تحلیل خمش و واخمش ورق ناهفصانگر در شرایط کرنش صفحه‌ای

محمود سلیمی، مصطفی جمشیدیان، علی بهشتی و عبادرهیم صادقی دولت آبادی
دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
مجتمع فولاد مبارکه

چکیده - رفتار مکانیکی ورفتهایی که به صورت سرد نوردی می‌شوند به طور قابل توجهی به تنش پسماند و باسنده ایست. این تنش باعث دمای فواک و - خمش به وجود می‌آید. این آزادی خمش پیش زمینه بوده و روشهای سطحی است و مشخص کردن توزیع تنش در جهت ضخامت ورق، مشکل و وقت‌گیر است. این مقاله حل سنگینه از این مقاله به دست آمده از آن را به روش‌های حل استویل استیسیک با شرایط کرنش صفحه‌ای مدل می‌کند. ماده مورد بررسی نیز به صورت ناهفصانگر فرض شده است. حالتی که به کمک روش اجزای محدود، به منظور بررسی و ارزیابی سینت‌ حل تحلیلی آورده شده است. این تحقیق در بررسی تأثیرات دایره‌ای، بازه و باسنده کردن ورق (بکر) بیشترین هم‌زمانی ورق و از بین بردن موج ورق کاربرد دارد.

واژگان کلیدی: تنش پسماند، خمش و واخمش الستویل استیسیک، ناهفصانگری، روش اجزای محدود

Bending-Unbending Analysis of Anisotropic Sheet under Plane Strain Condition

M. Salimi, M. Jamshidian, A. Beheshti, and A. Sadeghi Dolatabadi
Department of Mechanical Engineering, Isfahan University of Technology
Mobarakeh Steel Complex

Abstract: The mechanical behavior of cold rolled sheets is significantly related to residual stresses that arise from bending and unbending processes. Measurement of residual stresses is mostly limited to surface measurement techniques. Experimental determination of stress variation through thickness is difficult and time-consuming. This paper presents a closed form solution for residual stresses, in which the bending-unbending process is modeled as an elastic-plastic plane strain problem. An anisotropic material is assumed. To validate the analytical solution, finite element simulation is also demonstrated. This study is applicable to analysis of coiling-uncoiling, leveling and straightening processes.
فهرست علائم

<table>
<thead>
<tr>
<th>علائم اصلی</th>
<th>انگلیسی ترجمه</th>
</tr>
</thead>
<tbody>
<tr>
<td>v نسبت تنش</td>
<td>E Module Young</td>
</tr>
<tr>
<td>σ نسبت کرنش در معیار هیل</td>
<td>k انحنای</td>
</tr>
<tr>
<td>o متهیز کمکی</td>
<td>R متغیر</td>
</tr>
<tr>
<td>R' فاصله از محور خشن</td>
<td>y تنش سیستم ماده</td>
</tr>
<tr>
<td>Y کرنش جزیی</td>
<td>dE کرنش جزیی</td>
</tr>
<tr>
<td>dα ثابت آنی نسبت در قانون جریان</td>
<td>dσ نسبت کرنش جزیی</td>
</tr>
<tr>
<td>dθ نسبت تنش جزیی</td>
<td>ε نسبت کرنش جزیی</td>
</tr>
<tr>
<td>R ضریب پواسون</td>
<td>u مرهق واحش</td>
</tr>
</tbody>
</table>

1- مقدمه
توابع تنظیم چرارد تنش پسماند که در فرانسه
خمیش- واردی در ورقه‌های تولیدی نورد به وجود
می‌آید نقش بسزایی در میزان تحمل بار و مقاومت ویژگی‌های
می‌کند. افزایش‌گری‌های تعریفی از ورقه‌های ضخیم نمی‌دهد.
که توانایی نش تنظیم چرارد راحتی خصوصاً نسبتاً پچیده
است. ورقه‌های تعریفی که به دو دسته تعریفی و غیر تعریفی
تغییر می‌شوند، محدودنیت‌های دارد. مسائل تنظیم ورقه‌های
نظر مفید زدن و لایه برداری استخوان، گران و وقت کردن. از
طرف دیگر ورقه‌های غیر تعریفی هم توأمی کافی برای
مشخص کردن تنظیم چرارد ندارند. از اینرو استفاده یک
حل تحلیلی برای بیان توابع تنظیم نش تنظیم و متغیف است.

مطالعات سایر روی فرانسه خمش- واردی انجام شده
است. این مطالعات کسته و سببی از الکتریسم و پلاستیسمی
شاعر انحنای خمش چکاو و بزرگ، خمش خلاص و خمش

همراها با کشش، موارد بیدون کار صنعتی و مواد کار سخت,
روش‌های تعریفی، ورقه‌های تحلیلی و ورقه‌های دو بعدی
و سه بعدی را شامل می‌شود [1-3]. پیشرفت این تحقیقات از
روابط ساده برای بیان توزیع تنخ و کرنش استفاده کرده‌اند و از
میان آنها نسبت نیست کمی به بررسی جزییات توزیع تنخ جاری
و تنش پسماند اختصاص دارد.

اینگار ورود کانال خمش خلاص می‌توان صرفه را به
صوتی کرنش تحلیلی در با کمک روش دو بعدی برای
کرنش‌های جزیی مدل کردن. در این حالت فرض شده بود که
ماده از معیار سیستم فون ماژ و قانون جریان همراه پرانل-راس
تغییر می‌کند [4،5].

رونکل یک تحلیل عدید ساده برای حالت خمش خلاص
پلاستیک در یک صفحه بیش از یک کرنش و سپس از روی آن
یک حل تقریبی برای توزیع تنش پسماند به‌دست آورد [6]. در
این روشهای از آنها استفاده از قواست الکتریسم بر فراوان صرفشیر شده است.

استقلال، سال 26، شماره 2، اسفند 1386 (پژوهشنامه: روش‌های عدیدی در مهندسی).
تحلیل آورده شده است. از آنجایی که در فرآیند مورد نظر
تغییر انرژی چندان زیاد نیست، این تحلیل برای بررسی
فرآیندهایی باز و به سمت کردن ورگ حاصل یپچ، همترسازی
ورق و از این بردن موجب قابل استفاده است.

۲- روش تحلیل

۲-۱- فرض‌ها

در این بررسی فرض می‌شود که ورق تحت فولاذی کامل تنش زدایی شده و در تیجه عاری از تنش پسماند اولیه به ویژه آثار کار آراپلاستیک قابل حذف و منحنی تنش- کرنش تا قبل
از تسیلی هموار و ظنی است.

از آنجایی که ماده تحت کرنش‌های به‌زرگ قرار نمی‌گیرد،
می‌توان از آثار کار آراپلاستیک در تنش‌های کرنش صفر
و به‌این ترتیب رفتار ورگ با جسمیت کار آراپلاستیک فرض می‌شود که
ابتدا از معیار تسیلی هیل و فرمان جریان همراهی پروری می‌کنند.
روند کلی حل معادلات با استفاده از روش انرژی سه‌بعدی توسط
آقای کوئس و همکارانش (۹) انجام گرفته است.

آئونی کوئس و همکارانش (۹) انجام گرفته است.

۱-۲- شکل (۳) هسته بکار رفته در خمش و واحتش برای شرایط
کرنش صفحه‌ای در صفحه ۱-۲-۳ را نشان می‌دهد. محور تم در جهت
عرضی ورق است و راستای طولی همان راستای محیطی است.
مهمین فرض می‌شود ورگ در دارای همسان‌گردی متقارن
محوری حول محور ۲-۳-۱ است.

۲-۲- خمش

کرنش الکتریکی یا کرنش الاستوپلاستیک برای هر نقطه
دلمخانه در فرآیند خمش به انحنای \(k_i \) و فاصله از محور خمش
\(s \) بستگی دارد. به دلیل وجود شرایط کرنش صفحه‌ای در صفحه
\(xz \) و نشان صفحات در صفحه \(xyz \) یکین کرنش در صفحه ورق با
توجه به قانون هدک به صورت زیر خواهد بود.

\[
\begin{align*}
\sigma_{z,h} &= \frac{\sigma_{z,h} - \sigma_{o,x,h}}{E} \quad (1-\text{الف}) \\
\sigma_{x,h} &= \frac{\sigma_{x,h} - \sigma_{o,z,h}}{E} = 0 \quad (1-\text{ب})
\end{align*}
\]

سالم ۲۶ شماره ۲ تاریخ ۱۳۸۵ (ویژنامه: روش‌های عدیدی در مهندسی)
که در آن E مدل الاستیسیته و $\varepsilon_{zb,b}$ تنش در راستاهای x و z کرنش‌های مربوط به $\sigma_{zb,b}$ و $\sigma_{zb,b}$ تنش در محور z همان‌گونه می‌باشد.

ب) برای مواد به‌عنوان گرد $(\varepsilon_{zb,b})$ به صورت زیر بیان می‌شود

$$\sigma_{zb,b}^2 = \frac{2R}{1+R} \sigma_{xb,b} \sigma_{zb,b} + \sigma_{zb,b}^2 = Y^2$$

(2)

(الف) نشان دهنده و Y نشان دهنده R برابر با کرنش پلاستیک جهت نسبت تنش قرار گرفتن در جهت ضخامت است. نشان دهنده پلاستیک مربوط به کرنش طولی $\varepsilon_{zb,b}$ به صورت زیر خواهد بود

$$\varepsilon_{zb,b} = \frac{E}{1-v^2} \varepsilon_{zb,b}$$

$$\sigma_{xb,b} = \frac{vE}{1-v^2} \varepsilon_{zb,b}$$

$$\sigma_{zb,b} = k_b y$$

(3)

(ب) نشان دهنده با کمک معادلات (3) در معادله (2) به توجه به معادله (4) می‌باشد

$$\varepsilon_{zb,b} = \frac{1-v^2}{E} \frac{Y}{\sqrt{v^2 - (1-R)}} + 1$$

(4)

(الف) که در آن $0 < Y < 1$ در نتیجه غربت $\varepsilon_{zb,b}$ اگر انحنای خمش را در نظر بگیریم، هنگامی که مقادیر ورق الاستیک باتک k_b می‌باشد. بنابراین $\varepsilon_{zb,b}$ به توجه به معادله (6) می‌باشد

$$\varepsilon_{zb,b} = \frac{Y}{E k_b}$$

(5)

در نتیجه معادله (3)، نشان دهنده $\varepsilon_{zb,b}$ به توجه به معادله (4) می‌باشد.

$$\varepsilon_{zb,b} = \frac{1-v^2}{E k_b} \frac{Y}{\sqrt{v^2 - (1-R)}} + 1$$

(6)

(الف) که در آن $0 < Y < 1$ در نتیجه غربت $\varepsilon_{zb,b}$ اگر انحنای خمش را در نظر بگیریم، هنگامی که مقادیر ورق الاستیک باتک k_b می‌باشد. بنابراین $\varepsilon_{zb,b}$ به توجه به معادله (6) می‌باشد

$$\varepsilon_{zb,b} = \frac{Y}{E k_b}$$

(5)

(الف) که در آن $0 < Y < 1$ در نتیجه غربت $\varepsilon_{zb,b}$ اگر انحنای خمش را در نظر بگیریم، هنگامی که مقادیر ورق الاستیک باتک k_b می‌باشد. بنابراین $\varepsilon_{zb,b}$ به توجه به معادله (6) می‌باشد

$$\varepsilon_{zb,b} = \frac{Y}{E k_b}$$

(5)

(الف) که در آن $0 < Y < 1$ در نتیجه غربت $\varepsilon_{zb,b}$ اگر انحنای خمش را در نظر بگیریم، هنگامی که مقادیر ورق الاستیک باتک k_b می‌باشد. بنابراین $\varepsilon_{zb,b}$ به توجه به معادله (6) می‌باشد

$$\varepsilon_{zb,b} = \frac{Y}{E k_b}$$

(5)

(الف) که در آن $0 < Y < 1$ در نتیجه غربت $\varepsilon_{zb,b}$ اگر انحنای خمش را در نظر بگیریم، هنگامی که مقادیر ورق الاستیک باتک k_b می‌باشد. بنابراین $\varepsilon_{zb,b}$ به توجه به معادله (6) می‌باشد

$$\varepsilon_{zb,b} = \frac{Y}{E k_b}$$

(5)
حال می‌توان با دانسته‌اندیشی معلوم که k_{b} با توجه به معادله (21) نسبت نشته‌ها را در هر نقطه x بی‌اجمله و سپس تنش خم‌پای پلی‌استیک مربوطه را با کمک معادله (8) مشخص کرد. در ضمن یک مقدار حدی وجود دارد که در آن سطوح قرار می‌گیرد که به ناحیه پلی‌استیک می‌گردد. این مقدار با جاگذاری معادله (3-الف) و (3-ب) در معادله (20) و با نظر به اینکه $2e_{z,b} = k_{b}Y/3$ بدست می‌آید:

$$k_{b} = \frac{2Y(1-v^{2})}{E(1-R'v+v^{2})} \tag{22}$$

همان‌طور که دیده می‌شود مقدار k_{b} نه‌ای به خواص ماده پلی‌استیک دارد. زمانی که $|k_{b}| > k_{b}Y$ خم کردن به‌خوبی می‌گردد. رشد تنش پسماند از انتهای کل فرآیند خمسه و واخم‌شان می‌شود.

3- واخم‌شان

فرض می‌شود همه‌آیندیشی را اثر واخم‌شان قبل از هرگونه تغییر شکل اضافی و توانایی همان انتخاب مطلع‌شان با ام‌اوم‌بی از نسبت عکس انجام می‌شود. در نتیجه

$$k_{u} = -k_{b} \tag{23}$$

بعد از مرحله واخم‌شان، نشته‌ای با جمع کردن تنش مرحله خمسه و واخم‌شان بدست می‌آید:

$$\sigma_{z,r} = \sigma_{z,b} + \sigma_{z,u} \tag{24-الف}$$

$$\sigma_{x,r} = \sigma_{x,b} + \sigma_{x,u} \tag{24-ب}$$

تا زمانی که انتخاب معکوس به حد بحرانی برسد و این‌بار موجب تبلیغ ماده اینبار در جهت عکس‌شان شود، نشته مرحله واخم‌شان (بار برداشته) استیک بوده و از روابط زیر حاصل خواهد شد:

$$\sigma_{z,u} = \frac{E}{1-v^{2}} k_{u}Y \tag{25-الف}$$

$$\sigma_{x,u} = \frac{vE}{1-v^{2}} k_{u}Y \tag{25-ب}$$

برای مشخص کردن شرایط تبلیغ معکوسی می‌توان حداکثر نسبت نشته‌ها را تعیین کرد که به بعد از آن نشته مرحله واخم‌شان به حد تست‌سیل می‌رسد. اگر تبلیغ از اثر واخم‌شان رخ دهد، تنش کلی از طرف دیگر با مشتق‌گیری از روابط (8-الف) و (5) به ترتیب در نتیجه داشته‌اند:

$$\sigma_{z,b} = \pm \frac{Y(R' - 2\omega_{b})}{2\left[1 - R'\omega_{b} + \omega_{b}^{2}\right]^{3/2}} \tag{16}$$

$$\sigma_{x,b} = \omega_{b}\sigma_{z,b} + \sigma_{z,b} \omega_{b} \tag{17}$$

ω_{b} جاگذاری معادلات (8 و 16) در معادله (17) معادله زیر را نتیجه می‌دهد:

$$\sigma_{x,b} = \frac{Y(2 - R'\omega_{b})}{2\left[1 - R'\omega_{b} + \omega_{b}^{2}\right]^{3/2}} \tag{18}$$

حال می‌توان با دانسته‌اندیشی در (15) و (18) را در معادله (12) قرار داد و معادله زیر را بدست آورد:

$$\sigma_{x,b} = \pm \frac{Y}{2E(1 - R'v + \omega_{b}^{2})^{3/2}} \times \left[\left(R' - 2\omega_{b}\right) - 2\left(2 - R'\omega_{b}\right)\frac{R'}{2\omega_{b}^{2} - R'}\right] \frac{1}{\omega_{b}} \tag{19}$$

با انتگرال‌گیری در سمت چپ معادله (13) از کرنش تسلیم به عنوان نقطه شروع انگزال تا کرنش در انتگرال‌گیری و همچنین انگزال کریگی در سمت راست رابطه مذکور از نسبت نشته برای ضربی یا مربع (متغیر با نقطه $e_{z,b}$ تسلیم) به ترتیب تنش مناسب دلخواه ω_{b} نسبت تنش مناسب دلخواه ω_{b} خواهد داشت:

$$e_{z,b} = e_{z,b}' + \frac{Y}{E} \left[\frac{\omega_{b}(R' - 2v)}{1 - R'\omega_{b} + \omega_{b}^{2}} + \frac{\sqrt{4 - R'^{2}} \coth^{-1}\left(\frac{4(1 - R'\omega_{b} - \omega_{b}^{2})}{4 - R'^{2}}\right)}{\omega_{b}}\right] \tag{20}$$

با قرار دادن معادلات (3-ج) و (6) در معادله اخیر می‌توان به معادله زیر رسید:

$$|z| = \frac{Y \left|1 - \frac{1}{1 - v^{2}} k_{u}Y\right|}{E_{b} \sqrt{1 - R'v + v^{2}}} + \frac{Y}{E_{b} \sqrt{1 - R'\omega_{b} + \omega_{b}^{2}}} \left[\frac{\omega_{b}(R' - 2v)}{1 - R'\omega_{b} + \omega_{b}^{2}} + \frac{\sqrt{4 - R'^{2}} \coth^{-1}\left(\frac{4(1 - R'\omega_{b} - \omega_{b}^{2})}{4 - R'^{2}}\right)}{\omega_{b}}\right] \tag{21}$$
\[\omega_a = \frac{\sigma_{x_a} + \sigma_{z_a}}{\sigma_{z_a} + \sigma_{x_a}} \quad (33) \]

که در آن \(0 \leq \sigma_{z_a} \leq 0 \) و \(0 \leq \sigma_{x_a} \leq 0 \) همچنین با توجه به معادلات (33) و (34)، نشانهای مرحله واخشن محاسبه می‌شوند.

\[\sigma_{x_a} = \frac{\omega_a Y}{\sqrt{1 - R'\omega_a + \omega_a^2}} \quad (33) \]

\[\sigma_{z_a} = \frac{\omega_z Y}{\sqrt{1 - R'\omega_z + \omega_z^2}} \quad (33) \]

\[\mathbf{e}_{\text{z}_a} = \frac{\omega_z Y}{2E(1 - \nu^2)} \left[\frac{(R' - 2\omega_z) (1 - \nu^2)}{2(1 - \nu^2)} \right] \quad (35) \]

\[\mathbf{e}_{\text{z}_a} = \frac{\omega_z Y}{2E(1 - \nu^2)} \left[\frac{(R' - 2\omega_z) (1 - \nu^2)}{2(1 - \nu^2)} \right] \quad (35) \]

\[\mathbf{e}_{\text{z}_a} = \frac{\omega_z Y}{2E(1 - \nu^2)} \left[\frac{(R' - 2\omega_z) (1 - \nu^2)}{2(1 - \nu^2)} \right] \quad (35) \]

\[\mathbf{e}_{\text{z}_a} = \frac{\omega_z Y}{2E(1 - \nu^2)} \left[\frac{(R' - 2\omega_z) (1 - \nu^2)}{2(1 - \nu^2)} \right] \quad (35) \]

\[\mathbf{e}_{\text{z}_a} = \frac{\omega_z Y}{2E(1 - \nu^2)} \left[\frac{(R' - 2\omega_z) (1 - \nu^2)}{2(1 - \nu^2)} \right] \quad (35) \]

\[\mathbf{e}_{\text{z}_a} = \frac{\omega_z Y}{2E(1 - \nu^2)} \left[\frac{(R' - 2\omega_z) (1 - \nu^2)}{2(1 - \nu^2)} \right] \quad (35) \]

\[\mathbf{e}_{\text{z}_a} = \frac{\omega_z Y}{2E(1 - \nu^2)} \left[\frac{(R' - 2\omega_z) (1 - \nu^2)}{2(1 - \nu^2)} \right] \quad (35) \]

اگر آنگاه که مرحله همترات سازی منجر به کرنش صفر باشد \(\mathbf{e}_{\text{z}_a} = 0 \) در انتهای فراوان خواده شد، با جاگذاری معادله (38) در معادله (34) استقلال. سال 26، شماره 2، اسفند 1386 (ویژنامه: روش‌های عدیدی در مهندسی).
دانلود از jame.iut.ac.ir در ۱۶:۱۲ IRST در یکشنبه ۲۷ اسفند ۱۳۹۸ (از ساعت ۱۶:۱۲ تا ۱۶:۱۲ IRST در یکشنبه ۲۷ اسفند ۱۳۹۸)
شکل ۳- مقایسه نتایج حاصل از حل تحلیلی و روش اجزای محدود در حالت $R = 2$

و سپس با داشتن این مقدار، توزیع نش از ضخامت به صورت خطی فرض شده است؛ همانطور که در دو تصویر بالا، شکل (۳) دیده می‌شود نش خمش در جهت طولی و عرضی از دو بخش الکتریک و پلاستیک تشکیل شده است. در بخش الکتریک که ضخامت یا برابر $2L$ دارد، تغییرات نش بر حسب فاصله از محور خشی به صورت خطی است. نش پلاستیک با دور شدن از محور خشی به صورت هموار افزایش می‌یابد. تا نهایتا با رسیدن به دیوار نش روز سطح سیمی و حکم از روی این سطح و بالاخره ناش را در نظر می‌گیریم. نش ثابت است. در تصویر پایینی شکل (۳) نش پلاستیک را بعد از اتصال و احتمال تشکل می‌دهد. نش مرحله و احتمال نیز نظیر نش خمشی از دو
شکل 4- پرونده نمودار R بر توزیع نشان می‌دهد. با افزایش مقدار R، پرسه‌های مناسب می‌شود و مهندسی ضخامت طولی و عرضی به طور محسوسی افزایش می‌یابد.

برای مثال، مقدار افزایش طولی و عرضی به طور محسوسی افزایش می‌یابد. اساساً علت این رخداد این است که نامه‌های مهندسی اتصال و سطح تیم در ناحیه‌ای که $0 < \sigma_x^2, \sigma_y^2$ نمودار را در فاصله بیشتری از محور خنثی و با مقدار بیشتر نشان ضخامت طولی و عرضی را خرد می‌کند که خود منجر به افزایش مقدار نشان می‌شود. نتایج در شکل 4 نشان دهنده توزیع غیرخطی تنش پسماند در همه مقدار R است.