Investigation of Double-layer Grid Space Structure Resistance to Progressive Collapse

K. Abedi, M.R. Sheidai
Department of Civil Engineering, Sahand University of Technology
Department of Civil Engineering, Urmia University

Abstract: Considering the vulnerability of double-layer grid space structures to progressive collapse phenomenon, it is necessary to pay special attention to this phenomenon in the design process. Alternate path method is one of the most appropriate methods in this regard. The research presented in this paper investigates the progressive collapse resistance of double-layer grid space structures. The study includes the effects of various parameters such as material properties, geometry, and loading conditions on the collapse resistance of these structures. The results of the investigation show that double-layer grid space structures have significant resistance to progressive collapse, and the design guidelines developed in this study can help engineers to design safer structures.
and accepted methods for progressive collapse resistant design of structures. Alternate Path Method permits local failure to occur but provides alternate paths around the damaged area so that the structure is able to absorb the applied loads without overall collapse. Following the sudden initial local failure event, severe dynamic effects may arise which should be taken into account in determining the realistic collapse behavior of the structure. In this paper, a new methodology based on alternate path method is presented to apply dynamic effects of initial local failure. The method is called nonlinear dynamic alternate path method. Due to its capability to take account of dynamic nature of the failure, this method can be used to evaluate realistic collapse behavior of the structure and to investigate the vulnerability of the structure to progressive collapse phenomenon.

Keywords: Double-layer grid space structures, Progressive collapse, Alternate path method, Dynamic snap-through, Post buckling, Stability

** فهيست علامت‌ی**

<table>
<thead>
<tr>
<th>متغیر</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>ماتریس مربوطه سازه</td>
</tr>
<tr>
<td>P</td>
<td>بردار تغییر مکان استاتیکی</td>
</tr>
<tr>
<td>P_{map}</td>
<td>بردار تغییر مکان استاتیکی نهایی</td>
</tr>
<tr>
<td>α_m</td>
<td>باتور تغییر مکان دینامیکی</td>
</tr>
<tr>
<td>β_s</td>
<td>نسبت میزان حداکثر</td>
</tr>
<tr>
<td>ξ_i</td>
<td>نسبت میزان حداکثری</td>
</tr>
<tr>
<td>ω_1</td>
<td>فرکانس حداکثری</td>
</tr>
<tr>
<td>C</td>
<td>ماتریس سختی سازه نهایی</td>
</tr>
<tr>
<td>D</td>
<td>ماتریس سختی استاتیکی</td>
</tr>
<tr>
<td>D_{map}</td>
<td>بردار تغییر مکان استاتیکی نهایی</td>
</tr>
<tr>
<td>K</td>
<td>ماتریس سختی سازه بایدن</td>
</tr>
<tr>
<td>K_{map}</td>
<td>ماتریس سختی ابتدایی</td>
</tr>
</tbody>
</table>

فهمنده

پیام نامه‌ای به این‌اندازه است. خرابی اولیه در اثر عوامل متعددی همچون ضربه، تصادف، انفجار، عیوب مصالح و اتصالات، و به‌خصوص کمک به محاسبه عضو فشاری ممکن است پیش آید. مکانیسم انتشار خرابی در دین اثر خرابی موضوعی اولیه، باز توزیع نیروهای داخلی در سازه بی‌سیب می‌آید و این امر ابعاد نیروهای اضافی به سایر عضای سازه می‌شود. در نتیجه مکان اضافی ناهنجاری از سازه خراب شده و باز توزیع نیروهای داخلی سازه ایجاد می‌شود. به این ترتیب خرابی در سازه انتشار پیدا می‌کند و حتی ممکن است به خرابی کلی سازه نیز منجر شود. در بعضی موارد نظر کمک‌سازه ترد اعضای فشاری، فروریزی بار ناشی از خرابی موضوعی به فدلی سریع و ناهنجاری است که ممکن است به اینه برف نیز اسباب شود. در این مورد، عدم اعمال مکانیسم Y، زبیری باز ناشی از ویژگی موضوعی به سازه خرابی N، به‌نماینده است. چون وقوع دادن موضوعی به سویاند و از این رو امر بسیاری به‌طور گسترده‌ای در انواع پروژه‌های ساختمانی پژوهش می‌گردد. با دهه‌ها و عهده‌ها از سوی، مورد استفاده گسترده‌تر می‌گردد. شواهد تجربی موجود در زمینه خرابی ناهنجاری شکوه‌های دولالی فضاکار نشان‌دهنده آسیب‌پذیری این سازه‌ها در برخی خطر خرابی پیشرفته است که به عنوان یک نمونه مهم می‌تواند به خرابی سقف سالن ورزشی شهر هارتفورد در سال 1987 اشاره کرد (وی 1987). خرابی پیشرفته، انتشار تنجیری خرابی به‌دلیل خرابی موضوعی به‌وجود می‌آید. این خرابی اولیه، 26 سازه‌ی سازه‌ای در سال 1382 شمسی.
در مجاورت دبیرخانه تغییرات در وضعیت شکستگی و افزایش خطر افتتاح خرابی در سازه می‌شود. پددیجه فرود چش دنیاکی در شیگه‌های دو لایه فضایی پس پیدا نمی‌شود. ترکیب استدی مفهومی که در صورت وقوع پددیجه فرود چش دنیاکی، به طور همزمان فرود گیری در گره‌های سازه و فرود گیری عضوی در اساسی با کانال خرابی وضعیت می‌شود. رخ می‌دهد [3]. در چنین مواردی برای ارزیابی صحیح فرود خرابی سازه، تحلیل استاتیکی کافی نموده و باعث افزایش خرابی به درستی در تحلیل در نظر گرفته شود.

در غیره محدودیت [6] کوشش کردن روش‌های سستمانتیکی را برای تعیین و اکتشاف سازه‌های خریاپی نیست. اثرات دبیرخانه‌ای عضوی، پایه‌ای را کند. در این تحقیقات اثر دبیرخانه‌ای عضوی در محدوده الیاف و نیز اثر دبیرخانه کاهش ناکافی یافته عضوی به عنوان کمک اولیه در شیپهای دولتی فضایی را با تاکید بر انرژی جنبشی آزاد شده در طی فرود و اثرات ضریبی ناشی از آن مطالعه کرده‌اند. در روی پیشنهادی که به اصلاح روش مبتنی بر انرژی نایمده می‌شود ابتدا برآمده تایخ تحلیل استاتیکی غیرخطی سازه، سرعت‌های اولیه متناظر با انرژی جنبشی ناشی از فرود چش دبیرخانه در موقعیت غیرخطی انتهای فرود چش، موقعیت از شکل (1) محاسبه می‌شود. انرژی جنبشی ناشی از فرود چش گریزه در حین از گره‌های سازه. برای پا سطح محصول بین منحنی تعادل استاتیکی بار تغییر مکان و خط افقی مستقیم مرسوم بین نقاط a و z از شکل نموده (1) است.
سرعتهای اولیه منظور به کمک رابطه کار-انرژی محاسبه می‌شوند (۱۲). تحلیل دینامیکی و آکوستیک فرچه‌سازی اعمال سرعت‌های اولیه مزوبر و بار انتقالی نیز به روش‌های مختلف تحقیق نظر می‌شود (۱۳) از نظر می‌گردد.

با توجه به همبستگی خرابی پیش‌رونده در سازه‌های شبکه دولای فضایکا، ضرورت است در طراحی این نوع سازه تداوز خاصی برای پیشگیری از برخورد خرابی پیش‌رودن، انتخاب شد بود. این اساس در ادامه پس از تشریح استراتژی‌های مختلف طراحی در برای خرابی پیش‌رودن، الگوریتم مناسب برای طراحی سازه‌های شبکه دولای فضایکا به صورت مقاله در برای خرابی پیش‌رودن به شکل که در آن عامل اثرات دینامیکی تاسیس از نظر منظور قرار گرفته است.

۲- استراتژی طراحی

روشهای کاهش خطر خرابی پیش‌رودن به سه دسته اصلی

۱- روش کنترل حادثه (۱) روش طراحی غير مستقیم و

۲- روش طراحی مستقیم، قابل تفکیک‌کننده (۱۴) در روش کنترل حادثه سعی بر این است که از حادثه بر غیرعواید (ظریف اضافه به تصادف، انفجار، تصادف و ...) اجتناب کرد. در این مقاله، به دو روش متفاوت روش‌های کاهش خطر خرابی پیش‌رودن نشان می‌دهد که روش مשכר خابری پیش‌رودن از دست دادن عضو مزبور، سازه می‌تواند از تمامی عواقب خطر خرابی پیش‌رودن استفاده شود. به اطلاع از نمایش مقالات رفعی خرابی پیش‌رودن است (۱۷) لذا در ادامه جنبه‌های مختلف روش مسر خابری پیش‌رودن شرح داده می‌شود.

۲-۱ روش مسر خابری پیش‌رودن:

دراین روش با تحلیل استاتیکی فلزی سازه‌های که عضوی از آن حذف شده و تحت بر طراحی قرار می‌گیرد انتخاب شده و ضریب ایمنی هریک از اعضا با

۱۵۲

شماره ۱، فروردین ۱۳۸۶

استقلال، سال ۲۶، شماره ۱، فروردین ۱۳۸۶
قسمیت ظرفیت نهایی عضو بر تیروی قسم عضو تحمیل می‌کند. محاسبه می‌شود. اگر ضریب ایمنی تمامی عضا ورگر در واحد باشد، خرابی پیشرفت رخ نخواهد داد. براساس تعداد عضای با ضریب ایمنی کمک، می‌توان احتمال وقوع خرابی پیشرفت در سازه را تعیین کرد.

2-2 روش مسر جایگزین غیرخطی استاتیکی
روش مسر جایگزین خط استاتیکی هیچ اطلاعاتی در مورد نحوه انتشار خرابی در سازه نمی‌دهد، بخاطر این منظور نیاز به تحلیل غیرخطی سازه است. در روش مسر جایگزین غیرخطی استاتیکی با انجام تحلیل استاتیکی غیرخطی بر روی سازه که عضوی به جراحی آن حذف شده است، ظرفیت بازیابی سازه آسپید به میزان تعیین می‌شود. شکل ماتریس معادلات تعادل استاتیکی سازه به صورت زیر است:

\[\begin{bmatrix} K & D \\ \end{bmatrix} = \begin{bmatrix} P \end{bmatrix} \]

که در آن \(K \) ماتریس سختی سازه است، \(D \) و \(P \) بردار بار بار سازه است.

در این روش ضریب ایمنی سازه به صورت نسبت ظرفیت بازیابی تهیه سازه آسپید به بار طراحی سازه تعیین می‌شود. اگر ضریب ایمنی سازه کمتر از واحد باشد در این صورت اعمال بار طراحی به سازه مزبور سپس وقوع خرابی پیشرفت در سازه می‌شود.

در رابطه با کارگیری روش مسر جایگزین ذکر این نکته ضروری است که اگر از بین عضو به صورت تدریجی و آرام باشد بازتوی نیروها به تدریج انجام گرفته و تحلیل استاتیکی باید ارزیابی کننده سازه کافی خواهد بود. اما اگر خرابی عضو به صورت تر و ناکام گردد به سازه تحت اثر قرار داشته باشد در این صورت اثرات دینامیکی شدیدی می‌تواند بروز یابد. این اثرات دینامیکی باعث افزایش موقتی نیروهای اضافی شده و اگر این افزایش به حدی باشد که بتواند موجب خرابی اعضای دیگری از سازه شود خطر انتشار خرابی
پیش‌رودی: در تحلیل‌های الکترونیکی، به‌هیچ‌گونه ذره‌ای می‌تواند برای تولید یک شرکت‌دار داشته باشد. این شرکت‌دار با استفاده از داده‌های ویدئو، می‌تواند یک شرکت‌دار داشته باشد. این شرکت‌دار با استفاده از داده‌های ویدئو، می‌تواند یک شرکت‌دار داشته باشد.

۳- تحلیل امکان‌پذیری بیشترین

بر روی یک سازه شبکه طراحی فضاکار نمونه

در نظر دریافت برای پوشش محتوای‌های مساحت (2) متمرکز از سیستم شبکه وابسته به فضای کاری شبکه‌ای استفاده شود.

۱- طراحی سازه

در نظر دریافت برای پوشش محتوای‌های مساحت (2) متمرکز از سیستم شبکه وابسته به فضای کاری شبکه‌ای استفاده شود.

۲- بررسی میزان نوسان

در نظر دریافت برای پوشش محتوای‌های مساحت (2) متمرکز از سیستم شبکه وابسته به فضای کاری شبکه‌ای استفاده شود.

۳- بررسی میزان نوسان

در نظر دریافت برای پوشش محتوای‌های مساحت (2) متمرکز از سیستم شبکه وابسته به فضای کاری شبکه‌ای استفاده شود.
جدول ۱ - مشخصات اعضاي سازه

<table>
<thead>
<tr>
<th>موقعیت عضو</th>
<th>نوع نقطه (mm)</th>
<th>مقطع نقطه (mm²)</th>
<th>ضریب عضو (mm)</th>
<th>حداکثر مقاومت فشار عضو (kN مجازا)</th>
<th>حداکثر مقاومت کشش عضو (kN مجازا)</th>
<th>نیبندی عضو</th>
</tr>
</thead>
<tbody>
<tr>
<td>لایه بالا</td>
<td>159,76×25,4 CHS</td>
<td>10724</td>
<td>870</td>
<td>107640</td>
<td>151564</td>
<td>لابی ۱</td>
</tr>
<tr>
<td>لایه پایین</td>
<td>139,76×25,4 CHS</td>
<td>7599</td>
<td>695</td>
<td>66752</td>
<td>97052</td>
<td>لابی ۲</td>
</tr>
<tr>
<td>عضو کوشنگی جان</td>
<td>159,76×25,4 CHS</td>
<td>10524</td>
<td>700</td>
<td>122220</td>
<td>151564</td>
<td>لابی ۳</td>
</tr>
<tr>
<td>سایبر اعضاي جان</td>
<td>139,76×25,4 CHS</td>
<td>7599</td>
<td>671</td>
<td>80628</td>
<td>80628</td>
<td>لابی ۴</td>
</tr>
</tbody>
</table>

الاستیک ۲۱۰۰⁰⁰⁰⁰⁰ M Pa ۲/۲۵ k Pa بار مرده، ۱/۲۵ k Pa بار زنده (سیریل سرف) است انتخاب شده است. بارگذاری می‌باشد به صورت بارهای متمرکز گره‌های در محل گره‌های لایه بالایی بر سازه اعمال شده است. به

۲-۳ تعبیر اعضاي بحرانی سازه

به عنوان روش‌های ساده و موثر برای شناسایی اعضاي بحرانی به این ترتيب عمل شده است که با تحلیل خطی سازه سالم، نیروهای داخلی اعضا محاسبه شده و اعضاياي که تحت

۲۴۰ MPa تحمیل می‌شوند، اعضا را به نوع نیم‌خور لوله‌ای ۱۱ با تنش تلیم

شامل ۲۶، عدد ۱، شماره ۱۳۸۶
نتایج تحلیل مسیر جایگزین خنثی استاتیکی

نتایج تحلیل مسیر جایگزین خنثی استاتیکی شهکه دولایه فضاکار، به ازای حذف هر یک از هشت عضو بحرانی سازه انجام شده است. در هر نویت از تحلیل نشان یک عضو بحرانی سازه حذف شده و سازه تحت بار طراحی قرار گرفته است. ضریب ایمنی هر یک از عضویت سازه اسپیدایه دیده با تقسم طریقتهای نهایی عضو
بر نیروهایی که عضو مزبور تحلیل می‌کند محاسبه شده است.

شکل ۳ - اعضای بحرانی سازه

ظرفیت نهایی اعضای بر اساس ضوابط آیین نامه AISC قبلاً محاسبه شده و در جدول (۱) آورده شده است.

نتایج تحلیل مسیر جایگزین خنثی به ازای حذف هر یک از اعضای بحرانی در شکل‌های (۳) به‌طور شماتیک نشان داده شده است و خلاصه نتایج در جدول (۵) آورده شده است. انتظار می‌رود تمامی اعضایی که ضریب ایمنی آنها کمتر از ۱/۱۰۰/۵ است در اثر اعمال بار طراحی به سازه آسیب دیده خراب شوند، اعضایی نیز که ضریب ایمنی آنها بین ۱/۱۰۰ و ۱/۱۰۰/۵ است مشکوک به خرابی انده است. بر اساس نتایج تحلیل مسیر جایگزین خنثی حذف اعضای بحرانی U1 و U2 منجر به تجزیه عضوی بیشتری در سازه شده و ممکن است نهایتاً منجر به وقوع عضوی بیشتری در سازه شود ولی حذف اعضایی چون L1 و L2 خرابی کنترلی در سازه پیش آورده و احتمال ایجاد دیده باعث بروز خرابی پیشنهاد شده، بنابراین منجر شده است.
شکل ۴ - نتایج تحلیل مسیر چاپ‌کردن خطی استاتیکی به ازای حذف هر یک از اعضای بحرانی سازه
تаблицه ۲ - نتایج تحلیل مسیر ژاپنی ختم

<table>
<thead>
<tr>
<th>عضو بحرانی حدف شده</th>
<th>تعداد ععضا اضافی بین ۱ و ۲/۵ (S.F. < ۱۰۰)</th>
<th>تعداد ععضا اضافی بین ۱ و ۲/۵ (S.F. ≥ ۱۲۵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>۷</td>
<td>۹</td>
</tr>
<tr>
<td>U2</td>
<td>۶</td>
<td>۸</td>
</tr>
<tr>
<td>U3</td>
<td>۲</td>
<td>۶</td>
</tr>
<tr>
<td>L1</td>
<td>۰</td>
<td>۱۶</td>
</tr>
<tr>
<td>L2</td>
<td>۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>D1</td>
<td>۱۰۴</td>
<td>۱۸</td>
</tr>
<tr>
<td>D2</td>
<td>۴</td>
<td>۱۰</td>
</tr>
<tr>
<td>D3</td>
<td>۴</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

آسیب دیده به همک تحلیل غیرخطی استاتیکی می‌شود.
برای تحلیل واکنش خرابی سازه ابتدا بایستی مدل رفتار غیرخطی هر یک از اعضای سازه تعیین شود. در این تحقیق رفتار مسیر محوری-تغیرمیک محری اعضا در کشش، بهصورت استاتیک-پلاستیک کامل در نظر گرفته شده است و برای تعیین رفتار اعضا در فشار در نظر گرفته شده است که عضو در مورد مقاومت خرابی از انحنای اولیه کرجکی که از انحای نهایی اولیه تعیین می‌شود، برخوردار باشد. حداکثر انحراف اولیه از نزدیک ۱ درصد و سطح در محل وسط دهه جداسا برابر با مقدار متوسط ۰.۰۰۱ لیتر در نظر گرفته شده است (L = طول عضو). با استفاده از روش عناصر محوری و با انجام تحلیل غیر خطی هندسی و مصالح، واکنش مسیر محوری-تغیرمیک محوری هر چهار تپ عضو سازه تحت قطعی فشاری مطلق شکل (۵) به‌دست آمده است. در نهایت با استفاده از روش خطی‌سازی تک‌دستی-خطی، رابطه ابدثالی تنش-کرنش محوری اعضا مطلوب شکل (۶) در نظر گرفته شده است. در ادامه برای تحلیل غیرخطی واکنش خرابی سازه کافی است به طرف بزرگ‌تر و در نهایت بایستی که رفتار مسیر محوری-تغیرمیک محوری آن بر اساس مدل دینامیکی شکل (۶) مشخص شود، مدل‌سازی شود. برای اعمال اثرات غیرخطی هندسی، روش لایه‌برداری کلی ۱۵ بار برده شده است، معاینه‌های مورد استفاده در تحلیل لایه‌برداری کلی، معمولاً تنش‌شکل

۳-۵-۲-۱ نتایج تحلیل مسیر ژاپنی غیرخطی استاتیکی
تحلیل مسیر ژاپنی غیرخطی استاتیکی شبکه دولیه فضاکار می‌تواند به‌این‌جا حفظ هر یک از هشت عضو بحرانی سازه انجام گرفته است. در هر نویس از تحلیل تناها یک عضو بحرانی سازه حذف شده است و فرض شده که سازه از همان ابتدای تحلیل فاقد عضو بحرانی می‌باشد. بار خرابی سازه

۱۳۸۶ استقلال، سال ۲۶، شماره ۱، شهروفر 158
پیولا-کیشانفی و معیار کرنش گران-لاکرانز že پوشه است. در تحلیل لاکرانزی کلی این معیارهای کنش و کرنش، به افتخار تغییر شکل نیافته اولیه ارجاع داده می‌شود. نتایج تحلیل غیرخطی استاتیکی سازه سالم و هشت سازه آسیب دیده در شکل‌های (7) تا (9) تماشای داده شده است. ضرایب این مربوط به تحلیل مسیر جایگزین ضرایب گران-لاکرانزی استاتیکی. با تقسیم بار خرابی سازه آسیب دیده به بار طراحی

شکل 8 - واکنش استاتیکی بار - تغییر سازه به ازای
حدف هر یک از اعضای بحرانی نهایی پاییز

شکل 7 - واکنش استاتیکی بار - تغییر سازه به ازای
حدف هر یک از اعضای بحرانی نهایی بالایی

سازه (که برای با 500 kN است) محاسبه شده و در جدول (3) ذکر شده است. بر اساس نتایج حاصله، از بین رفنت اعضای بحرانی U1 D1 به ترتیب بیشترین تثبیر را در کاهش طرفیت باربری سازه داشته و از بین رفنت اعضای بحرانی L1 و L2 تاثیر بیشتری در کاهش طرفیت باربری سازه دارد که این موضوع با نتایج تحلیل مسیر جایگزین خطا استاتیکی نیز مطابقت دارد. اما همان طور که

شکل 6 - رابطه ایدئالی تشکل - کرنش محوری اعضا

شکل 9 - واکنش استاتیکی بار - تغییر سازه به ازای
حدف هر یک از اعضای بحرانی جان
جدول ۳- نتایج تحلیل مسیر چاپگرین غیرخطی استاتیکی

<table>
<thead>
<tr>
<th>ضریب ایمنی سازه</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>648</td>
<td>125</td>
<td>6808</td>
<td>131</td>
</tr>
<tr>
<td>U2</td>
<td>91</td>
<td>175</td>
<td>10202</td>
<td>196</td>
</tr>
<tr>
<td>U3</td>
<td>10671</td>
<td>197</td>
<td>8992</td>
<td>145</td>
</tr>
<tr>
<td>L1</td>
<td>5380</td>
<td>101</td>
<td>2804</td>
<td>15</td>
</tr>
<tr>
<td>L2</td>
<td>5890</td>
<td>15</td>
<td>5890</td>
<td>15</td>
</tr>
</tbody>
</table>

در جدول(۳) ملاحظه می‌شود همه ضرایب ایمنی به‌دست‌آمده در تحلیل مسیر چاپگرین غیرخطی استاتیکی، بزرگتر از واحد هستند. بدین‌مهمه که در حداکثر حذف هریک از اعضای پیچانی سازه، آسیب‌پذیری قادERE به‌طور بروز این‌جا غرفه‌گیری کلی در سازه گذشته‌بود، به عبارت دیگر، روش مسیر چاپگرین غیرخطی استاتیکی بروز خرابی‌های پیش‌رونهده در سازه را در تر از پیچانی دسته‌بندی می‌کند. این نتیجه مهم در پایداری نیز باشد. مذکر که در محاسبه ضرایب ایمنی روشهای مسیر چاپگرین غیرخطی استاتیکی برخلاف روش مسیر چاپگرین خطی استاتیکی، هیچ ضریب اطمینانِ (در ارزیابی بار خرابی سازه اسپیسیده) دخالت داده نشده و این موضوع با پیش‌بینی در هنگام مقایسه نتایج دو روش حتماً محدود قرار گیرد.

جدول ۴) به‌دست‌آمده است. زمان‌نوازی طبیعی می‌تواند اثری در ارتقاء سازه محاسبه‌شده و نمود زمانی همه تحلیل‌های دینامیکی غیرخطی برابر با $\Delta t = 0.03$ sec < $T/16$ را در نظر گرفته شده است با استفاده از روش میایی رایلی فاکتورهای مربوطی مسیر برای دقت‌گریفته عامل مربوطی در تحلیل دینامیکی تعیین شده است. در محاسبه این فاکتورهای ضروری است برای مدهای بالاتر که دارای فکرانس‌های بزرگتری هستند، نسبت‌های مربوط به فکرانس‌های در نظر گرفته شود از این روش نسبت‌های مربوطی مدهای اول و پنج ارتقا سازه، به ترتیب 1.5% و 2.5% š ŋ و به کمک معادلات زیر تعیین شده‌اند:

$$\alpha_m = 2\omega_0\omega_5 (\xi_1 - \xi_5) (\omega_0^2 - \omega_5^2)$$

$$\beta_5 = 2(\frac{\xi_5}{\omega_5} - \frac{\xi_0}{\omega_0}) (\omega_0^2 - \omega_5^2)$$

در جدول(۴) ملاحظه می‌شود همه ضرایب ایمنی به‌دست‌آمده در تحلیل مسیر چاپگرین غیرخطی استاتیکی، بزرگتر از واحد هستند. بدین‌مهمه که در حداکثر حذف هریک از اعضای پیچانی سازه، آسیب‌پذیری قادERE به‌طور بروز این‌جا غرفه‌گیری کلی در سازه گذشته‌بود، به عبارت دیگر، روش مسیر چاپگرین غیرخطی استاتیکی بروز خرابی‌های پیش‌رونهده در سازه را در تر از پیچانی دسته‌بندی می‌کند. این نتیجه مهم در پایداری نیز باشد. مذکر که در محاسبه ضرایب ایمنی روشهای مسیر چاپگرین غیرخطی استاتیکی برخلاف روش مسیر چاپگرین خطی استاتیکی، هیچ ضریب اطمینانِ (در ارزیابی بار خرابی سازه اسپیسیده) دخالت داده نشده و این موضوع با پیش‌بینی در هنگام مقایسه نتایج دو روش حتماً محدود قرار گیرد.

جدول ۴- نتایج تحلیل مسیر چاپگرین غیرخطی دینامیکی

تحلیل مسیر چاپگرین غیرخطی دینامیکی سازه‌ها با حذف ناکارآمدی هر یک از هشت عضو به‌عنوان سازه انجام شده است. در هر نتیج از تحلیل تهاپ یک عضو به‌عنوان سازه، به‌طور ناکارآمدی در تر از پیچانی حذف شده و واکنش دینامیکی خرابی سازه تعیین شده است. قبل از اینکه پیشنهاد به تحلیل دینامیکی سازه‌ها شود، ابتدا تحلیل خطیی مقایسه ویژه در تر از پیچانی طراحی انجام گرفته و فاکتورهای طبیعی ارتقا سازه‌ها مطابق

1386 استقلال، سال ۲۶، شماره ۱، شهروز
جدول ۲ - نتایج تحلیل مقادیر ویژه

<table>
<thead>
<tr>
<th>سازه</th>
<th>ω_1</th>
<th>ω_2</th>
<th>T_1</th>
<th>α_m</th>
<th>β_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>سالم</td>
<td>۱۵۸۷</td>
<td>۵۲۴۰۵</td>
<td>۰.۲۹۵</td>
<td>۰.۲۶۶</td>
<td>۸.۸۳۷۱×۱۰۴</td>
</tr>
<tr>
<td>U1</td>
<td>۱۲۴۰۷</td>
<td>۵۱۹۰۲</td>
<td>۰.۵۹۵</td>
<td>۰.۲۳۷</td>
<td>۸.۷۶۸۳×۱۰۴</td>
</tr>
<tr>
<td>U2</td>
<td>۱۳۰۳۳</td>
<td>۶۹۳۰۹</td>
<td>۰.۴۷۰</td>
<td>۰.۲۳۷</td>
<td>۹.۱۹۵۴×۱۰۴</td>
</tr>
<tr>
<td>U3</td>
<td>۱۵۷۲۰</td>
<td>۵۱۶۲۰</td>
<td>۰.۴۰۰</td>
<td>۰.۲۵۵</td>
<td>۸.۷۲۸۰×۱۰۴</td>
</tr>
<tr>
<td>L1</td>
<td>۱۴۷۱۷</td>
<td>۴۷۲۰۱</td>
<td>۰.۴۴۰</td>
<td>۰.۲۶۰</td>
<td>۸.۵۹۸۲×۱۰۴</td>
</tr>
<tr>
<td>L2</td>
<td>۱۷۴۲۲</td>
<td>۶۷۸۲۵</td>
<td>۰.۳۹۹</td>
<td>۰.۲۵۹</td>
<td>۸.۶۱۲۰×۱۰۴</td>
</tr>
<tr>
<td>D1</td>
<td>۳۹۸۳۳</td>
<td>۲۷۸۸۷</td>
<td>۱.۵۸۸</td>
<td>۰.۱۰۶</td>
<td>۶.۸۸۸۱×۱۰۴</td>
</tr>
<tr>
<td>D2</td>
<td>۱۴۷۱۷</td>
<td>۴۷۲۰۱</td>
<td>۰.۴۴۰</td>
<td>۰.۲۶۰</td>
<td>۸.۵۹۸۲×۱۰۴</td>
</tr>
<tr>
<td>D3</td>
<td>۱۴۷۱۷</td>
<td>۴۷۲۰۱</td>
<td>۰.۴۴۰</td>
<td>۰.۲۶۰</td>
<td>۸.۵۹۸۲×۱۰۴</td>
</tr>
</tbody>
</table>

نتیجه اینکه میزان کاهش فرکانس سازه در محدوده ω_1 به طور می‌تواند به عنوان میزانی مربوط به تغییر مقادیر ویژه سازه در ω_2 باشد. احتمال وقوع خرابی پیشنهاد در سازه، مورد توجه و مقابله قرار می‌گیرد.

با انجام تحلیل خریداری دینامیکی، واکنش زمانی تغییر مکانیکی گره مركزي، لایه بالایی سازه، به ایجاد حذف هر یک از اعضای بحرانی لایه‌های بالایی، پایینی و جان سازه به ترتیب مطلق شکل‌های (۱۰) و (۱۱) به دست آمده است. این اساس تأثیر D3, D2, U3, L2 و L1 بدست ایفایی بوده‌است. از این نتیجه یک اعضای دیگری از سازه شود فقط منجر به ایجاد ارتعاش جزیی می‌شود که این ارتعاش به واسطه عامل مریز بی‌پروازی می‌باشد. می‌تواند بر این لایه بالایی اثر گذار از U1 داشته باشد. از این نتیجه می‌توان به ارتعاشات احساسی در افراد دیگری از سازه و تغییر مقادیر به درون این سازه پیشنهاد داشته باشد.

۱۶۱

استقلال سال ۱۳۸۶ شمسی ۱۳۸۶
شکل 10 - واکنش زمانی تغییر‌کان گره مرکزی لاشه بالایی سازه به افزایش حذف هر یک از اعضای بحرانی لاشه بالایی

شکل 11 - واکنش زمانی تغییر‌کان گره مرکزی لاشه بالایی سازه به افزایش حذف هر یک از اعضای بحرانی لاشه بالایی

شکل 12 - واکنش زمانی تغییر‌کان گره مرکزی لاشه بالایی سازه به افزایش حذف هر یک از اعضای بحرانی جان

شکل 13 - واکنش کامل بار-تغییر‌کان گره مرکزی لاشه بالایی سازه به افزایش حذف عضو بحرانی U1

شکل 14 - واکنش کامل بار-تغییر‌کان گره مرکزی لاشه بالایی سازه به افزایش حذف عضو بحرانی U3

162
طراحی شبکه‌های دوایلی فضاکار به صورت مقاوم در برای خرابی پیشروندگی است، داده‌های خرابی برای روش‌های مختلف شبکه دوایلی ناشی از خرابی آنها، تحلیل و طراحی سازه‌های

افراد دینامیکی ایجاد می‌شود که بعثت اثرات دینامیکی شدید آن، سبب ناباید از سازه و برطای پیشروندگی پیش‌رودگی در

سازه می‌شود.

۴- نتایج گیری

خوابانکی اعضا شبکه‌های دوایلی فضاکار با اثرات

دینامیکی است. در مورد هر یک از این اثرات

پیشروندگی می‌تواند باعث بروز نیروهای داخلی سازه و به تبع آن تشدید

خطر بروز خرابی پیشروندگی در سازه می‌شود.

واژه نامه

1. double layer grid space structures
2. progressive collapse
3. snap-through
4. pseudo force method
5. post buckling
6. abnormal load
7. specific local resistance method
8. alternate path method
9. critical
10. structural integrity
11. Rayleigh
12. Newmark
13. offset
14. Circular hollow Section
15. total Lagrangian
16. Piola-Kirchhoff
17. Green-Lagrange

۱۶۳

مراجع

12. Newmark
13. offset
14. Circular hollow Section
15. total Lagrangian
16. Piola-Kirchhoff
17. Green-Lagrange

۱۶۳

مراجع

