شیب سازی جریان متغیر روی دسته لوله‌ها با استفاده از
مدل ترکیبی ادیهای بزرگ و موازی سازی معادلات کاملا همبسته ناوبر- استوکز

منصور طالبی، ابراهیم شیرانی و محمود اشرفی‌زاده
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

چکیده - در کار حاضر جریان متغیر روی دسته لوله‌ها با استفاده از روش ادیهای بزرگ و موازی سازی معادلات کاملا همبسته ناوبر- استوکز برای بررسی ترکیبی استفاده شده است. در این مدل علاوه بر اثرات اولیه ادی و اسکوئرزین اثرات متقابل ادیهای ریز و درشت را هم در نظر گرفته شده است. معادلات کاملا همبسته ناوبر- استوکز با استفاده از روش چند بلوکی موازی سازی شده‌اند. به نتیجه گیری که در رابطه به چند زیر دامنه تقسیم شده و بالغ بر اصل این سیاست برای توزیع بار معاسباتی بین پردازنهای، توزیع معادله‌ای را به صورت مواری خلیج شده است. معادلات حاکم بر روی هندسه کاملا متعادل و شبکه‌های مکانی با احتمال مبنا بر زمان و مکان گسترش سازی شده است. برای حل مشکل عدم کوبان بودن فشار و سرعت‌ها از روش میان بای امکان استفاده شده است. برای این مشکل شرط نهایی شدن فشار بر طرف ممکن است. نتایج نشان می‌دهد که راهنمایی موثری سازی سیستم به‌است. برای جریان حول جریان ریز دید لوله خطوط جریان و دیگر مشخصات اجرایی به‌دست آمده است. پس از حل مدل تنایی تحقیق داده می‌گردد. مفاهیم نتایج حاکم از مدل اسکوئرزینی و مدل ترکیبی با تکنیک تحقیق می‌دهد که مدل ترکیبی دقت بیشتری دارد و در پیش‌بینی مشخصات جریان و تغییرات نیروی گریخته‌های جریان و در این روی استوانه‌ها بهتر از مدل اسکوئرزینی است.

واژه‌کلیدی‌های جریان متغیر - مدلهای ادیهای بزرگ - دسته لوله‌ها - برنامه‌نویسی موازی - شبکه چند بلوکی.

* - دانشجوی دکترا
** - استاد
*** - استادیار

استقلال، سال ۱۳۸۵ شماره ۲، اسفند
Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

M. Talebi, E. Shirani, and M. Ashrafizadeh
Department of Mechanical Engineering, Isfahan University of Technology

Abstract: In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS equations with the multiblock method was parallelized. Parallelization of the computer code was accomplished by splitting the calculation domain into several subdomains and using different processors in such a way that the computational work was equally distributed among processors. The discretized governing equations are second order in time and in space and the pressure is calculated by Momentum Interpolation Method (MIM) to prevent the checkerboard problem. The results are obtained for the turbulent flow over five parallel tube rows. The computational efficiency, flow patterns, and flow properties are also determined. The results showed high parallelization efficiency and high speed up for the computer code. The flow characteristics were determined and compared with experimental results which showed good agreement. Also, the results showed that the mixed model is better than the Smagorinsky model for evaluation of flow characteristics and lift and drag forces on tubes.

Keywords: Turbulent flow, Large eddy simulation, Tube bundle, Parallel programming, Multiblock grid

Fahrenheit علائم

<table>
<thead>
<tr>
<th>Letter</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B&lt;sub&gt;ij&lt;/sub&gt;</td>
<td></td>
<td>جمله باردینا</td>
</tr>
<tr>
<td>C&lt;sub&gt;S&lt;/sub&gt;</td>
<td></td>
<td>ثابت اسمگورینسکی</td>
</tr>
<tr>
<td>C&lt;sub&gt;i,j&lt;/sub&gt;</td>
<td></td>
<td>تنشهای عرضی</td>
</tr>
<tr>
<td>C&lt;sub&gt;L&lt;/sub&gt;</td>
<td></td>
<td>ضریب نیروی نیفت</td>
</tr>
<tr>
<td>C&lt;sub&gt;D&lt;/sub&gt;</td>
<td></td>
<td>ضریب نیروی درگ</td>
</tr>
<tr>
<td>C&lt;sub&gt;B&lt;/sub&gt;</td>
<td></td>
<td>ضریب باردینا</td>
</tr>
<tr>
<td>d&lt;sub&gt;V&lt;/sub&gt;</td>
<td></td>
<td>الگان حجم</td>
</tr>
<tr>
<td>d&lt;sub&gt;s&lt;/sub&gt;</td>
<td></td>
<td>الگان سطح</td>
</tr>
<tr>
<td>G&lt;sub&gt;l&lt;/sub&gt;</td>
<td></td>
<td>تابع الگن</td>
</tr>
<tr>
<td>L&lt;sub&gt;ij&lt;/sub&gt;</td>
<td></td>
<td>طول انتلای کره‌کردن</td>
</tr>
<tr>
<td>n&lt;sub&gt;I&lt;/sub&gt;</td>
<td></td>
<td>نشان لنوارد</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>بردار عمود بر سطح</td>
</tr>
<tr>
<td>F&lt;sub&gt;l&lt;/sub&gt;</td>
<td></td>
<td>فشار</td>
</tr>
<tr>
<td>Q&lt;sub&gt;i&lt;/sub&gt;*</td>
<td></td>
<td>جمله چشمی</td>
</tr>
<tr>
<td>R&lt;sub&gt;ij&lt;/sub&gt;</td>
<td></td>
<td>نشتهای ریوتدز</td>
</tr>
<tr>
<td>S&lt;sub&gt;ij&lt;/sub&gt;</td>
<td></td>
<td>تنسور تغییر شکل</td>
</tr>
<tr>
<td>η</td>
<td></td>
<td>نشان موادی سازی</td>
</tr>
<tr>
<td>ν&lt;sub&gt;T&lt;/sub&gt;</td>
<td></td>
<td>ویسکوزیتی مستطیلی</td>
</tr>
<tr>
<td>τ&lt;sub&gt;i&lt;/sub&gt;&lt;sub&gt;w&lt;/sub&gt;</td>
<td></td>
<td>نشان برخی دیواره</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td>عرض فیلتر</td>
</tr>
<tr>
<td>τ&lt;sub&gt;ij&lt;/sub&gt;</td>
<td></td>
<td>نشان برخی</td>
</tr>
<tr>
<td>ν</td>
<td></td>
<td>ویسکوزیتی</td>
</tr>
<tr>
<td>ρ</td>
<td></td>
<td>دانسیتی</td>
</tr>
</tbody>
</table>
۱ - مقدمه
وقتی جریان سیال از روز دسته لوله‌ها عبرت می‌کند اتبریزی
سیال به لوله‌های اتبریزی پیدا می‌کند. نیروهای وارد شده به لوله‌ها
از طرف سیال یکی از مهم‌ترین مسائلی است که در دسته لوله‌ها
وجود دارد. این مسئله باعث ایجاد مشکلات فراوانی در
سیستم‌های می‌شود که شامل دسته لوله‌ها هستند. دسته لوله‌ها
در تعیین‌نامه مدل‌های حرارتی، مدل‌های باخار، دسته
میله‌ها سوخت در نیروگاه‌های سنتی، سیستم‌های لوله‌های
کشی زیر آب و همچنین صنایع دریابی و جاده در


۱۳۳
استقلال سال ۱۳۸۵، شماره ۲ اسفند

فردی و همکارانش [9] جریان روز های مولبد بخار را به صورت دو بعدی و با استفاده از روش دانشجوی و مدل اسکوگرینسکی حل کردند. آنها معادلات را به صورت مجزا حل کردند و فرضیات جریان و بردارهای سرعت را برای تعداد ۷۸۷ عدد لوله که در داخل یک کانال فرض شده بود با استفاده اوردن. به علت ایجاد لوله‌های زیاد در نظر گرفته شده بود، شیبک حل به اندازه کافی نشد و تنها این‌ها فقط شکل کلی جریان نشان داده شد. بارسانیان و هسن [10] جریان دو بعدی از لوله‌های داخلی کانال را با استفاده از اکت کاراهی که برای جریان‌های محض و دسته لوله‌ها انجام شده است استفاده از لوله‌های زیادی استفاده کرده آنها این‌ها برای حل شیبک به نظر گرفته شده و درک را به بعد نشان داده است. نتایج مدل اصلی شده به کار رفته توسط آنها در مقایسه با مدل اسکوگرینسکی خصوصا در مدل بهینه‌های لایه و درک اختلاف‌های داخلی نشان داد. پاسین و همکارانش [11] معادلات جریان دو بعدی در لوله‌ها را با استفاده از کد جورامی و با یک ایرانی برای ۱۲ لوله با شیبک نسبتا درست حل کرده‌اند. آنها از مدل اسکوگرینسکی استفاده کردن و حضور جریان و بردارهای سرعت را برای دسته لوله‌ها به دست آوردند. ازجمله کاراهی تجربی که در زمینه جریان‌ها روز دسته لوله‌ها انجام شده است با جنوردزیک [12] است که تعداد ۶۸۷ عدد لوله را داخل یک کانال با مقطع مربع قرار داده و جریان سیال با عدد رینولدز ۱۵۰۰۰۰۰۰ را آزمایش کردن و نتایج حاصل از نیروهای وارد بر لوله‌ها را رسم کردند. نتایج تجربی نشان داد که شکل جریان و ضرایب لایه و درک از لوله سو می‌باشد تا بدین ترتیب با استفاده از تقریب بسیار خوبی می‌توان نتایج آنها را تاجزيارة فرض کرد. این نتایج در حل عدسی در نظر گرفته در کارای حاضر نیز استفاده شده است. و ایرانی [13] نیز جریان دو بعدی لوله‌ها را
ادهای برگ ارائه داده از روی مشتق زمان استفاده کرد. کارلو و تزویقی (18) یک کد موزیکال به سبب اختلال در سیستم سیال مانند برای حل معادلات ناپایدار - استوکر را برای شبیه سازی جریان تراکم ناپایدار سیال حول استوانه توسعه دادند. استریت (19) یک کد موزیکال به سبب و تراکم ناپایدار برای حل معادلات ناپایدار - استوکر را برای جریان متغیر سیال به روش ادیهی برگ و تکیک حل مستقیم معادلات به کاربرد. برای اصلاح فشار از مدلی پوپیس استفاده کرد.

بر اساس اطلاعات نویسنده‌گان این مقاله در زمینه موزیکال سازی حل معادلات جریان سیال توسط روش کاملا همبسته تحقیقاتی صورت گرفته است. در کار حاضر یک کد موزیکال جنگی از دو کاراکتر خوب تهیه و توسعه داد شده است که معادلات ناپایدار - استوکر کاملا همبسته را برای جریان متغیر به روش LES حل کنند. در این کد قادی به حل جریان دائم و غیر دائم سیال تراکم ناپایدار در هندسه‌های ساده و همجنس هندسه غیر متغیر و پیچیده خواهد بود. همجنس قابلیت آن برای بررسی جریان پیچیده سیال حول دسته لوله‌ها نشان داده خواهد شد. موزیکالی بر اساس روش مدل که تکیک کردن دامنه حل به دنبال زیر آن‌ها صورت می‌گیرد. تعداد زیر دامنه به تعداد پردازش دارد. هر زیر دامنه توسط یک پردازش داری می‌شود و تمام اطلاعات مورد نیاز بر پردازش در طول مراهیتی که با پیچیده زیر دامنه‌ها دارد، مبادله خواهد شد.

## ۲ معادلات حاکم

معادلات حاکم بر جریان تراکم ناپایدار و غیر دامن سیال

معادلات ممتن و پوپیسپس هستند.

معادلات ممتن:

\[
\frac{\partial u_i}{\partial x} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}
\]

(1)

معادله پوپیسپس:

\[
\frac{\partial u_i}{\partial x_i} = 0
\]

(2)

در روش LES هر متغیر \(f\) به دو مولفه متوسط \(\bar{f}\) و نویند \(f'\) تفکیک می‌شود.

\[
f(x, t) = \bar{f}(x, t) + f'(x, t)
\]

(3)

خلاصه: در نهایت معادلات ممتن و پوپیسپس به‌طور همزمان
عرضی، بین کننده اثرات ادبیات کوچک بر ادبیات بزرگ است و
جمله ریزه، مربوط به نوسانات
توصیفی ادبیات کوچک است.
بر اساس مدل اسکلریتسکی [32] و فرضیه ای-
وسیبگی به وسیله تعیین کردن یک ویسکوزیته موثر
اغتشاشات، \( \tau_{ij} = -2\nu_i S_{ij} \) \( \tau_{ij} = -2\nu_i S_{ij} \) \( \tau_{ij} = -2\nu_i S_{ij} \)
\( \nu_i = 1_{i2} |S| \)
\( |S| = \frac{1}{2} (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}) \)
\( S_{ij} = \frac{1}{2} (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}) \)
\( 1 \) طول اشغال برای است و بر اساس ابعاد هندسی شکهک و
با استفاده از تابع استلالان فون- دریست [25] و است
نورتنه می‌شود.
\( G(\vec{x}, \vec{x}') = \prod G_1(x_i - x_i') \)
\( \vec{y}_i \) فیلتر یک بعدی است. معمولاً سی‌سی تابع کار.

می‌توان به‌کار رود که عبارت است از: تابع فیلتر بله ای، تابع
فیلتری که در فضای فوریه بله ای، باعث شده به صورت زیر
با عمل‌های تابع‌های معادلات نتیجه استوکسی نهایاً معادلات

\[ \frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} = \frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{1}{\rho} \frac{\partial \bar{u}_j}{\partial x_j} \]

\[ \frac{\partial \bar{u}_i}{\partial x_i} = 0 \]

عبارت \( \bar{u}_i \) مجموع تنش‌های اشمال ریز است و
شامل سه بخش است: تنش‌های لترناد، \( \bar{u}_j \) تنش‌های عرضی، \( C_{ij} \) تنش‌های ریزه، \( R_{ij} \) که باید بر حسب پوسته‌های

\( \tau_{ij} = \bar{u}_i \bar{u}_j - \bar{u}_j \bar{u}_i = (L_{ij} + C_{ij} + R_{ij}) \)

چمته لترناد، در صورت استفاده
از روش مربوط شباهت فلکه‌ها، که باید بر حسب

\( C_{ij} = \bar{u}_i \bar{u}_j - \bar{u}_j \bar{u}_i \)

\( C_{ij} = \bar{u}_i \bar{u}_j - \bar{u}_j \bar{u}_i \)

\( C_{ij} = \bar{u}_i \bar{u}_j - \bar{u}_j \bar{u}_i \)
این می‌شود [۱۰].

\[
B_{ij} = \frac{\Delta^2}{12} \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k}
\]

در این مدل مقدار \( C_S \) برای چریان حول دسته لوله‌ها برای با

\[\text{در نهایت چون برای گسته‌سازی معادلات از روش حجم محدود استفاده می‌شود، شکل انتگرال معادلات ناوگان استوکس،}
\]

\[
\frac{\partial}{\partial t} \left[ \int p u_i \, dV \right] + \int \frac{\partial}{\partial x_j} \left( u_i P + \frac{\partial u_i}{\partial x_j} \right) \, dV - \int \left( \mu + \nu \right) \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_j} \, dV = 0
\]

\[
\frac{\partial}{\partial t} \left[ \int pV \, dV \right] + \int \frac{\partial}{\partial x_j} \left( u_j P \right) \, dV = 0
\]

\[
\frac{\partial}{\partial x_j} \left( \int Q_i \, dV \right) = 0
\]

یافته‌ای که این مدل تنش‌های ابتدایی [۲۸] و اضافه‌کردن اثر تنش‌های عرضی در مدل می‌تواند به نتایج دقیقتری دست

\[
\text{ماتریس فوق روي شبکه هندسی گسته‌سازی شده و استفاده}
\]

\[
\text{معادلات خطی برای حل به دست می‌آید.}
\]

\[
\text{روش حل عددی}
\]

برای گسته‌سازی معادلات از روش حجم محدود استفاده می‌شود. شبکه به کار رفته شبکه هم می‌شود و تعداد متنوع‌ها برای نقاط مرزی نقاط ارائه شده است. \( \Delta \) توجهی از حجم کنترل برای حفظ شبکه‌های مختلف را نشان می‌دهد. این نکته، نقاط مرزی 

\[
u_i' = (u_i - \bar{u}_i) \approx (\bar{u}_i - \bar{u}_i')
\]

\[
\bar{u}_j = C_B (\bar{u}_i - \bar{u}_i)(\bar{u}_i - \bar{u}_i')
\]

که در آن \( C_B \) دیویژن فیلتر کردن سرعت و \( \bar{u}_i' \) یکی از بارندگی، این روش به ادامه کافی خاصیت انتقالی نداده. بنابراین این با ترکیب آن به مدل از ویسکوزیتی

\[
\Delta \text{محدود ترکیب حاصل می‌شود که هم خاصیت}
\]

\[
\text{مجموع تنش‌های عرضی و لایه‌ای است و به صورت زیر}: B_{ij}
\]
عدم تیزی به میانی مانند استفاده از آراچی هم مکانیکی علائم شدید در ساخت و سازگری برای مورد مزیت و در موارد مزیت شرایط مزیت برنامه‌ریزی و تفکیک مزیت‌های بدینژورم‌ها، خصوصاً در هندسه‌های پیچیده و غیر متعادل بیمار مقصود است. این نوع جوش منجر به تکانه شکل‌ها، اعمال شرایط مزیت را خصوصاً بر روی مزیت‌های بین بوته دامنه به راحتی امکان‌پذیر می‌سازد.

در گسته سایز معادلات برای جمله زمان در روش مزیت

در کلانکه - نیکلمن استفاده شده است. برای جمله دیفرون از روش تغییر مدارکی مزیت در و برای جمله آزمایشات روش اصلاح تابعی مربوط به استفاده از معادلات خطي شده حاصل می‌باشد.

معادلات مثبت در جهت x (SUPERM) 

\[
\begin{align*}
\text{Cu}_{il}^{p} \times u_{p} + \text{Cu}_{il}^{N} \times u_{N} + \text{Cu}_{il}^{s} \times u_{S} + \text{Cu}_{il}^{e} \times u_{E} + \text{Cu}_{il}^{w} \times u_{W} \\
+ \text{Cu}_{il}^{p} \times p_{p} + \text{Cu}_{il}^{N} \times p_{N} + \text{Cu}_{il}^{s} \times p_{S} + \text{Cu}_{il}^{e} \times p_{E} + \text{Cu}_{il}^{w} \times p_{W} &= b_{a}
\end{align*}
\]

(33)

معادلات مثبت در جهت y (SUPERM) 

\[
\begin{align*}
\text{Cu}_{il}^{p} \times v_{p} + \text{Cu}_{il}^{N} \times v_{N} + \text{Cu}_{il}^{s} \times v_{S} + \text{Cu}_{il}^{e} \times v_{E} + \text{Cu}_{il}^{w} \times v_{W} \\
+ \text{Cu}_{il}^{p} \times p_{p} + \text{Cu}_{il}^{N} \times p_{N} + \text{Cu}_{il}^{s} \times p_{S} + \text{Cu}_{il}^{e} \times p_{E} + \text{Cu}_{il}^{w} \times p_{W} &= b_{b}
\end{align*}
\]

(34)

معادلات پوستگی (SUPERM) 

\[
\begin{align*}
\text{Cu}_{il}^{p} \times p_{p} + \text{Cu}_{il}^{N} \times p_{N} + \text{Cu}_{il}^{s} \times p_{S} + \text{Cu}_{il}^{e} \times p_{E} + \text{Cu}_{il}^{w} \times p_{W} \\
+ \text{Cu}_{il}^{p} \times u_{p} + \text{Cu}_{il}^{N} \times u_{N} + \text{Cu}_{il}^{s} \times u_{S} + \text{Cu}_{il}^{e} \times u_{E} + \text{Cu}_{il}^{w} \times u_{W} \\
+ \text{Cu}_{il}^{p} \times v_{p} + \text{Cu}_{il}^{N} \times v_{N} + \text{Cu}_{il}^{s} \times v_{S} + \text{Cu}_{il}^{e} \times v_{E} + \text{Cu}_{il}^{w} \times v_{W} &= b_{p}
\end{align*}
\]

(35)

در روابط فوق زیرینیت 

\[
W \times E \times S \times N 
\]

همیشه مثبت مانند هر رادار تقریباً خود را رادار باشد. به هر حال هر رادار هر انجام عملیات ریوی نظر مزیت‌های حیات مربوط به خود انجام
به اطلاعات نقاطی دارد که این نقاط، همان نقاط داخلی زیردامنه‌ها مجازات. بنابراین اکثراً است که یک ردیف نقطه در طول مرز زیر دامنه‌ها تعیین شود که اطلاعات مورد نیاز را از زیر دامنه مجازار دریافت کند و برای محاسبات در هر مرحله بتوان از آنها استفاده کرد. این اطلاعات که اصطلاحاً در ردیف سایه‌ای، شکل ۲ ذخیره می‌شوند به‌طور مربوط توسط ارتباط بین پردازده‌ها جدید می‌شوند. به این روند، همبستگی ذخیره ۱ می‌گوید [۲۰].

به این نکته باید توجه کرد که مرزهای بین زیردامنه‌ها با مزه‌ها عادی تفاوت اساسی دارند. به‌طور کلی هر نقطه داخلی برای انجام محاسبات مربوطه احتمال وجود اطلاعات چهار نقطه مجازات خود دارد و در مزر بین زیردامنه‌ها حداقل یکی از این چهار نقطه مربوط به زیر دامنه مجازار است. حال چون پردازده‌ها به‌طور مربوط به این نقطه از محاسبات قبلی کرده‌اند می‌شود. این امر باعث کننده روند همبستگی یک کد موزایی نسبت به
4- محاسبه ضرایب معادلات سرعت و فشار (در این بخش برای مزرعه‌های که همسایه‌های دارند باید ضرایب مربوط به طور مجزا محاسبه شود و متغیرهای مورد نیاز بین پردازنده‌ها مباشته شود).

5- اعمال شرایط مزرعی (با توجه به نوع مزرعه شرایط مزرعه مربوطه اعمال می‌شود ضمنا در مورد مزرعی دامنه نیز اطلاعات مورد نیاز باید مبادله با محاسبه شود.

6- حل دستگاه معادلات خطي شده و همسیا به رای سرعتها و فشار بهطور هم‌وقت و مستقیم (هر پردازنده دستگاه معادلات مربوط به خود را حل می‌کند و بعد از حل مقداری روی مرزها اصلاح می‌شوند.

7- محاسبه مقدار باقیمانده و یا هر معیار دیگری که برای اطمینان از حصول همگراپایی به کار می‌رود. مقدار ماکزیموم باقیمانده در هز زیر دامنه حساب می‌شود سپس توسط پردازنده اول جمع اوری شده، مقدار ماکزیموم آنها در کل دامنه محاسباتی به‌دست آمده و برای تمام پردازنده‌ها ارسال می‌شود. در صورتی که باقیمانده مذکور

<table>
<thead>
<tr>
<th>(Process 3)</th>
<th>(Process 4)</th>
<th>(Process 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

شکل 3- نحوه نیاباد اطلاعات بین یک پردازنده و چهار پردازنده مجاور

برای چک کردن صحت محاسبات در دقت نتایج و پاسخ موژی سازی کد، جریان آرام داخل یک حفره غیر معیار با مزر متحرک، توسط کد موژی و یکین حفره جریان متصال روی دسته لوله بهطور کامل بررسی شده است. در ادامه جریان روی دسته لوله بهطور کامل بررسی شده است. در زیر هر یک از این نتایج توضیح داده شده است.

الف- جریان داخل حفره غیر معیار با پردازنده متحرک 
جریان داخل حفره غیر معیار با پردازنده متحرک که با زاویه 30 درجه و عدد رینولدز (ویژه طول حفره و سرعت لبه بالایی) 1000 بررسی شده است. این مسئله با یک دو، چهار، نه

استلال، سال 25، شماره 2، استفن 1385

140
پیوسته و تابع حل مواری با خطوط ضخیم و غیر پیوسته نشان داده شده است. هر قسمت از این خطوط غیر پیوسته مربوط به یک پردازنده است که در راهنمای شکل مشخص شده است. در شکل (8) مولفه عمودی سرعت محاسبه شده روی خط مركبی افق حرفه توسط پردازندهای شماره (4) و (7) نشان داده شده است. همچنین در شکل (11) مولفه افقی سرعت محاسبه شده روی خط مورب و سطح حفره توسط پردازندهای شماره (1)، (5)، (9) و (13) نشان داده شده است. همان طور که مشاهده می شود تابع حاصل حاکی از دقت پیش‌بینی خوب جواب‌ها و تطبیق حل‌های مواری و سریال (غیر مواری) می‌باشد.

ضریب افزایش سرعت $\eta$، در شکل (17) (Su) و پزانده $(\eta)$ مواری سازی به شورت زیر تعریف می‌شوند:

$$ Su = \frac{t_s}{t_p} $$

که در آن $t_s$ زمان اجرای پزانده توسط کد غیر‌مزایی و $t_p$ زمان اجرای پزانده توسط کد مواری است.

$$ \eta = \frac{1}{n} $$

که در آن $n$ تعداد پردازنده‌هاست. جدول (1) مقداری به دست آمده ضریب افزایش سرعت و پزانده را برای مسئله مورد بررسی نشان می‌دهد. پزانده و ضریب افزایش سرعت مواری سازی نشان داده شده در جدول فوق بیان کننده کارکرد خوب پزانده است. همان طور که از شکل (5) دیده می‌شود ساختار جریان سیال در داخل حفره به‌گونه‌ای است که تفکیک...
جدول 1 - نتایج حل موایی جریان داخل حفره غیر متقارن 30 درجه

<table>
<thead>
<tr>
<th>η</th>
<th>Su</th>
<th>تعداد تکرار برای رسیدن به همگرایی</th>
<th>تعداد پردازه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>3139</td>
<td>1</td>
</tr>
<tr>
<td>1/5</td>
<td>1/6</td>
<td>3142</td>
<td>2</td>
</tr>
<tr>
<td>2/5</td>
<td>2/6</td>
<td>3162</td>
<td>3</td>
</tr>
<tr>
<td>3/5</td>
<td>3/6</td>
<td>3187</td>
<td>4</td>
</tr>
<tr>
<td>4/5</td>
<td>4/6</td>
<td>3213</td>
<td>5</td>
</tr>
<tr>
<td>5/5</td>
<td>5/6</td>
<td>3240</td>
<td>6</td>
</tr>
</tbody>
</table>

شکل 12- هندسه کلی مسئله جریان حول دسته لوله و شرایط متری

مرحله زمانی 24/2 ثانیه است، در صورتی که همیشگی مسئله باشد
عدد پردازه بسیار کم است و بسیار خواهد شد (در این صورت هر پردازه تعداد 24/2 تغییر داره)
بعن تحت یک چهارم تقریباً کلی را حاصل می‌کند. ملاحظه
می‌شود که افزایش سرعت در بین حالات خیلی بیشتر از فرا
برای است. در این حال اگر این مسئله توسط یک پردازه
و تعداد 24/2 تغییر داشته و شرایط متری برای مرحله زمانی
27 ثانیه شده. این بودن منعی است که زمان مصرف شده
برای انتقال اطلاعات در حال مواری 1/4/2 ثانیه است. است
این مقدار فقط 4 دو دسته زمان اجرایی برای خواهد
که نشان دهنده رابطه بالای موایی مسایل است.

پ- جریان متقارن روی دسته لوله ها

بعد از اینکه کارایی کد برای حل مسئله موایی و متقارن و
همچنین بهبود عرضه بررسی شد، جریان متقارن روی دسته
لوله مورد بررسی قرار گرفت. به علت پیچیدگی خاص جریان
روی دسته لوله بررسی تجربی آن معقول نبود. لذا جز
لوله کلی مسئله و شرایط متری آن نشان داده شده است.
هر مسئله در شکل (13) محور تخمین یابد ناحیه حلقه ده

استقلال، سال 25، شماره 2، اسفند 1385

143
زیر دانه براز حل موازی نشان داده شده است. محاسبات هر زیر دانه توسط یک پردازنده انجام می‌شود و اطلاعات مورد نیاز در زمان محاسبات بین پردازنده‌ها مبادله می‌شود. در شکل (13) نیز بخشی از شکل حل برای فاصله‌ی بین دو لوله نشان داده شده است (کل ناحیه حل شامل 27 نقطه است). قطر لوله‌ها 0/20 متر وگرام طولی و عرضی برابر با 2 است. عده رایولنس بر میان سرعت کبی و قطر لوله‌ها برابر با 330 است. شرایط لوله‌ای مشابه‌کار تجربی چن و همکارانش در نظر گرفته شده است نتایج تحقیق.
جدول 2- مقایسه فرکانس توزیع زمان در جریان حذف لوله‌ها

<table>
<thead>
<tr>
<th>درجه حرارت</th>
<th>مدل استمری</th>
<th>مدل ترکیبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.19</td>
<td>0.28</td>
</tr>
<tr>
<td>120</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>140</td>
<td>0.12</td>
<td>0.19</td>
</tr>
<tr>
<td>160</td>
<td>0.09</td>
<td>0.15</td>
</tr>
</tbody>
</table>

که بخش اعظم تریوی عاملی به لوله‌ها نیروی فشاری است و سهم تریوی اصطکاکی بسیار کم است. به این مطلوب در مرجع [10] هم اشاره شده است.

برای بررسی دقیقتر هریوهای وارد بر لوله‌ها و مقایسه نتایج مدی چهار مدل استمری-ترکیبی است. این ۱۰ نمونه را برای لوله‌های چهار مدل استمری-ترکیبی در شش شکل‌های (16) و (18) نتایج آورده. برای این شکل‌ها نتایج تریوی انگوران و زیاده (10) نیز برآورده شده است. تایک نشان داده که نتایج مدل ترکیبی به تریوی نزدیک کردن است. مقدار نوری فرکانس برای مدل استمری و مدل ترکیبی در (10) نشان داده شده است. اگر خطوط جریان در طول زمان دنبال شود ملاحظه می‌شود که در این فرکانس چندپریوی گردیده‌ها از پشت لوله به خوبی انجام می‌شود.
ج- بررسی الگوریتم جریان

خطوط جریان حول دسته لوله‌ها برای چند زمان مختلف در طول بازه زمانی (18700 تا 31800 ثانیه در شکل (19)) نشان داده شده است. در طی همین فاصله زمانی مقادیر ضرباب لیفت و درگ در شکل‌های (20) و (21) دیده می‌شود. ضرایب لیفت و درگ در این شکل‌ها بر اساس سرعت متوسط دانسته شده و قطع لوله‌ها محاسبه شده است. همچنین که ملاحظه می‌شود شکل جریان حول ریفیک اول ناپایداری زدایی با جریان حول ریفیک بعیدی دارد و با حرکت به عمق دسته لوله شکل جریان تغییر می‌یابد.

جریان به یک حالت توزع‌یافته نزدیک می‌شود. در این شکل‌ها تولید گرداب‌ها و حرکت آنها به خویش دیده می‌شود. به طور کلی می‌توان نتایج زیر را از شکلهای (19) تا (21) گرفت:

1- همچنان که از شکل (19) دیده می‌شود، به علت تلاقی و شدید جریان دامنه وسیعی از گرداب‌های ریز و درشت در جریان وجود دارد.

2- روند تولید و از بین رفتن گرداب‌ها در ایاپ یک فرکانس ثابت نسبت و رفتار تصادفی دارد.

3- برای تمام ریفیک‌ها ضرباب نیروی لیفت حول صفر نوسان است.
6- جمع بندی
جراین مخلوط حول دسته لوله‌ها با استفاده از یک مدل ترکیبی ادبیات برگ حلال مدل اکلیمی تا گروه - استوکرز روی هندسه غیر معادل با روش مربوط به برای زمان و مکان گسترش شده و در دستگاه معادلات حاصل با روش مستقیم و به صورت مزایی حل شده. برای مزایی مسایز از روش تکنیکی دامنه حل به تعداد قربانی و توزیع آنها بین پردازند ها با توجه به اصل توزیع باز محاسباتی استفاده شد. نتایج مزایی سازی برنامه ها حاکی از رشد و گسترش بسیار خوب مزایی سازی است. برای مدل سازی رفتار ادبیات کوک (در روش ادبیات برگ) از دو مدل اسنگرنسی و مدل تاشی ابعادی برای استفاده شد. با اضافه کردن اثر مدل اسنگرنسی در مدل باردين مدلی ترکیبی به دست می‌آید که اثرات ادبیات برگ و درستی روی همکاری را نیز در بر دارد. با استفاده از این روی جراین حول دسته لوله‌ها بررسی شد. نتایج حاصل نشان دهنده دقت خوب مدل ترکیبی در پیش‌بینی تغییرات نیروهای لایه و درگرو دسته لوله‌ها است. نتایج نشان می‌دهد که جراین حول لوله اول تغییرات زیادی با بقیه دارد و با حرکت به سمت داخل دسته لوله شکل جراین به سوی یک

پدیده رونده.

4- برای تمام لوله‌ها فرکانس نوسانات C1 تقریباً نصف
فرکانس نوسانات C0 است. علت آن این است که در هر سیکل، C1 در عدد گذاری در پشت هر لوله تولید می‌شود. C1 در بالا و دیگری در پایین. برای این نوسان در C0 در حالتی است که در جراین حول یک لوله با وضعیت بستری وجود دارد. زیرا اثر لوله‌ها روی همگن وجود ندارد.

5- به غیر از لوله اول رونده تغییرات C0 و C1 در میان بقیه رایانش است و این نشانی برای رای دینامیک سوم و چهارم پیشرفت است. این نتیجه با نتایج جراین ارائه شده توسط مراجع [14] و [15] مطابقت دارد.

6- در بخش‌هایی از یک سیکل، فرکانس C0 در ریز دینامیک دوم به بعد ممکن است قبیل گردیده و اثر مقدار متوسط آن همیشه مثبت است. به دلیل فاصله کم لوله‌ها گرداگرد، در جراین سوم به پشت یک لوله روی ریز دیده به دست آمده. آن را عقب می‌شود. موقعيت هر گردابه یا یک دو لوله به حداکثر رشد خود می‌رسد، سپس کاهش مقدار C0 لوله بعدی خواهد شد. در مورد لوله اول چون شکل جراین در جراین لوله اول با بقیه لوله‌ها متفاوت است بنابراین همیشه مقدار C0 مثبت است و این

147

استقلال، سال 25/1385، شماره 2، استقلال
1. Kolmogrof length scale
2. Large Eddy Simulations (Les)
3. Reynolds average Navier-Stokes (Rans)
4. segregated solution technique
5. Gust
6. decoupled
7. collocated grid
8. Momentum Interpolation Method (Mim)
9. fast ethernet switch
10. Message Passing Interface (MPI)
11. subgrid-scale
12. top-hat filter
13. cut-off filter
14. Gaussian filter
15. subgrid-scale stresses
16. dissipation
17. scale similarity model
18. deferred correction
19. advecting velocity
20. shadow row
21. overlapping of storage
22. Non-Orthogonal Lid Driven Cavity Flow (NLDCF)
23. speed up
24. SparcPak
25. super linear speed up
26. gap velocity
27. Courant number
28. Power Spectral Density (PSD)

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>
32. SPARSPAK:
http://sparse.uwaterloo.ca/~jageore/sparspak.html,
The Waterloo Sparse Matrix Package, Scientific Computation Group, University of Waterloo, Ontario, Canada.