهندسی، دانشگاه شیراز، 1383


