Stress Analysis of Flight Vehicles under Flight Conditions

Hassan Haddadpour
Aerospace Engineering Department, Sharif University of Technology

Abstract: A method is presented for the stress analysis of flight vehicles under different flight conditions including gust and control surface deflection (or maneuver) using the governing equations of rigid-body motions and elastic deformations. The Lagrangian approach is used to derive the governing equations of motions. For this purpose, the basic equations of motions are derived in terms of potential energy, kinetic energy and generalized forces, which are, in turn, computed in terms of rigid-body motion variables, elastic mode shapes and $C_{la}(X)$ distribution for aerodynamic forces. By replacing them into the relations obtained, the governing equations for aeroelastic behavior of the vehicle are derived. The system of aeroelastic equations of
گرفت. الیادا [5] روش پنهانی برای پایداری استاتیک استاتیک پراکتهای بند Bun در کمد. البته استفاده از مدل‌سازی خودروی رقابی سازه مورد بررسی قرار داد. این نتیجه عمومی را برای بهبود بررسی مدل‌سازی استاتیک که اجسام پردره به‌وسیله ورود مواده ارتعاشی ارائه کرد. در ایام ان روش در پرداخت آورده مدل‌سازی حاکم بر پراکتهای دوران‌دار مورد استفاده قرار گرفت [6]. اثر نیرو محوری بر پایداری استاتیک و دینامیک موشک نیز توسط تعدادی از محققان بررسی شد [8-10].

در این مقاله از مدل‌سازی حاکم بر رفتار دینامیک کل سیستم با استفاده از روش مدول بازی سازه، بررسی رفتار آورده استاتیک جسم پردره استفاده خواهد شد. همچنین موشک به عنوان نمونه خاصی از اجسام پردره انتخاب شده است. در این مدل‌سازی برای راکتیه‌های صلب موشک به بررسی رفتار آورده استاتیک که از پراکتیه‌های انواع خواهد شد. همچنین پارامترهای زمانی از مقدار نش با استفاده از انتخاب نش مدول (نش در هر مود ارتعاشی) در این شرایط انتخاب خواهد شد. در این مقاله از انتخاب نش انتخاب حاکم بریالی استفاده می‌شود. همچنین رفتار دینامیک موشک نیز به‌وسیله شاهد مشابه، اجسام خواهد گرفت.

1- مقدمه
بررسی رفتار آورده استاتیک اجسام پردره از دو دیدگاه بررسی پایداری و بررسی رفتار آورده استاتیک اجسام می‌گردد. در بررسی اول تایید بر پایان نش ارتعاشی استثبات می‌کند که در آن شرایط جسم پردره رفتار پایدار را مشاهده می‌کند. در نوع دوم از بررسی به پراکتیه شرایط پراکتیه در محدوده پایدار قرار دارد. با استفاده از این شرایط در تأثیر رفتار آورده استاتیک می‌توان آن رفتار و تاثیر محسوس برای بزرگی سازه و اطلاعات از قرار دادن در حاشیه ایمنی و سازه در تحقیقات انجام شده در این زمینه بیشتر معروف به بررسی پایداری، با حuinی گرفتن فرضیات مختلف به‌وسیله و به صورت مستقیم به‌وسیله آورده استاتیک استاتیک در بازی‌کاری نیز اشاره می‌شود. به غون وقوع خاصی از اجسام پردره در این مقاله به‌وسیله برآورد شده است. در حین مورد بررسی برای تمامی اجسام پردره صادق است. در محیط بررسی تکنیک معادلات پراکتیه بر رفتار استاتیک مزبوری و نلنوس [1] برای پایداری اجسام پردره استاتیک دوران‌دار، با استفاده از روش لاتقرآستیک معادلات وابسته حاکم بر حکمران و آورده استاتیک راکت با حاکم بر دوران‌دار. معادلات خطي شده حاکم بر دوران موشک‌های دوران‌دار نیز توسط کریم [2] با استفاده از معادلات لاتقرآستیک استخرج شد. آنها از روش پایداری موشک با حاکم بر دست بازون محاسبات صرف نظر کردن. پلیتوس [3] اثر برخی از اجسام پردره را در بررسی خود حاکم کرد و ثابت کرد. در بعضی از حالات نرم برخی اجسام پردره نیز توانست باعث پایداری موشک‌های دوران‌دار شد. برای اکتشاف بند بودن دوران با جرم معنی‌دارتر سیر سوزش، موشکی [4] مورد بررسی قرار گرفت.

2- معادلات حاکم
پلیتوس [3] معادلات حاکم موشک استاتیک را که در شکل (1) نشان داد است. در فضای مس به عبارت: با استفاده از مواده ارتعاشی استخراج شد. برای ان منظور شد که شحمی برای این حکمرانگی و روش موشک (پوشش ورودی) برای این حکمرانگی استاتیک مورد استفاده قرار گرفت. در این مقاله...
تحریک مربوط معلوم باشد. می‌توان ادامه به محاسبه نشان در هر نقطه از موسک کرد. برای بدست آوردن توابع زمانی با بهره‌گیری از روشهای ارائه شده برای بررسی رفتار آیروسپاتیک و نوشتار معادلات برای حالت حرکت صفحه‌ای (صفحه xz) دستگاه معادلات (3) به دست می‌آید.

در معادلات فوق z_i, q, a مختصات تعیین‌فکری سیستم دینامیکی بوده و بهترین شاملاً زاویه حمله، سرعت پیچ و خصوصی تعیین‌فکری منظور با مود ارتعاشات این، متغیر ω سرعت خطی موشک بهره و دریغ اول محاسبات آن تابع در فضای w_i, I_{0i} و بهترین شاملاً جرم گرفته می‌شود. کمیت‌های x کشته‌ای از جرم و فرکانس طیعی مود ارتعاشی آم موسک بوده و نسبت فرض می‌شود (ز تغییرات جرم D به هر اثر نیروهای P و Q به مقادیر $\rho \left(x \right)$ و $\rho \left(y \right)$ ار می‌کند. شایان ذکر است که محل اثر نیروی پس‌خوانی را می‌توان با استفاده از توسعه آن ریو موشک محاسبه کرد. مقادیر $\rho \left(x \right)$ و $\rho \left(y \right)$ بهترین پایان از طریق محور Z، کشته‌ای از جرم و نیروی تعیین‌فکری منظور با مود ارتعاشی آم، همچنین c_{1b} و محور x بهترین توزیع شکل نیروهای ارتعاشی و ضریب نیروی پرای امتحان به هنر تلفیقی f, f_{1}, f_{2} و محاسبه مشابه شود. سایر ضرایب معادلات برای جدول (1) ارائه شدهاند.

(۱) معادلات نیز در جدول (3) ارائه شدهاند.

در جدول (3) معادلات، می‌توان به محاسبه نیروهای خارجی عمل کنند. این، روش می‌تواند وجود دارد. به‌عنوان مثال این نیروها می‌توانند باشد از محدودیت نظیر تبدأ، عدم تقارن و حکم سطحی کنتلی باشد. وجود این نیروها باعث می‌شود سمت راست معادلات دارای مقدار شود. در ادامه در حالت اثر تبدأ، اثر تغییر پله‌ای زاویه پالک و اثر حرکت توسانی بالک و بردار نیروهای تعیین‌فکری محاسبه شدهاند.

شکل ۱- موشک الاستیک در فضای سه بعدی به همراه دستگاه مختصات دینی

از روابط بدست آمده و استفاده شده و اثر نیروی پیشانی و پس‌خوانی این معادلات اضافه شده‌است. حکمران بدنه در امتحان محور z (عموم بر دنیا) به عنوان تغییر مکان الاستیک برای موشک دوبعدی، در نظر گرفته شده است. این تغییرات منجر به تغییراتی از مکان در دستگاه مینیموم و زمان بوده و با فرض نیاز برای سازه موشک، به صورت زیر بیان می‌شود:

$$e = \frac{M}{l} f_{1}(x) \xi_{1}(l)$$

در معادله فوق $f_{1}(x)$ مود ارتعاشی می‌آم (خمشی) بوده و $\xi_{1}(l)$ از تابع زمانی تحکیم این مود است. در بحث نیروها و مختصات تعیین‌فکری با توجه به اینکه شکل نیروهای ارتعاشی معلوم است از دستگاه، مختصات تعیین‌فکری استفاده می‌شود. واضح است این مختصات می‌توانند دارای تابع پینه‌ای عضو باشند. جانشین توابع $f_{1}(x)$ بر حسب زمان معلوم شوند. می‌توان جایی هر نقطه از موشک را در هر لحظه محاسبه کرد. با معلوم بودن جایی می‌توان توزیع نشان خمشی در بدنه را با استفاده از معادله زیر حساب زمان محاسبه کرد:

$$\xi_{1} = \frac{M_{z}}{l} \int \frac{M_{z}}{l} dS_{z} = \int \frac{M_{z}}{l} dS_{z} = \int \frac{M_{z}}{l} dS_{z}$$

بنابراین چنانچه مشتق دوم موله‌های ارتعاشی و توابع

(۲) استلال، سال ۲۵، شماره ۱، شهریور ۱۳۸۵

۲۱۹
جدول 1- انگرال‌های مورد نیاز

$L_a = \int_a^b x \, dx$	$M_a = \int_a^b x \, dx$
$L_b = \int_a^b x^2 \, dx$	$M_b = \int_a^b x^2 \, dx$
$L_c = \int_a^b x f(x) \, dx$	$M_c = \int_a^b x f(x) \, dx$
$L_d = \int_a^b x f(x) \, dx$	$M_d = \int_a^b x f(x) \, dx$

3-1 اثر تندباد

در این حالت فرض می‌شود تندبادی ناگهانی به موجب عمود بر سری حکارک آن برخورد کند که منجر به تغییر ناگهانی زاویه حمله می‌شود. جهت سرعت تندباد با v_g نشان داده شده می‌توان گفت که توزیع پارامتر شده در هر نقطه

تابا از زاویه حمله الفا به شکل زیر نشان داده می‌شود:

$w(x) = \frac{q v_s C_{1b} \sin(x)}{u}$

3-2 اثر تغییر بیلای زاویه بالک

در این حالت فرض می‌شود بالک ناگهانی زاویه بیلایی نسبت به

بند به گیرد. بنابراین منبع بارهای خارجی، نتایج توزیع وارد شده به

شماره 1385، سال 25.
باینیروهای تعیین‌پذیره نیز می‌توان نوشت:

\[q_s S_c L \sin(\theta) \left(1 - \frac{x_c}{f(x_c)} \right) \frac{M}{M} \]

با معین یوند بردار سمت راست معادلات (3) می‌توان اقدام به حل دستگاه معادلات وابسته آبروالاستیک با استفاده از روش‌های مختلف کرد. در این مقاله حل معادلات در حیوزه زمان با استفاده از روش‌های انتگرال‌گیری عددی انجام گرفته است.

نتایج

پلاتوس نشان داد که بررسی رفتار آبروالاستیک موشک...
شکل ۳ - پاسخ سیستم به تندباد بدون میزانی سازه‌ای در سرعت ۱۰۰۰ m/s

شکل ۴ - پاسخ سیستم به تندباد با میزانی سازه‌ای در سرعت ۱۰۰۰ m/s

جدول ۳ - مقادیر q_{div} برای راکت نمونه

<table>
<thead>
<tr>
<th>q_{div}</th>
<th>راکت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۴۹x۱۰۶</td>
<td>مرجع [۵] (روش مهندسی)</td>
</tr>
<tr>
<td>۱/۱۰۸x۱۰۶</td>
<td>روش ارایه شده</td>
</tr>
<tr>
<td>۱/۱۰۹x۱۰۶</td>
<td>روش مرجع [۳]</td>
</tr>
</tbody>
</table>

پاسخ زمانی به ورودی تندباد در حالت زیر و اکرایی (سرعت ۱۰۰۰ متر بر ثانیه) برای سه متغیر در شکل (۱) بدون اثر میزانی سازه‌ای و در شکل (۲) با میزانی محدود، از منشا دانشجو، در پایه مقادیر ثابت گرفته‌ای همگرا شده در حالت که سایر متغیرها به سمت صفر می‌رساند. در شکل (۳) نیز پاسخ موسک‌ک به ورودی سینوسی با فرکانس پنج هرتز برای زاویه بالک راکت شده است که نتایج نشان دهنده تغییر temامی متغیرها از رفتار نوسانی بالک است. شایان ذکر است که در عمل حکمت بالک ثابت سیستم هدایت و گسترش آن بوده و برای بررسی دقیق تابید دینامیک حلقه هدایت اندکی از سرعت و اکرایی آن در این ارتقای بیشتر است که

در نتیجه، رفتار جواب نیز و اکرایی را نشان می‌دهد. همچنین در شکل (۶) پاسخ سیستم به ورودی مناسب برای سرعت طولی ۱۰۰۰ متر بر ثانیه برای موشک آورده شده است. همانگونه که مشاهده می‌شود در این حالت با الهم‌حوله به مقدار ثابت غیرصفری همگرا شده در حالی که سایر متغیرها به سمت صفر می‌رساند. در شکل (۷) نیز پاسخ موشک به ورودی سینوسی با فرکانس پنج هرتز برای زاویه بالک این شده است که نتایج نشان دهنده تغییر temامی متغیرها از رفتار نوسانی بالک است. شایان ذکر است که در عمل حکمت بالک ثابت سیستم هدایت و گسترش آن بوده و برای بررسی دقیق تابید دینامیک حلقه هدایت

۲۲۲

استقلال، سال ۲۵، شماره ۱، شهریور ۱۳۸۵
شکل 5- پاسخ سیستم به تندیاد در سرعت 1400 m/s

شکل 6- پاسخ سیستم به ورودی پله برای سطح کنترلی در سرعت 1000 m/s با فرکانس پله هزنز

شکل 7- پاسخ سیستم به ورودی پله برای سطح کنترلی در سرعت 1000 m/s با فرکانس پله هزنز

ب) کنترل نیز به معادلات اضافه شده که زمینه محاسبات آنی است. در اینجا برای بررسی پاسخ کیفی اثر یک سیستم نوسانات سطح کنترلی بر دینامیک موشک استیک در نظر گرفته شده است. در شکل (8) پاسخ به ورودی سینوسی برای زاویه بالک با فرکانس بیشتر هزنز که نزدیک به فرکانس طبیعی ارتعاشات صلب (دینامیک پرداز) موشک

223

استقلال، سال 25، شماره 1، شهریور 1385
شکل 8- پاکسیستم به وروی نوسانی برای مقطع کنترلی در سرعت 1000 m/s با فراکش سرعت هر طرف

شکل 9- پاکسیستم به تندباد با وجود نیروی پیشوان

شکل 10- پاکسیستم به تندباد با وجود نیروی پیشوان

شکل (11) رسم شده است که بیانگر کاهش محدوده پایداری با افزایش نیروی پیشوان است. در ادامه برای تمامی حالات مورد بررسی تحلیل تنش انجام گرفته است. از معادله (2) نتیجه می‌شود با فرض استفاده از یک موسک ارتعاشی، توزیع تنش در موسک نابع مشتق دوم این موسک است و بیشترین مقدار آن برای موسک مورد مطالعه در فاصله 2/8 متری از انتهای موسک قرار دارد. مقدار پیش‌بینی این نشانه با فرض انگشت قطع موسک 20 سانتیمتر باشد، به‌همراه پیشنهاد (1/2) در حوزه زمان مربوط به کلیه حالات پروری در جدول (4) اورده شده است.

متغیر نیروهای محاسبه آن معادله حکم طولی موسک به معادلات حاکم بر مساله اضافه می‌گردد و دستگاه معادلات جدید در حوزه زمان حل گردیده است. در شکل 10 اثر نیروی پیشوان 20 کیلوییونتی بر رفتار دینامیک موسک نشان داده شده است. همانطور که مشاهده می‌شود، بعد از رسیدن سرعت طولی موسک به مقدار خاصی ناپایداری استاتیکی شروع می‌شود. این نتیجه ناپایداری استاتیکی است برای تغییر نیروی محوری بر ناپایداری آپرال استاتیک موسک است. با استفاده از این نتیجه فشار استاتیکی ناپایداری بر حسب نیروی پیشوان در
مقدار پاسخ دینامیک سیستم که شامل دو بخش صلب و الاستیک است می‌تواند بارهایی به مراتب بیشتر از بار استاتیکی را به جسم پردازد وارد کند. همچنین اثر بیهویاه محوری پیشرانش و پسا پایداری بررسی گردید و نشان داده شد که بیهویاه محوری باعث کاهش محدوده پایداری آیروالاستیک می‌شود.

قدرتانی

تحقیق حاصل با حمایت دانشگاه صنعتی شریف انجام گرفت است. همچنین نوسانه در مراتب تنشک و قدردانی خود را از معاونت تحقیقات و مدیریت سازه صنایع شهید باقری ابراز می‌کند.

1. time history 2. thrust 3. drag

5. Elyada, D. “Closed Form Approach to Rocket Vehicles Aeroelastic Divergence,” J. Spacecraft,

