ارزیابی رفتار سدهای خاکی در برای زلزله با توجه به ارتفاع سد

مدل رفتاری مصالح آن

باک ابراهیمیان و محمود وفیان

دانشکده مهندسی عمران دانشگاه تهران

دانشکده مهندسی عمران دانشگاه صنعتی اصفهان

چکیده - گرچه سابقه بررسی تأثیر زلزله بر سدهای خاکی به دنیا قبل از گردا گردا و پیچیدگیهای رفتاری این گونه سازه‌های خاکی در

شرايط مختلف هندسی و فیزیکی و نیز تفاوت و بروزهای زلزله‌ای موجب شده که مطالعه دقیقتر با ابزار محاسباتی قویتر، تساویت حداک

منفاوتی از وضعیت رفتاری بدان سد را در مقابل زلزله نشان دهد. در مطالعه حاضر مدل رفتاری ساده الاستوپستیک منتی بر می‌گیرد. به

کمک برای وضعيت الایستگی شکل خاک و نیز از قاعده سیستم‌ریزی در محاسبات استفاده شده است. در این مقاله، ابتدا ساخت کارکرد مدل‌های

عددی از طریق تحلیل دینامیکی مورد‌های واقعی مانند سدهای خاکی "الانکول"، دانش‌العلوم، "سانتافسی" و مقایسه نتایج محاسباتی با نتایج حاصل از

اندازه‌گیری‌های واقعی و با توجه ارائه شده توسط دیگر مقاصفان بررسی شده است. همچنین در مطالعه حاضر علاوه بر تحلیل لرزه‌ای سدهای خاکی

و بررسی پایداری آنها، به شوی شبه‌استاتیکی هم پایداری سدهای خاکی بررسی شده است. لذا به منظور اعتبارسنجی نتایج تحلیل‌های

شبه‌استاتیکی و کنترل نتایج نمایار در محاسبه ضریب اطمینان شبه‌استاتیکی، سد "کارسینگتون" تحلیل شده است. مقایسه ضرایب اطمینان

به‌دست آمده از مطالعه حاضر توسط پیشرفت نرمالیکی با نتایج ارائه شده در جزوه‌های دیگر دراد. از طرفی رفتار گسیختگی حاصل از تحلیل این

سد نیز توانایی در پی آفرود را در مشخص کردن سطح گسیختگی شکل نشان می‌دهد. در نهایت اصل تحلیل‌ها، رفتار لرزه‌ای سدهای خاکی با

شرايط انتخابی متفاوت مطالعه پارامتری قرار گرفته است و به‌ویژه تأثیر ارتفاع سد بر رفتار لرزه‌ای و انتخاب اندازه بهینه عرض تاج سد

بررسی شده است و نتایج آن تحلیل‌ها به‌صورت نمودارهاي ارائه شده‌اند.

واژه‌گان کلیدی: سد خاکی، زلزله، ارتفاع سد، عرض تاج، تحلیل دینامیکی.
Evaluation of Earth Dam Behavior against Earthquake with respect to Dam Height and Constitutive Model of Dam Materials

B. Ebrahimian and M. Vafaeian
Department of Civil Engineering, University of Tehran
Department of Civil Engineering, Isfahan University of Technology

Abstract: In spite of the fact that the effect of earthquake on earth dams has been widely studied during the past decades, the complicated behavior of such earth structures against different seismic characteristics is still unknown. Such ambiguities necessitate more accurate studies using more comprehensive computation tools to achieve new results describing the behavior of such structures subjected to earthquake loading. In the present study, the simple soil model of elastic, perfectly plastic (based on the Mohr-Coulomb criterion), and Rayleigh damping criterion have been adopted for the soil. First, the numerical model employed was verified by dynamic analysis of real cases such as “Long Valley” and “Santa Felecia” earth dams. The computational results were then compared with real recorded data or with those reported by other researchers. In addition to evaluating seismic stability of earth dams, their seismic stability was verified using pseudo-static analyses. Therefore, the computational results were then compared with real recorded data or with those reported by other researchers. In addition to validating the pseudo-static analyses, the results of FLAC software in defining the failure surface. In the main part of the analyses, a parametric study was conducted for different selected conditions and specially the effect of dam height and the optimum size of crest width were investigated. The results are presented in relevant diagrams.

Keywords: Earth dam, Earthquake, Dam height, Crest width, Dynamic analysis, Seismic load.

1- مقدمه
با توجه به اینکه عوامل متعددی بر چگونگی پاسخ سدهای باکی در برای زلزله موثر است، مطالعات که تاکنون در مورد بررسی رفتار سدها صورت گرفته است به شناختی منجر شده است که کاراکتر خود موجب مطرح شدن پرسوهای جدید شده است. در حال حاضر بر محققان در این زمینه پریشیده نیست که میزان اعتماد به پایش پایان معیار محسوب می‌شود. استفاده به مجموعه‌های از عواملی که در زمینه استفاده آنها در پرسوهای زیر خلاصه کرد:

1. عوامل مطالعاتی مشاهدات و حتی اندک‌ترین رفتار سدهای باکی در میزان واقعی در ضمن وقوع زلزله یا بعد از آن.
2. مطالعات تجاری در میزان آزمایشگاهی و مطالعات تجربی در اثر ارتعاش احساسی با محیطی به‌منظور پیداکردن است.
3. مطالعات محاسباتی و تحلیلی که فرآیند متعددی.

با توجه به اینکه، از پیک پرتخت تحقیقات و مطالعات تحت عنوان "بررسی و اکتشاف سدهای باکی در برای زلزله" غالباً انتظار می‌رود که از طریق تحلیل (که منجر به روش تکنیکی می‌شود) صحبت شود: به‌ن痊ه اول در مورد پاسخ رفتاری بدن در زلزله باکی، می‌شود؟ به چه تحویله بدن سد تحمل می‌شود؟
سد در ضمن عمکر دزدل زرلوا قلب از گسپرخیه شدن بخشی از آن، و بخش دوم در مورد پاسخ رفتاری بدن سد به صورت تخریب یا گسپرخیه بی نشسته و در گذشته‌های نهایی در ضمن گسپرخیه (بعنی درگذشته‌های شدید) است.

خوشبختی در حال حاضر، نمای آرایه‌ها مناسب موجود، امکان ارزیابیهای رفتاری سده‌ها خاکی را در برابر بارها نزدیکی‌ها فاهم کرده (با لاحق انظار می‌روید که به این توانایی رسیده باشد،) در مطالعه حاضر، از نمای آرایه فلاح افقت‌های استفاده شده است و انظار از (با) اعتماد به این نمای آرایه به این عمل است که تدوین کننده‌ها این نمای آرایه تمام ویژگی‌های او و پیچیدگی‌های مربوط به اثر بار ارتقاء را در ندوز مراح محسوباتی منظور کرده‌اند. علاوه بر این، چون در این کد محسوباتی آماده مشکل نمی شود لذا محسوباتی دوبعدی وسیع را می‌توان بدون نیاز به حافظه اضافی انجام داد، این به ساختار برنامه فکری سخنگویی محیط برایِ؛ شناسایی و محسوبه‌گام‌های زمانی مورد نیاز معرفی می‌شود و لینه‌سپری به منه‌وکپی با نام‌‌متریسی سختی و با جرم برای کاربر مکان‌پذیر

تبست: نمای آرایه فلاح از روش غیرخطی کامل برای تحلیلهای دینامیکی سازه‌های ذخیره‌ای استفاده می‌کند برخلاف آنچه که در روش شماتیک انجام می‌شود و روند حی پایه نکرار همگرا است. در روش غیرخطی کامل فرآیند تغییر و وجود ندارد که زمان ارتعاش فقط در یک مرحله تحلیل می‌شود.

این روش کامل‌ترین و دقیق‌ترین روش برای محاسبه‌ای دینامیکی سازه‌هاست که در صورت آزمایش مدل‌هایی مناسب برای مصالح، گواهی‌های به دست آمده از این‌کیست اعتماد بالایی بخوردار خواهد بود.

۱- مروری بر تاریخچه پژوهش‌های قبل در این زمینه

در این بخش برای اشاده مختصر به سوابق تاریخی مرتبط با موضوع به جنگ مورد توجه می‌شود:

نمونه‌ای از مجموعه مطالعات پژوهشگران در این زمینه در مقاله‌های مرتبط "گازانس" (۳) مربوط به سده‌های خاکی،
تهیه کردن. این برنامه قادیر به انجام تحلیل‌های استاتیکی و دینامیکی تحت شرایط تنش‌های کل و مولت است و وی دوره تغییر شکل‌های مانگدا را به‌صورت مستقیم محاسبه کند. تکمیل شده همین برنامه در سال ۱۹۶۹ قادیر تغییر شکل‌های به‌فرد می‌باشد. از روش‌های تحلیل‌های استاتیکی و استاتیکی و اطلاعات موجود انتخاب شد. تحلیل‌های نشان داد که سطوح لغزش سطحی می‌توانند در زنده بیش از ۲ تا ۳ متر حرکت کنند. برای سطوح لغزش عمیق‌تر، ماکرعم غیر‌مکانیکی کمتر از ۸۰ ساعت‌متر بود و نشانه‌های لغزشی بر پایه کاهش شکست بررسی مصالح در طول زلزله تخمین زده شد. [۱۱] از نظر فیزیکی تحلیل ساخا در برای زلزله را می‌توان به‌صورت زیر خلاصه کرد:

- انشابی و همکاران. [۲۲] در سال ۱۹۶۵ با استفاده از روش خلاصه‌برداری تحلیلی از کارهای «سیب» و همکاران. [۲۳] در کالیفرنیا برنامه‌ای را تهیه کردند. این برنامه در سال‌های ۱۹۷۵ با استفاده از روش خلاصه‌برداری به‌عنوان برنامه‌های «کواد ۴» و «فلاش» را نشان داد. این برنامه‌ها از آماری روی کارشناسی برنامه‌های مهم و محاسبه محاسبه‌برداری را داشت. در برنامه‌های کواد ۴، بررسی‌های از نوع ریزی و حالت اکثرالگری هسته‌ای در حوزه زمین‌شناسی انجام می‌شد. [۲۴]

متأسفانه، برنامه‌های کواد ۴ در سال ۱۹۷۶ میلادی را به‌اختیار فشار آب مقدار و توان زلزله بر مبنای پاس کرنشی هتخود توصیه دادند. این مدل به نظر می‌رسد که در تحلیل‌های دینامیکی مناسب مورری مناسب کرنشی‌های جایگاه‌های بکار می‌رود. [۲۵] اولین برنامه رایانه‌ای یک‌بعدی برای تحلیل‌های دینامیکی غیر خطی از برنامه‌های بررسی و محاسبه استاتیکی جابجایی به‌کار می‌رود. [۲۶]

- لیBlob، و همکاران. [۲۷] در سال ۱۹۷۳ برنامه‌ای از طول زلزله بر مبنای پاس کرنشی‌ها توصیه دادند. این برنامه به نظر می‌رسد که در تحلیل‌های MFS معروف است. در تحلیل‌های دینامیکی مناسب مورری مناسب کرنشی‌های جابجایی به‌کار می‌رود. [۲۸] این برنامه رایانه‌ای یک‌بعدی برای تحلیل‌های دینامیکی غیر خطی از برنامه‌های بررسی و محاسبه استاتیکی جابجایی به‌کار می‌رود. [۲۹]

- لیBlob، و همکاران. [۳۰] در سال ۱۹۸۶ برنامه رایانه‌ای از طول زلزله بر مبنای پاس کرنشی‌ها توصیه دادند. این برنامه به نظر می‌رسد که در تحلیل‌های MFS معروف است. در تحلیل‌های دینامیکی مناسب مورری مناسب کرنشی‌های جابجایی به‌کار می‌رود. [۳۱]
شرايط دريگي(کرنش مستوى) مورد تحليل قرار گرفت و
نتایج تحليل ارزشي آنها بصورت نموادارياه نشان دهنده کرد.
و درکشکليهای ايجاد شده در مقطع سد و چگونگي تغييرات
شناب در امتداذ محور قائم سد بهدست آمد. همچنين وضعیت
درکشکليهای بهروزي كي پايان كننده گسيختگي بدن سد است در
بعضى از تحليلهای مشتاق. گرچه در يک مطالعه فرايگر،
تعداد زيادی عوامل موثر (مثل خواص فيزيکي و مكانيكي
بوسیه و مدو، شيب پوسته، مدلن دريگي هسته و پوسته، و
نسبت استحکام در آنها) را في ودان در محاسبات منظور کرد و
تأثیر آنها را مطالعه كرد ويا در مطالعه حاضر سپاريا از عوامل
موثر از مقدار نابيني(مقدار معناني با توصيه شده)
محدود شد زيرا در غير اين نمونه تحليل محاسبات به صدبا
مورد بالاگي مي كي مغال جمعدي و تجربه گريي از آنها تنا
به سادک مقدار نمي شد، بلکه از وضع تعامل تک مقاله
پژوهشني تيز فروني مي بایست، مقطع عمومي به كار برده شد.
محاسبات حاضر در شكل 1 نشان داده است. مشخصات
محدودیت اين مقطع متفاوت با ارتفاع متفاوت سد (40 متر، 80
120، 160، و 280 متر) و با شيب ثابت بدهه 2/5 (افق ره
قامت) و شيب طرفين مزعه سد 1 بر 25 (فاقت به افق) و با
عرض اوليه تاج سد برابر 20 متر است. وضعیت تايشي
محاسباتي اين مقطع در يك شكل ديده مي شود در محاسبات
مربوط به ارزشي عرض تاج سد متفاوت متفاوتين يبراي عرض
تاج منظور شده است.
جدول 1 - پارامترهای زولتکنیکی در شرایط کن و موثر برای مصالح سد

<table>
<thead>
<tr>
<th>ناحیه</th>
<th>γ (Kn/m^3)</th>
<th>γSat (Kn/m^3)</th>
<th>C (kPa)</th>
<th>φ</th>
<th>K cm/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>همست رطی</td>
<td>20</td>
<td>20/5</td>
<td>0</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>پوسته</td>
<td>22</td>
<td>23</td>
<td>0</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>3sat (kN/m^3)</td>
<td>80</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 - مشخصات مصالح مختلف بندی سد در تحلیل دینامیک

<table>
<thead>
<tr>
<th>ناحیه</th>
<th>γ (Kn/m^3)</th>
<th>Vs (m/s)</th>
<th>Gmax Mpa</th>
<th>G</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>همست رطی</td>
<td>20</td>
<td>180</td>
<td>0/64</td>
<td>0/09</td>
<td></td>
</tr>
<tr>
<td>پوسته</td>
<td>21</td>
<td>220</td>
<td>2150</td>
<td>0/09</td>
<td></td>
</tr>
</tbody>
</table>

و سطوح ممایز از یکدیگر استفاده شده است. لذا برای انجام تحلیلها و مقایسه نتایج، از زوله ناغان با شتاب حداکثر 0/73MO+ P می‌تواند مدل مهرو-کولمب گنجانده شده است. تحلیل تعیین ضریب اطمینان شیب استاتیک در نرم‌افزار 'فلکس' بر اساس مدل مهرو-کولمب است. همچنین تعیین سطوح گسخیگی مصالح در مدل 'فلکس' نیز توسط هسته و مدل موهر-کولمب و داقرا-پراکر تعیین شده است. بکار بردن زوله فاکتور 0/3 از مدل موهر-کولمب استفاده شده است لذا نگارنده مقاصل نیز ترکیب شده به منظور مقایسه بین نتایج مقاله حاضر و مرجع 9/ از مدل موهر-کولمب استفاده می‌شود.

3-2 بیوه سازی محیط

در ساخت و بیوهمیجی حیاتی، انتقال نواحی 0/1 یا به عبارت دیگر انتقال مولکولی، در محدوده 0/1 تا 0/2 رافی در یک موهر مدل به حذف بررسی، ضمن اینکه يعدم مولکولی از داخل محیط که بر روی شبکه‌های مولکول برای توجه ویژه سطح می‌باشد. در محیط‌های از جمله محدود، با توجه به اینکه نواحی محیط‌شناسی محدود، نواحی این انتقال محیط‌شناسی است. "کولمب" و "لاسپر" 15/ نشان دادند که برای حصول اطمینان از انتقال صحیح امواج، آن‌ها به‌ویژه امواج لایه‌ای و همچنین در انتقال امواج می‌تواند بکار گیرد.

3-3- زوله‌های ورودی

برای مطالعه رفتار لزه‌های سدی خاکی در این تحقیق، از سه نگاشت زوله‌ها با محوریت ترکانی متفاوت، شتاب ماکزیمیم

استقلال، سال 32، شماره 1، شهریور 1386

سیدمحمدی 32
که در معادلات فوق، f_{max}، ماکزیمم میزان فرکانس قابل عبور از سیستم و V_{min}، سرعت مینیمم موج در محیط است. اگر فرض کنیم حداکثر فرکانس نگاشتهای ورودی ۸ Hz باشد که در تمام حالت‌ها کمتر از این مقدار است، این ابعاد نواحی مربوط با ابعاد حدود ۲/۵ متر نتایج رضایت‌بخشی را ارائه می‌دهند. از ناحیه Δl باید کوچکتر از $\frac{1}{8}$ تا $\frac{1}{10}$ طول موج ایجاد شده توسط بالاترین فرکانس امواج ورودی به سیستم باشد. می‌توان فرض کرد که برای گذاردهی مناسب امواج به طور متوسط باید شرط زیر برقرار باشد:

$$\Delta l = \frac{\lambda}{9}, \quad f = \frac{V_{\text{min}}}{\lambda} \Rightarrow \Delta l = \frac{V_{\text{min}}}{9f_{\text{max}}}$$

 nurse. 1386

استقلال، سال 1386، شماره 1

33
انجاهه سد‌های خاکی به‌صورت لاپای‌های و مرحله‌های جدیدی از ترتیب انبارهای و مراحل‌های اجرا می‌شوند، لذا در مدل‌سازی‌های عدیده بی‌پای دل‌سازی به‌صورت لاپای‌های و مرحله‌های انجام شود برای بررسی تأثیر مدل‌سازی مرحله‌ای بر آراشی نشنا و جایی‌ها تأثیر حسابی جایی قائم نسبت به مدل‌سازی انجام گرفته است. نمونه این گونه ارایه‌های اولیه در شکل‌های (8) و (9) نشان داده شده است که مربوط به سیدا با ارتقای 404 متر است، در شکل (8) تغییرات طرح‌سازی قائم در آنها با حضور سد برای شرایط مختلف لایه‌های (تعداد لایه‌ها 1، 2، 3، 4 و 5) دیده می‌شود و در شکل (9) متوسط طرح‌سازی قائم نتیجه سد به‌صورت تبعی از تعداد لاپای‌های ملاحظه می‌شود. به‌طوری‌که محبوب است نتیجه دیگر طراحی‌ها، به شکل توزیع آنها در ارتقای نیز به سمت حد محسوس حرکت می‌کند و می‌تواند بیش از 16 متر در مدل کردن مقطع، از 1 لاپای نا 16 لاپای می‌توان تعداد 8 لاپای را با افتراق قابل پذیرفته، این رقم توسط بعضی پژوهشگران به‌طور نزدیک تایید شده است [6] به‌منظور تعیین حداقل تعداد لاپای‌های لازم در سد‌های به‌صرفه‌ای مختلف این محاسبات مقداری برای هر کدام از سد‌های به‌صرفه‌ای مختلف مراحل عناصر انجام شده و مشخص شد که حداکثر تعداد لاپای‌های لازم برای اجرای لاپای سد به‌صرفه‌ای ارتقای 404، 390، 320، 260 و 280 متر باید به‌طور 16، 13، 5 و 8 لاپای نا است، هرچند نمودار نشان می‌دهد تا نتایج سد این مدل‌سازی به‌صرفه‌ای افتراق و در معادلات مدل‌سازی محاسبه‌ای قابل مقایسه می‌شود.
ساخته شده در "فلک" در شکلهای (۱۰) و (۱۱) نشان داده شده است. سد "سانتافلسم" در ارتفاع ۲۷ متر و تکانه نیز در دو حالت (۲) آماده است. مشخصات مصالح نیز در جدول (۶) آمده‌اند.

<table>
<thead>
<tr>
<th>تراز</th>
<th>G_0 (MPa)</th>
<th>γ_{wet} (kN/m3)</th>
<th>هنگر</th>
<th>پوسته</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/25</td>
<td>123/65</td>
<td>27/0/7</td>
<td>21/1</td>
<td>0/46</td>
</tr>
<tr>
<td>0/50</td>
<td>123/80</td>
<td>6/0/7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

از آنجا که در تحقیق حاضر، ضریب اطمینان پایداری به شیب‌های شیب‌استاتیکی این نتایجی مختلف با استفاده از نرم‌افزار تیکول است، لذا برای کنترل و طراحی مکانیزم گسترشگی و اعتبارسنجی مقادیر ضریب اطمینان‌های شبیه‌سالانه است. برای برسی صحیح کارکرد مدل‌های عددی در تحلیلهای شبیه‌سالانه، سد "کارنیستگون" یک حالت داشته و سطح اوست و ضریب اطمینان به‌دست آمده از نرم‌افزار با تابع موجود در مقالات به‌طور مطابق دیگر ارائه شده است و نیز سطح اوست و سطح واقعی، مقایسه شده است. در خشک دیگر، با بررسی اعتبارسنجی و نمایش قابلیت فراوان این نرم‌افزار در نمایش گسترشگی و ریزش، یک شبیه‌سالانه برای تحقیق لزیج و ورودی زلزله "سانتافلسم" در سال ۱۹۷۱ با تراز $M_s=6/5$ و با شتاب ماکزیمم آن $g=1/2$ است. تاریخچه شتاب و ورودی در شکل (۴) شده که به مدت ۱۴ ثانیه به قاعده سد اعمال شده است.

الف- تحلیل سد "سانتافلسم"

مشخصات مقطع عرضی سد "سانتافلسم" و مدل عدیدی
شکل 12 - نگاشت ورودی افقي برای سد "ساتانافلما" [13]

در این محاسبات رابطه تنظیم شده بر کرنش برای اساس معادله $G_0 = \frac{1}{2} \frac{m}{\gamma} \left(\frac{h}{\gamma} \right)^{1/2}$ است [6]. که در آن γ کرنش مرغع است که مقدار آن در هر دو حالت برابر به

در تحلیل‌های دینامیکی احتمال شده بر روی سد "ساتانافلما" توسط "الگمل" و همکاران از مدل پلاستیکی جنگ سطحی با سخت‌شناسی سیمپلیک استفاده شده است. محتوی هزینه منابع تنظیم کرنش به‌وسیله 15 نقطه خط (15 سطح تحلیلی) در فضای نشانه‌ای به‌دست آمده است. این مدل قادر به در نظر گرفتن اثر "بیوشینگ" است که باعث کاهش اثر بارهای دینامیکی چرخهایی از خوند نشان می‌دهد و تغییر در مقاومت شکل در اثر اضافه شدن آب منفی، به‌دلیل کم بودن مدت زمان عاملی باعث می‌شود که فرآیند قرار گرفتار شده باشد. از تولرانس همگرایی 10^{-4}، با افزایش نیروهایکار 55.5 و 0.28، و $\alpha = 1$ و $\beta = 0.5$، از طریق به‌کار گیری $\Delta t = 2 \times 10^{-5}$ ثانیه در تحلیل‌ها استفاده شده است. در مطالعه حاصل از این روش برای ارزیابی فرآیند لزهگیری سد، مقدار و انتخاب به‌دلیل امر بی‌رفعه برای انتهای سد و مقاومت نشانه‌ای مرجع [6] استفاده شده است.

تحلیل دینامیکی حاصل برای سد "ساتانافلما" در برای زلزله "سنترال"، شتاب افقي حداکثر و تغییرات افقي حداکثر در تناج سد را به بررسی برای $137,776 \text{ m}^{3}/\text{s}^2$ 1386 شماره 1، سال 32
روش اجرای محدود و با فرض مربای ویسکوز و با استفاده از
مدل الاستون-بالانسیک، سد مدول را مورد بررسی قرار داده‌اند
[۱۸ و ۱۹]. در مقاله حاضر تحلیل دینامیکی با استفاده از روش
تفاضل محدود (FDM) اعمال با ترکیب سرعت فرآیند
انجام شده است. از مدل فیزیکی ساده الاستون-بالانسیک مبتنی بر
معیار موهر-کوکلی و نیز مربایی ریلی برای اندازه‌گیری
مربایی هیستریک و جبران کمپوزیت مربایی هیستریک در تحلیلها
پدیده گرفته شده است و پاسخ سد در هر دو محدوده زمان و
فرکانس به‌دست آمده و در انتهای نتایج با پاسخ‌های
اندازه‌گیری شده واقعی و نیز نتایج ارائه شده توسط محققان
قابل مقایسه شده است. نمای کلی سد در شکل (۱۴) و مدل
عده‌ای ساختمانی سد در فلک در شکل (۱۵) آمده است. مراکز
مشخصات فیزیکی و مکانیکی مصالح در جدول (۹) آمده است.

![شکل ۱۵ - ناحیه‌های در مقطع سد انگلولی در نمودار فلک]({#})

جدول ۲- پارامترهای زئوتکنیکی برای مصالح سد[۹]

<table>
<thead>
<tr>
<th>C (kPa)</th>
<th>φ (%)</th>
<th>ν</th>
<th>E (kPa) x 10^5</th>
<th>γ _wet (kN/m³)</th>
<th>رفتار</th>
<th>ناحیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
<td>0.3</td>
<td>45</td>
<td>0.03</td>
<td>از 4/10</td>
<td>ناحیه الاستون-بالانسیک</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>45</td>
<td>0.03</td>
<td>از 4/10</td>
<td>ناحیه الاستون-بالانسیک</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>45</td>
<td>0.03</td>
<td>از 4/10</td>
<td>پیش ناحیه الاستون-بالانسیک</td>
</tr>
</tbody>
</table>

فرآیند (FAS) را برای این نگاشتهای شتاب‌شده می‌دهند. تحلیل
دینامیکی سد برای نگاشتهای ورودی مذکور در طی ۱۲ تا ۱۶ ثانیه
انجام شده است. ضمناً نگاشتهای زره‌های از طریق پایه‌ای اطلاعاتی
دشگاه پرکلیدی به‌دست آمده است. [۱۴]

شکلهای (۲۰ و ۱۹) تاریخچه شتاب افقی و طیف دامنه
فوریه محاسبه شده را برای نگاشتهای افقی و برای ضریب میابی
۹/۵٪ نشان می‌دهد. ملاحظه می‌شود که تاریخچه شتاب افقی
محاسبه شده و نیز طیف دامنه فوریه محاسبه شده برای نگاشتهای
افقی با دقت بسیار خوبی از مقدار انداده‌گیری شده پرتوی
می‌کند. انتظار می‌رود که تاریخچه‌های عرضی افقی در
دوبعدی و در راستای افق بزرگتری به فرکانس غلیب می‌شود.
است لذا مقدار شتاب از بستر سنگی به سمت ناحیه سد
برکناری شده است. در شکلهای (۲۲ و ۱۹) تاریخچه شتاب‌های
افقی و طیف در این سد بر سرتاسر ناحیه و در تاج سد با هم مقایسه شده است.
از مقایسه نتایج حاصل از مقاله حاضر با تایپ آرائه شده
توسط محققان قبلی مشخص شد که تمایل روش‌های نظری
شکل 17- طیف دامنه فوریه برای نگاهت افقی در شکل (16)

شکل 16- نگاهت افقی زلزله "ماموت لیک" در تاج سد "لانگویل".

شکل 18- نگاهت قائم زلزله "ماموت لیک".

شکل 19- طیف دامنه فوریه برای نگاهت قائم در شکل (18).

شکل 20- تاریخچه شتاب افقی در اثر زلزله "ماموت لیک" در تاج سد "لانگویل".

شکل 21- طیف دامنه فوریه شتاب افقی در اثر زلزله "ماموت لیک".

شکل 22- تاریخچه شتاب افقی سنگ بستر و تاج سد "لانگویل".

شکل 23- تاریخچه شتاب قائم سنگ بستر و تاج سد "لانگویل".

استقلال سال 26، شماره 1، شهریور 1386

38
جدول ۵- مقایسه نتایج تحلیل‌های سد بر اساس روش‌های مختلف با تایپ اندازه‌گیری شده واقعی [۹، ۱۸ و ۱۹]

<table>
<thead>
<tr>
<th>مقدار اندازه‌گیری</th>
<th>تحقیق حاضر</th>
<th>W&G (۱۹۹۶)</th>
<th>W&G (۱۹۹۴)</th>
<th>Y&P (۱۹۹۱)</th>
<th>تأثیر حاصل</th>
</tr>
</thead>
<tbody>
<tr>
<td>شده واقعی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۶g</td>
<td>۱/۶g</td>
<td>۰/۱g</td>
<td>۰/۹g</td>
<td>۰/۳g</td>
<td>PGA<sub>max</sub></td>
</tr>
<tr>
<td>۰/۹g</td>
<td>۰/۹g</td>
<td>۰/۱g</td>
<td>۰/۹g</td>
<td>۰/۳g</td>
<td>PGA<sub>min</sub></td>
</tr>
</tbody>
</table>

شکل ۲۴- مقطع عرضی سد "کارسینگون"

ج- بررسی گیسوگی سد "کارسینگون" نمونه کاربردی دیگر، مدلسازی سد خاکی "کارسینگون" در انگلستان است. اطلاعات مربوط به این پروژه [۲۰] نشان می‌دهد که ۵۰۰ متر از طول بندن سد در ضمن ساخت و قبیل از ای‌گیری مخزن) فرو ریخته است و تا سپسپیره سپرده. نشان داده است که با عملیت و ضعیت چهخمه‌ای عضو سد، سطح گیسوگی بندن سد حالت دوستسپار داشته است. این سد دارای ارتفاع ریبار با ۲۲ است. عرض ناحیه سد ۷ متر است. مقطع سد در شکل (۲۴) آمده است. مشخصات مصالح سد در جدول (۵) آمده‌اند (۲۰-۲۲).

شکل‌های (۲۵) و (۲۶) خطوط تراز نرخ کرنش گیسوگی و بردارهای سرعت گری را نمایش می‌دهند و همچنین به مقادیر ضریب اطمینان پایداری در آستانه گیسوگی نیز در این شکلها اشاره شده است. شکل‌های (۲۷) و (۲۸) نیز سطح لزغی بحرانی را که از تحلیل اجرای محدود و تعداد حذف به‌دست آمده‌اند و حاضر، مقادیر شتاب را نسبت به مقادیر اندازه‌گیری شده دست بالا بارور می‌کند. برای شتاب افیزه نزدیک‌ترین جواب حداکثر مثبت به نتایج واقعی اندازه‌گیری شده، روش "فاکوس" و "پریدو" در سال ۱۹۹۱ است که نسبت به مقادیر

اندازه‌گیری ۲۳٪ خطا دارد که ابتدا از لحاظ شکل منحنی تاریخچه زمانی طبقه‌بندی با مقادیر اندازه‌گیری شده ترا زدوالی و نزدیک‌ترین جواب حداقل به نتایج واقعی اندازه‌گیری شده برای شتاب افیزه، تایپ مقاله حاضر است که نسبت به واقعیت ۶۴٪ خطا دارد و از لحاظ شکل منحنی تاریخچه زمانی نیز تبادل و هماهنگی بسیار خوبی بین مقادیر اندازه‌گیری شده و مقادیر محاسبه شده برقرار است و در کل تایپ مقاله حاضر از لحاظ مقدار و شکل منحنی تاریخچه زمانی نسبت به تایپ ارائه شده توسط محققین قبلی دقت بسیار بالاتری دارد. بهطور خلاصه می‌توان تایپ این مقابله را در جدول (۵) خلاصه کرد.
جدول ۶ - پارامترهای زئوتکنیکی در شرایط تنش موتر برای مصالح سد [۲۱]

<table>
<thead>
<tr>
<th>شرایط</th>
<th>θ (%)</th>
<th>C (kPa)</th>
<th>ν</th>
<th>E (MPa)</th>
<th>γd KN/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>70</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>17</td>
<td>10</td>
<td>154</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>183</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16</td>
<td>17</td>
<td>0/5</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>15</td>
<td>14</td>
<td>205</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>15</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۲۶ - برداشتهای سرعت گرهی در انتهای زلزله برای سد "کارسینگتون".

شکل ۲۵ - خطوط تراز نرخ کرنش برگرفته محاسبه شده برای سد "کارسینگتون".

شکل ۲۷ - سطح لغزش واقعی در سد "کارسینگتون" [۲۱]

شکل ۲۸ - سطح لغزش به‌دست آمده از روش تعادل حضور [۲۱]

از روش تعادل حضور است. در جدول (۷) مقادیر ضریب اطمینان با‌پایداری برای روش‌های مختلف و نقل از محفظان مختلف آمده است. ملاحظه می‌شود که مقادیر ضریب اطمینان

از روش تعادل حضور را نشان می‌دهد. از مقایسه شکل‌های (۲۴) و (۲۷) با شکل‌های (۲۵) و (۲۸) کاملاً مشخص است که سطح کسیختگی دقیقاً منطبق بر سطح کسیختگی به دست آمده است.
جدول 7- مقایسه ضرب اطمینان پایداری به دست آمده از روش‌های مختلف برای سد کارسینگتون]20-22[.

<table>
<thead>
<tr>
<th>تعادل حذف</th>
<th>تحلیل حذف</th>
<th>تحقیق حاضر</th>
</tr>
</thead>
<tbody>
<tr>
<td>در حال مقاومت جداکردن (مالی)</td>
<td>1/6</td>
<td>1/55</td>
</tr>
<tr>
<td>در حال مقاومت به لحاظ گسترش مالی</td>
<td>1/50</td>
<td>1/40</td>
</tr>
<tr>
<td>در حال مقاومت باشندن (نَرسان)</td>
<td>0/77</td>
<td>-</td>
</tr>
</tbody>
</table>

كاربردی آن می‌تواند در توجهی معمول‌های طراحی سدهای خاکی کامل موثر باشد.

از اهداف مهم این مطالعه بررسی تأثیر نقض ارتفاع

(بروزگی) سد در فاز آن از دیدگاه فنراهی قابل از گسترش و

نیز ارزیابی تأثیر آن بر وضعیت گسترشی و نیز بررسی ارتباط

ابعاد عرضی سد با ارتفاع آن در شرایط پایدار سد است. به این

علت، مقطع‌های متعددی به طبیعت مختلط مورد مطالعه قرار

گرفت.

4. محاosalات انجام شده و تاپی آنها

4.1- مشخصات لازم

همان طریکه قبل اشاره شده، مقعفن سد خاکی مورد تحلیل در

این مطالعه در شکل (1) و با مشخصات جدول (1 و 2) است.

در این مطالعه از طیف‌های مشاهده‌نواز «نافغ»، «طلس» و

"سان‌فنداندو" در مراحل زمانی منفصل 24/4 تا تایید و هرکدام از

طیف‌ها برای 28 ثانیه در قاعده سد اعمال شده است. نتیجه

محاسبات به‌صورت خطوط نرخ جای‌گیری افکت و قدرتهای

بردنی، بردارهای جای‌گیر، شکل‌های تغییر شکل، جابه‌جایی، ناحیه و توانای

پلاتینیک شده به‌عوامل درون‌جایی محاosalات به‌دست می‌آید.

4.2- بررسی تأثیر مشابه عوامل متعدد بر رفتار سد در

برای زلزله

از آنجاک عوامل متعدد بر رفتار دینامیکی سد خاکی در

برای زلزله تأثیر دارد، این و مدل کرد. یک مقعفن سد خاکی

مشخص در برای یک طیف معنی زلزله را موضوع کد. خاکی

عوامل موثر و جامع این رفتار سد را تنش دهد. از عوامل موثر

بر رفتار سد، ارتفاع سد، میرای مقاومت اصطکاکی مصالح و نوع

طیف زلزله است. در مطالعه حاضر، علاوه بر بررسی فیزیکی

میان رفتار الاستیکی، مراحل یل‌سیکتِ شکلگیری زلزله

و تفاوت نتایج مقاپسه شده است. نتیجه‌ی که در اینجا لازم به

بیان دارد این، این است که یل‌سیکتِ شکل‌گیری به‌خاطر افزایش

از جسم سد، خود تابع از طیف زلزله، نوع مصالح سد و

ارتفاع سد است و چون یل‌سیکتِ شکلگیری جسم سد، موجب

میرای بستر ارزی زلزله می‌شود و همچنین انتظار می‌رود که

دگرشناسی کردن سد در این مطالعه در تاریخ سد به

مبارچ کوچکتر از مقاپسه متانظیر آنها در شرایط فرض جسم

به دست آمده از مطالعه حاضر، برای مقایسه ارائه شده توسط

محققان نizio تزدیکان و طبقات قابل قبولی دارند. به عنوان

نمونه، همان طریکه قبل از مکر دیگر رفتار گسترشی برای

ضرب اطمینان ی نشان داده شده و با شکل‌های موجود در

مقالات مقایسه‌نواز.

استقلال، شماره 26، شماره 1، شهریور 1386

1386
شاخص ۲۹- تغییرات شتاب افقی حداکثر در ارتفاع سد ۲۰ متری برای زلزله "ساماندو".

شاخص ۳۰- تغییرات شتاب افقی حداکثر در ارتفاع سد ۵۰ متری برای زلزله "ناغان".

شاخص ۳۱- رابطه بین شتاب افقی حداکثر در تاج سد نسبت به ارتفاع سد در اثر سه زلزله مشخص

الاستیک باشند. این پدیده در این سکلهای گوناگون قابل تصور در مطالعه حاصل مورد بررسی قرار گرفته و تأثیر آنها به صورت تمودارهایی به شرح زیر ارائه و بحث می‌شود.

۱- مقایسه تأثیر نگاهش زلزله‌های ناغان، طبس و سماندراو. روي یک سد مشخص با ارتفاع معین، نشان می‌دهد که موقعیت زلزله‌های قوی مانند ناغان (شتاب حداکثر ۷/۰۵ m/s۲) و طبس (با شتاب حداکثر ۸/۱۵ می‌تواند (ب) افت و یا افت سیستمیک بخش‌هایی از بدن سد می‌گردد. این نتایج ارائه‌داده که در تاج سد افزایش شتاب مشاهده شود. برخلاف زلزله‌های ضعیف مثل سماندراو (با شتاب حداکثر ۱/۰۳ m/s۲) که چون منجر به پلاستیگشادگی یک سد نمی‌شود. در ابتدا ارتفاع سد، ثابت شدن شتاب محسوس است. در شکل‌های (۲۹) و (۳۰) مقادیر شتاب افقی در ارتفاع برابر دو زلزله "ناغان" و "ساماندو" نشان داده شده است.
بیشتری شباهت در منطقه تاج سد را نقویت می‌کند.

3- شکل‌های (21) تا (25) نمودار تالیک ارتفاع سد را بر پایه جایگاه افقی و کرنش برشی نشان می‌دهند. ملاحظه کنید که با افزایش ارتفاع، تأثیر جایگاه افقی در تالم (و همچنین کلیه نقاط بدن سد) افزایش یافته و به عوارض دیگر تاباپایداری و لغزش بروی یک نگاشت معنی‌دار بدن سد را بزرگتر محسنت می‌کند. یافته‌ای از میانه بروی کرنش‌های برشی نیز صادق است. پسی این منطقه برای کرنش‌های برشی نیز مناسب است. با افزایش ارتفاع، کرنش برشی افزایش یافته و در دامنه‌های حداکثر مقدار است. لازم به ذکر است که در شکل‌های (21) تا (25) نقاطی در دامنه انتخاب شده است که دارای بیشترین جایگاه افقی و یا کرنش‌های برشی بوده است.

شکل 23- رابطه بین تغییر‌های افقی دامی در تاج سد نسبت به ارتفاع سد در اثر سه زواله مشخص

شکل 24- رابطه بین کرنش برشی دامی در دامنه سد نسبت به ارتفاع سد در اثر سه زواله مشخص

شکل 25- رابطه بین کرنش برشی دامی در دامنه سد نسبت به ارتفاع سد در اثر سه زواله مشخص

شکل 26- مقادیر ضریب اطمینان پایداری به شیوه شباهت‌شناسی برای سد‌های با ارتفاع متفاوت و تحت تأثیر‌های مختلف در جدول (1) آمده است. ملاحظه می‌شود که با افزایش ارتفاع، ضریب اطمینان شباهت‌سنجی کاهش می‌یابد. به عنوان نمونه، شکل‌های (36) و (37) سطوح گسیختگی را به ترتیب برای سد‌های 120 و 180 متری نشان می‌دهد. مشاهده می‌شود که سطح گسیختگی در سد 120 متری سطح مم کم عمق است در حالی که در سد 180 متری یک سطح مم عمق اتفاصل کم عمق است. ضریب اطمینان پایداری کاهش یافته است. یکی از عواملی که در این مطالعه مورد تحلیل قرار گرفت، ارتباط بین اندازه مناسب عرض تاج سد با ارتفاع آن در شرایط
جدول 7- مقدار ضریب اطمینان برای سدهای با ارتفاع‌های مختلف و در برای نگاشته‌های منفیت

<table>
<thead>
<tr>
<th>ارتفاع سد</th>
<th>سان فرانسیسدو</th>
<th>ناغان</th>
<th>طبس</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1/13</td>
<td>1/13</td>
<td>1/13</td>
</tr>
<tr>
<td>80</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
</tr>
<tr>
<td>120</td>
<td>1/08</td>
<td>1/08</td>
<td>1/08</td>
</tr>
<tr>
<td>200</td>
<td>1/05</td>
<td>1/05</td>
<td>1/05</td>
</tr>
<tr>
<td>280</td>
<td>1/04</td>
<td>1/04</td>
<td>1/04</td>
</tr>
</tbody>
</table>

شکل 37- خطوط تراز نخ کرنش بریشی و محل گیسختگی بدن

شکل 38- خطوط تراز نخ کرنش بریشی و محل گیسختگی بدن

سر برای سد 200 متری در پاراژزل "ناغان".

آرایز این است. یادآوری می‌شود که معادلات متعددی در کتاب‌ها و دستورالعمل‌های ساخت سدهای خاکی موجود است که ارتباط
عرض تراز سد را با ارتفاع آن تعیین کرده‌اند و غالباً علیه
منطقی این ارتباط مشخص نیست. عملکرد این معادلات عبارت‌اند
از [23]:

الف- سدهای خاکی متوسط بین 20 تا 60 متر (USBR):

\[B = 0.55\sqrt{H} + 0.2H \] \hspace{1cm} (1)

ب- سدهای خاکی متوسط بین 60 تا 150 متر (USBR):

\[B = 3.6\left(\frac{H}{3}\right) \] \hspace{1cm} (2)

ج- در ژاین تیر برای انتخاب عرض تراز سدهای مرتفع،

معادلات زیر پیشنهاد شده است:

\[B = 1.65\left(\frac{H+1.5}{3}\right) \] \hspace{1cm} (3)
شکل ۲۹ - رابطه جایگاه افقی حداکثر منفی در نتایج سد نسبت به عرض نتایج سد برای زلزله ناغان

شکل ۲۸ - رابطه شتاب حداکثر منفی در نتایج سد نسبت به عرض نتایج سد برای زلزله ناغان

شکل ۲۰ - رابطه عرض نتایج با ارتفاع سد در آینه‌نامه‌های مختلف و مقایسه آنها با نتایج تحقیق حاضر

از محاسبات اخیر مبتنی بر حداکثر کرنش‌ها (بیچ جایگاه‌ها) حد متعادلی را نشان می‌دهد که در هر حال مقادیری کوچکتر از مقادیر استاندارد زایش است و به عبارت دیگر استاندارد زایش حد بالایی و قابل اطمینان را نشان می‌دهد.

۵- نتیجه‌گیری

تحقیق حاضر با هدف ارزیابی رفتار لرزه‌های سدهای خاکی، بررسی پایداری آنها و تحلیل پاسخ دینامیکی سدهای خاکی متعادل به ارتعاشات لرزه‌ای با کاربرد نرم‌افزار "فلک" در زمینه هموگون داده شده، در این راستا مقاطعی و محدودیت‌های مختلف سدهای خاکی بر روی بستر سه گروه در نتایج درباره زلزله‌های مختلف معین تحلیل دینامیکی شد و وضعیت پایداری با گسترش دانسته سد، ناشی از ارتفاع بر پایداری و چگونگی توزیع شتاب در امتداد ارتفاع از قاعده به سمت ناحیه بین ارتفاع سد به میزان می‌پردازد.
عرض تاج در شرایط لنزههای بررسی شد و نمودارهای نشان دهنده تغییرات شتاب یا جابجایی و کرنشها به‌دست آمد.

از این مطالعات مفصل تناخی کلی زیر حاصل شد:

1- در باز رزمکاران و تونینی بیا هرچند در عین حال بدن سد، می‌تواند بسیار قرار داد.

2- در باز رزمکاران و تونینی بیا هرچند در عین حال بدن سد، می‌تواند بسیار قرار داد.

3- در باز رزمکاران و تونینی بیا هرچند در عین حال بدن سد، می‌تواند بسیار قرار داد.

واژه‌نامه

1. FLAC
2. Gazetas
3. Dakulas
4. Abdel-Ghafar & Scott
5. Sanferando
6. Santa Felecia
7. Prevost et al.
8. Dynaflof
9. Elgamas
10. Griffiths
11. Long Valley
12. Wieland & Malla
13. Mattmark
14. Finn
15. Schnabel et al.
16. Seed et al.
17. Shake
18. Idriss et al.
19. Lysmer et al.
20. Quad 4
21. Flush
22. Martin et al.
23. Desra-2
24. Lee
25. Desra-2R
26. Tara-3
27. Plaxis
28. Delf
29. Cundall & Board
30. Dynard
31. Moriwaki et al.
32. Bounding surface
33. Zienkiewicz et al.
34. Swan Dyn4
35. Muraleethuran et al.
36. Dysac 2
37. cyclic
38. Rayleigh
39. Fast Lagrangian Analysis of Continua
40. zone of continua
41. Potts & Zdravkovic
42. Mammoth Lake
43. Carsington
44. Iai
45. Yiagos
46. Woodward

استقلال، شماره 1، شماره 36، شماره 1386
12. “FLAC’s Manual.” Itasca Consulting Group, Inc. Thresher Square East, 708 South Third Street, Suite 310, Minneapolis, Minnesota 55415 USA.
13. مهندسی مشاور ویژه سیال. 1382
14. www.nisee.berkeley.edu