تخمین میدان فشار از تصاویر PC-MRI با کمک اسیلایه‌های جدا ساز میدان

علي پاشاىی و تاکر فتوتى

دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر

(دریافت مقاله: 1392/6/20- دریافت نسخه نهایی: 1392/11/2)

چکیده - در این تحقیق از روش اجزای مزی محدود (BEM) برای استخراج توزیع فشار در تصویر دو بعدی جریان خون استفاده شده است. روش‌های مرسوم برای تخمین جریان، که با توجه به شکل دو بعدی عفونی معادلات حاکم استفاده می‌شوند، در این مقاله محاسبه میدان فشار از دهدهای سرعت با شکل انگرالی معادلات حاکم و استفاده از جداسازی ناحیه جریان در تصویر به کمک یکی از روش‌های رایج جداسازی تصاویر به نام اسیلایه‌ها گسترش یافته است. برای جداسازی به‌اندازه کافی سطح愉悦چه تغییرات فشار، که در توابع تصویر مورد استفاده قرار گرفته است محاسبه توزیع فشار در داخل میدان به‌صورت یک مدل جریان پدیده در یک روش مطرح این است. برای ارزیابی دقیق این روش تنها به روش‌های رایج محاسباتی، نتایج دو روش جریان، حل دیفرانسیلی و حل انگرالی در میدان رادیات جریان سیال در این توزیع فشار مشخص آزمایش شد. بر اساس بررسی نتایج مقاله، این مطالعه برای تخمین مقادیر فشار از تصاویر جریان خصوصا زیاد را را فراهم می‌سازد: میدان محاسباتی را از دو بعد به یک بعد کاهش می‌دهد. امکان محاسبه توزیع فشار در نقاط داخل میدان تصویر با درجه تکنیک پدیده بالاتر فراهم می‌سازد، در بررسی هم‌نامه‌های مقادیر است.

واژگان کلیدی: محاسبه پیشگی، توزیع فشار، روش اجزای محدود مزی، تصویرگری تحت‌العملی کنتراستی PC-MRI، جداسازی با اسیلاین

* - دانشجوی دکتری مهندسی پزشکی ** - استادار

استقلال، سال 27 شماره 1 شهروز 1387

117
Estimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments

Ali Pashaee and Nasser Fotouraee
Faculty of Medical Engineering, Amir-Kabir University of Technology

Abstract: In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in these calculations. The concepts provided with the Boundary Element Method (BEM) together with the boundary-based image segmentation tools are used to develop a fast calculation method. Boundary-based segmentation provides BEM with domain pixel extraction, boundary meshing, wall normal vector calculation, and accurate calculation of boundary element length. The integral form of the governing equations are reviewed in detail and the analytic value of integral constants at singular points are provided. The pressure data on boundary nodes are calculated to obtain the pressure data at every point in the domain. Therefore, the calculation of domain pressure could be considered as a post-processing procedure, which is an advantage of this approach. Both the differential and integral-based formulations are evaluated using mathematical Couette test flow image whose pressure domain is available. The resulting pressure distributions from both methods will be compared. According to the results obtained from this study, the use of BEM for estimating pressure values from a non-invasive flow image has the following advantages: reduced computational domain from two to one dimension, flexible calculation of pressure data at arbitrary points or at finer spatial resolutions, robustness against noise, less concern for its stability and compatibility, accuracy, and lower meshing attempts.

Keywords: Pressure-Poisson equation; Medical flow imaging; Pressure estimation; Boundary Element Method; Computational methods; PC-MRI; Boundary-based segmentation.
<table>
<thead>
<tr>
<th>عنصر</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>تعداد مداخلات واحدی</td>
</tr>
</tbody>
</table>
حل معادلات با دیدگاه انگرالی برداشت‌های شده است. این‌ها روش انگرالی در حل معادلات تری اکسیال توسیع یافته است. سپس معادلات با شرایط موجود در پردازش تری‌پکسی ترکیب شده و رونده در برای محسوبه مربوطه ارائه شده است. در این رونده علاوه بر بهره‌مندی دقت معادلات از میزان خطاهای ناشی از توزیع همجهبی در تری‌پکسی طیب کرده است. با توجه به اینجا به گزارش‌هایی است می‌توانیم به استحکام معروف معادله حاکم برای محاسبه مقدار این شکل است. پس و هم‌روی محاسبه مقدار برای محاسبه پرداخته است. در این ارزیابی ماهلایی از جهانی ترکیب تا نیاز به دیده تری‌پکسی در تری‌پکسی، وجود همجهبی در تری‌پکسی و عدم بعید پلت هر جهانی ترکیب دقیق می‌شود [16]. در حالتی که در این تحلیل، اعداد شکل از روی دستگاه تری‌پکسی مقد می‌شود و محدوده‌های تری‌پکسی عموماً منع اساسی در تغییر این شکلها تأثیر به‌هنجار. در مواردی به‌حارط این محدودیت‌ها حتى تا توان تری‌پکسی با ابعاد شکل‌های مورد نیاز گردیده ساخت.

2- تعاریف، معادلات و روش عملیاتی

2-1- معادله حاکم

رایجترین روش برای محاسبه مقدار شکل از داده‌های نرخ تغییر شکل، با دیورانت گرفتن از طرف معادلات ناپروانوسک بای سیال ترکیب تا نیازی جهانی اصلی می‌شود [18]. در اینجا از معادله حاکم که نام معادله پروانوسی گرفته‌با معرفی است. بعدها استحکام در شرط مزری از نوع گردویی استفاده شده است. این شرط مزری از این رو مورد استفاده قرار گرفته است که مقدارشان را دارای طبقه‌بندی کننده سیال D تری‌پکسی و از محاسبه فشار است. [19] در نتیجه برای ناحیه جریان D تصویرری و از اینکه که تا تعدادی زیر ارتباط بین پردازه‌های سرعت میدان و فشار استاتیکی را برقرار می‌آید.
 نقطه x داشته و به سیرت زیر تعریف می‌شود:

$$\delta(x, z) = 0 \quad x \neq z$$

$$\int_\mathbb{D} f(z)\delta(x, z)dv(z) = f(x)$$ \hspace{1cm} (6)

در معادله (1) معروف به معادله پویاپونس (PDE) است. در این معادله p نقطه است. این معادله پویاپونس در ناحیه جریان \mathbb{D} است. در این نقطه تعریف شده است که به سیرت زیر تعریف می‌شود:

$$b = \mu V^2 u - \rho u V_v$$

در اینجا μ برای p و ρ در ناحیه مناسب است. این سیال دارای b در معادله (2) در ناحیه \mathbb{D} است. معادله این نمای استاتسیک حاصل می‌شود.

$$\nabla_2 - \text{شکل انتگرالی معادله حاکم}
$$

تابع $G(x, y)$ زمانی مشخص می‌شود که مختصات نقطه x مشخص شود. ضریب $p(x)$ مختصات دارای مختصات نقطه y است و آن ضریب جمله آزاد معمالی انتگرال می‌باشد.

$$\int_\mathbb{D} (G(x, y) \frac{\partial^2}{\partial x^2} (y-x,y))dv(y)$$

در اینجا $G(x, y)$ دارای b در ناحیه مناسب است. معادله محاسبه تعریف شده فشار روی اجزای مرزی و ناحیه، مد نظر قرار گرفته است. بنابراین تعریف شده فشار جزئی در اجزای مرزی و ناحیه \mathbb{D} در اینجا $G(x, y)$ دارای b در ناحیه مناسب است. $\nabla^2 G(x, y, z) = 0$

در انتگرال ناحیه در معادله (3) حذف می‌شود. را حذف یا شکل انتگرالی معادله حاکم می‌باشد. $\nabla^2 G(x, y, z) = 0$

که در آن x و z سالولهای تعریف در ناحیه جریان بوده و

$$\nabla^2 G(x, y, z) + \delta(x, z) = 0$$

که در آن x و z سالولهای تعریف در ناحیه جریان بوده و

$$\nabla^2 G(x, y, z) + \delta(x, z) = 0$$
مقدار فشار در داخل ناحیه در گام بعدی محاسبه می‌شود.

\[S_i(t) = -2(1 - t)P_0 + 2(2 - t)Q_0 + 2P_{14} \]

این معادله مقادیر \(x \) و \(y \) مولفه‌های بردار ماس در راستای \(x \) و \(y \) محور مختصات را به‌دست می‌دهد. بدين تریب برای اجرای مزرع در تصویر با استفاده از مفاهیم بخش بعد فراهم می‌شود.

2-3 میانی محسوس در تصویر

عموماً در بحث برداشت تصویر پرشکی، برای مشخص کردن منطقه مورد بررسی از نقاط دیگر، روش‌های مختلف وجود دارد [23]. یکی از زمینه‌هایی که در جداسازی منطقه جریان در تصویر مورد توجه قرار می‌گیرد استفاده از خطوط مشخص کننده مزرع است [24]. تکنیک‌های مختلف بر اساس این نوع جداسازی توصیف می‌شوند. الگوریتم مار یکی از تکنیک‌های محطر است که بر این پایه بر پایه سازی ارتری خطوط قرار گرفته‌اند. برای اکثر عمل مکان [25] بر اساس اکثر نقاط برای اسپلاین‌ها گسترش می‌یابند. توابع اسپلاین نقاط مزرع را در تابع یک می‌کند. این مدل را ریاضی به‌وسیله تابع می‌دهند و تابع می‌تواند مسئله‌های بردار معادله (2) هستند.

\[\tau = \frac{1}{J}(x_1, y_1), \quad n = (n_x, n_y) = (\tau_y, -\tau_x) \]

در اینجا: این رابطه به‌عنوان محاسبه برای دو تریب برای جمله به‌عنوان داشت:

\[\frac{\partial \bar{G}}{\partial n} = \frac{\partial \bar{G}}{\partial x} n_x + \frac{\partial \bar{G}}{\partial y} n_y \]

وهنر مقدار ناموقتهای بردار معادله (2) هستند.

2-3-2 شیک‌بندی مزرع

در اینجا قسمت‌های اسپلاین‌های استفاده شده در جداسازی میدان تصویر، برای شبکه بنده مزرعی در حال انجامی معادله (8) به‌کار گرفته شده است. بدين تریب با تغییر در محاسبات برای شکل مزرع شیک‌بندی نمودار می‌شود. از طرفی تخمین مزرع عمود سطح که در انجام محاسبات انگرلی مورد تابع داده شده است.

در اولین گام برای ارزیابی نتایج روشن حاضر برای محاسبه فشار و اجترب از پیچیدگی و تفصیل معادلات در این مرحله، در اینجا از اجزای با منیجرهای ثابت در محاسبه فشار مزرع استفاده شده است. به‌دین تریب مقدار فشار مشخص آن بر روی این اجزای از مقدار ثابت است. درک ها که نمایانده مقدار بسته‌که مقدادر متغیر بر روی اجزا در آن متیرک درست در مرکز اجزاء واقع است.

\[S(t) = (1 - t)^3 P_0 + 2t(1 - t)Q_0 + t^3 P_{14} \]

چنانچه در این معادله \(P_0, Q_0, P_{14} \) نقاط کمکی مشخص کننده محدوده بوده و مشخص هر قسم محصول می‌شوند. بدين تریب
در مورد k_1 استفاده می‌شود. بدون ترتیب سلولهای تصویر در داخل ناحیه چرایان تشخیص داده می‌شود. به این ترتیب، باید سلولهای تصویری می‌توان یک جزء میدانی به مرکز هر پک از این سلولهای تصویری در داخل ناحیه تشکیل داد.

6-2 محاسبه فاصله روز اجزای مرزی

با فرض مقیاس G و G_n تابع در روز هر جزء مرزی مورد مطالعه (8) محورهای مرزی تصویری در هر جزء مرزی 1 و 2 به صورت زیر تعریف می‌شود:

$$p(l) = \frac{1}{2} \sum_{k=1}^{K} \sum_{k=1}^{K} \frac{dG_m(l, y)}{dD_k} ds(y)$$

$$= \frac{G}{D} \sum_{k=1}^{K} \sum_{k=1}^{K} G(l, y) ds(y) - \sum_{z=1}^{Z} V(b(z)) G(l, z) dv(z)$$

که در آن:

$$A(l, k) = \frac{\sum_{k=1}^{K} A(l, k)p(k)}{\sum_{k=1}^{K}} - \sum_{z=1}^{Z} V(b(z)) C(l, z)$$

$$B(l, k) = \frac{\sum_{k=1}^{K} B(l, k)p(k)}{\sum_{k=1}^{K}}$$

$$C(l, z) = \frac{\sum_{z=1}^{Z} C(l, z)p(z)}{\sum_{z=1}^{Z}}$$

به منظور دستیابی به معادله کلی برای استفاده‌های بعدی، در اینجا مقدار اینکارها در حال تاکید در معادلات فوق مستثنی می‌باشد (مثلاً باعث شار $p(1)$ در مسیر است). به منظور استفاده در هر سلول تصویری، به این نتیجه خواهد شد که در اینجا از مدل تغییر در اجزای مرزی و Z اجزای داخل ناحیه استفاده کنید. نتیجه نشان می‌دهد که این محاسبه برای اجزای مرزی قابل ارائه است.

$$k_1 = \sum_{k=1}^{K} \frac{\sum_{k=1}^{K} (l, k) ds(k)}{\sum_{k=1}^{K}}$$

5-2 شکه بنیا ناحیه چرایان

حل معادله (10) نیازمند شکه بنیا میدانی نیز هست. می‌توان به توجه به اینکه که این سلول به‌طور مداوم در نظر گرفته‌اند که بردارش روز و نقطه صورت گرفته و لذا اطلاعی از اجزای داخل ناحیه چرایان به دست نمی‌دهند. برای تغییر نقاط که در داخل اسپلاین مشخص کننده میدان سرعت حرکت دارد روند خاصی در این تحقیق در پیش گرفته نشده است. در اینجا قصد داریم مشخصه‌ای بپیامد که با محاسبه آن سلولهای داخل اسپلاین از نقاط خارجی تفکیک شوند. برای این منظور در اینجا از فضای گوس استفاده شده است. این قضیه بیان می‌دارد که برای منظور قسمت دو بعدی همواره معادله زیر برقرار می‌باشد:

$$\int_{\partial D} \frac{\partial G_m(x, y)}{\partial x} ds(x) = \begin{cases} 0 & \text{خارج از مرز} \\ 1 & \text{داخل از مرز} \end{cases}$$

این معادله تابعی مشتق دیورژانس است [77]. محاسبه این اتکارال برای نقاط صفحه تصویر با استفاده از شکه بنیا مقدار، به‌طور (6-2) و بردارهای عمودی حاصل از پردازش اسپلاین‌های جداساز میدان اسپلاین، به‌طور (2-3) امتیاز شده است. بدون ترتیب فاکتور زیر برای تغییر نقاط اتکارال در نقاط تصویر نسبت به اجزای مرزی قابل ارائه است:

$$k_1 = \sum_{k=1}^{K} \frac{\sum_{k=1}^{K} (l, k) ds(k)}{\sum_{k=1}^{K}}$$

خیز می‌تواند سلولهای ناحیه مورد نظر هستند.

$\sum_{k=1}^{K} \frac{\partial G_m(x, y)}{\partial x} ds(x) = \begin{cases} 0 & \text{خارج از مرز} \\ 1 & \text{داخل از مرز} \end{cases}$
تماشای (جزء ثابت) این معادله به صورت زیر خواهد بود:

\[p(m) = \sum_{k=1}^{\infty} \frac{\partial^2}{\partial n^2} \int_0^1 G(m, y) dy (y) \]

\[- \sum_{k=1}^{\infty} p(k) \int \frac{\partial}{\partial n} G(m, y) dy (y) \]

\[- \sum_{z=1}^{\infty} [\nabla b(z)] \int_0^1 G(m, z) dv (z) \]

که متفاوت m در اینجا یک نقطه داخلی ناحیه جنبه تصور در و y ∈ D_k است. مثالی روندی که برای نقاط روز مرز در نظر گرفته شد. در اینجا نیز می‌توان معادله فوق را بر حسب توابع انگرال‌گیری به صورت زیر نوشت:

\[p(m) = \sum_{k=1}^{\infty} B(m, k) \frac{\partial^2}{\partial n^2} (k) \]

\[- \sum_{k=1}^{\infty} A(m, k) p(k) \int_0^1 [\nabla b(z)] (z, C(m, z)) \]

\[- \sum_{z=1}^{\infty} \int_0^1 G(m, z) dv (z) \]

که mیک مقدار یک متغیر به طرف از جزء مزی معکوس انگرال‌گیری، فاصله‌ی آن نقطه (i) از جزء داخلی ناحیه و C از جریه مزی تا جزء مورد بررسی است. \(B_{i,j} \) به ترتیب طول جزء مزی و اندازه سلول تصور زده‌ی دریایی معکوس انگرال‌گیری در روش اجرای مزی است. این مقدار به‌طور پیوسته می‌تواند در توابع اجرای مزی به کار بردن. در نتیجه این روش امکان محاسبه توزیع جذبی‌تری از میانان فشار و امکان محاسبه‌ای در نقاط نزدیک دلخواه است.

8-2 محاسبه انگرال‌های تکیه

انگرال‌های تکیه \(L \) زمانی ظاهر می‌شود که انگرال‌گیری در اجزای مزی بر روی خود نقاط ۱ ما انگرال‌گیری در اجزای داخلی ناحیه بر روی سلول تصور صورت می‌گیرد. در محاسبه مقدار انگرال C و A محاسبه‌ی مقدار انگرال در نقاط تکیه‌ای در B و A در نقاط تکیه‌ای مقداری باشد و این اساس مقداری از انگرال A در نقاط تکیه‌ای به فرم مستطیل بودن خطوط مرزی است. استفاده از تقیبیات

124
شکل 1- جزء سرول تصویر در داخل میدان برای حل

انتگرال نتیجه

اسپلین، در روي مرز مساوی 0 و در داخل ناحیه برای با

واحد خواهد بود. به عبارت دیگر:

\[A(l, l) = \frac{1}{2}, \quad A(m, m) = 1 \]

به همین ترتیب مقادیر انتگرال B در نقاط نتیجه مرزی مطلوب

مراجع مذکور از معادله زیر به دست آمده است:

\[B(l, l) = -\frac{1}{2\pi} \int_{c_l} \ln rds = \frac{L_1}{2\pi} (1 - \ln \frac{L_1}{2}) \]

برای محاسبه فشار نقاط داخلی نیز که مرز سرول

تصویر بر جزء مرزی 1 منطبق شده باشد مجدداً مقادیر از مفاد معمایه قطعی شده با توجه به فضای بودن حدود

انتگرال کری از مقایسه با شکل مربع سرولهای تصویری برای

پایین انتگرال نتیجه C(l,m) به دست می‌آید که در محاسبه فشار مرز،

جهت مزیت این باید داخل ناحیه m به قارچی و برای به سمت ناحیه C(l,m) محاسبه در هنگام بافت فشار نقاط داخل ناحیه، در

انجام انتگرال نتیجه روی جزء مربوط به سمت شکل (1) در یک هشت هشت سطح قطب در سه‌ضلع مختصات استوانه‌ای

محاسبه شده و سپس به جزء مربوط تعمیم داده می‌شود:

\[C(m, m) = \frac{1}{2\pi} \int_{c_m} \ln rds = -\frac{1}{2\pi} \int_{c_m} \int_{r=0}^{r_0} r \ln r dr dr \]

برای محاسبه انتگرال فوق ابتدا نسبت به r انتگرال می‌گیرم.

سپس با تجاری (2) نسبت به r انتگرال و با میل دادن متغیر به سمت

صفر مقدار انتگرال نهایی در نقطه 0 = r می‌باشد و سپس

\[f(a) = \int_{-\infty}^{\infty} T(a - x)f(x)dx \]

\[(27) \]
(CFD) است

1-3 مدیر ریاضی میدان جریان مود و آزمون

ارائه شده به دو چکایی می‌باشد، که در این مورد مطالبی در مورد دقیقه و تأخیر آن برای مقدار حاصل از این به چندین روش مقابله خواهد کرد. همین آزمایش با این در به روش وهي داده‌های آزمایش که در این تحقیق بر این تحقیق از مدل‌های جریان خون در قلب به کار رفته است. استفاده از دیگر دیاگرام روش به صورت زیر تعریف می‌شود:

\[
\delta(x) = \begin{cases}
\frac{1}{4h} (1 + \cos(\frac{2\pi x}{2h})) & \text{if} |x| < 2h \\
0 & \text{if} |x| \geq 2h
\end{cases}
\]

(28)

برای اطلاعات بیشتر از شرایط مورد نیاز برای به‌دست آوردن این تابع دلالی مرجع مراجعه کنید. پیش‌بینی استفاده شده در این تابع دلالی دیاگرام اندازه شیبی در نظر گرفته می‌شود. در دو بعد، دپ‌تان دیاگرام از حاصل ضرب توزیع دیاگرام در دو راستا محدود مختصات به‌دست می‌آید. به عنوان:

\[
\delta(x) = \delta(x_1) \delta(x_2)
\]

(29)

که در آن \(x_1\) و \(x_2\) مولفه‌های محدود مختصات در صفحه دو بعدی توصیف می‌شود. به ترتیب نقاط اطراف مرز به‌صورت نقاط لازم‌تری در نظر گرفته شده و انگل‌ریال مختصات (۱۷) به‌جمع عددی چاپ‌گذارین می‌شود. نقاط نقاط مورد گرفته را اگر با \(V\) مشخص کنیم مقدار \(V'(r)\) از مدل‌های زیر مختصات به‌دست می‌شود:

\[
V'(r) = \int \Psi(r) x \delta (x - y) dx
\]

(30)

3-ارزیابی روش و نتایج

در این تحقیق از یک مدل ریاضی تامین کننده تصادف شیبی برای بررسی صحبت محدود PC-MRI سازی شده در محاسبه فشار از تصادف جریان و ریاضی مرز کارایی این روشهای استفاده شده است. این مدیر ریاضی حاصل مقدار مشخص بردارهای سرعت و توزیع فشار می‌باشد. در این بخش ابتدا به تینی مدیر ریاضی به کار رفته و نتایج حاصل از یک تصادف مشخص انگل‌ریال مختصات حاکم در توزیع تابع توزیع توزیع فشار خواهیم پرداخت. در ادامه یک روش متناول برای محاسبه میدان فشار از روی
3-2-3 چداسازی محاسبه عمد و شیبکه بندی PC-MRI در این قسمت بر روی تصاویر شامل ایم‌و‌تی شده ناحیه جریان به‌صورت دستی و با کمک محاسبه چداسازی، ناحیه جریان سه‌بعدی (زیست‌ساختاری) برای این مشاهده در دسته‌بندی، شکل‌گیری شده و به‌صورت همزمان با این تصاویر، محاسبه شده است.}

سیستم یک آزمایشگاهی از مشاهده شده در مسیر جریان به‌صورت دستی و با کمک محاسبه چداسازی، ناحیه جریان سه‌بعدی (زیست‌ساختاری) برای این مشاهده در دسته‌بندی، شکل‌گیری شده و به‌صورت همزمان با این تصاویر، محاسبه شده است.

3-2-3 توزیع فشار مری شکل 5- تشخیص و جزء بندی نقاط داخل میدان

توزیع سرعت موجود در میدان را ارگا می‌کند. از آنجای که این
ناتج ناشی از حلقه محاسبات حاکم‌اند لذا تابع به‌دست
آمده از روش‌ جایی و روش CFD به‌خوبی با این نتایج قابل
مقاومه بوده و کارایی هر کدام از این روش‌ها قابل ارزیابی‌اند.

شکل 2- جداسازی و محاسبه بردارهای عضو تصویر

شکل 3- تصاویر PC-MRI شبه سازی شده از ناحیه جریان کوتن

شکل 1- دید رنگی و شکل سطح میدان اسپلین در نظر گرفتن شده است. با اذعان این در بخش
سه‌بعدی در محاسبه مشخصه‌ها یکتاکلگری کرنش و
همین طور تغییر محل گرده‌ها شوهرده فرمان بر قسمت
عاده (11) بردار عضو واحد در روی این دبیور محاسبه شد.
خطوط واحد در شکل (2) که در راستای عضو بر خط جداساز
به شدت خارج از ناحیه جریان قرار دارد، نشان‌دهنده بردارهای
عمود می‌باشد. جهت این بردارها نشان‌دهنده دقت مناسب این
روش در محاسبه بردارهای عضو است.
شکل 6- توزیع فشار بر روی اجزای مرز بر حسب شماره جزء اجزای شماره 1 الی 75 مربوط به سطح خارجی اند

شکل 7- تصویر توزیع فشار حاصل از (الف) روش حاضر و مقایسه آن با (ب) مقدار واقعی

روی مرز ناشی از این محاسبات برای مدل مورد بررسی را نشان می‌دهد. مقادیر فشار بر روی دیواره‌های خارجی این مدل مطابق شکل زیر از توزیع یکنواختی برخورد است. همانطور که از این شکل برای اجزای شماره (75) نا (که اجزای روی دیواره داخلی هستند) مشاهده می‌شود، خطای محاسباتی برای اجزای روی دیواره داخلی مدل جریان بیشتر از مقدار مرز خارجی است

- 5- مقایسه با حل دینامیک بر مبنای دینامیک CFD

در این تحقیق به منظور ارزیابی روش انتگرالی توصیف شده، مقایسه با روش مرسوم محاسبه میدان فشار که از روش تفاضل محدود برای حل معادله پواسون فشار سود می‌بیاورد، صورت گرفته است. در این تکنیک، معادله پواسون فشار (1) به‌همراه شرط مرزی تیبوئنی که مناسبترین شرط مرزی برای حل CFD (محاسبات دینامیک) است با روش‌های دینامیک سیالات محاسباتی حل می‌شود. شکل دینامیکی معادله پواسون فشار یک معادله جزئی از درجه 2 است که در آن فشار در هر نقطه یا باید

- 4-3 توزیع فشار میدان

محاسبه داده‌های فشار در نقاط داخل میدان با استفاده از معادله (22) صورت می‌گیرد. این معادله نه شامل انتگرال‌های فشار مقدار معلوم می‌گردد و فشار مرزی است. برای رفع انتگرال‌های تکیه می‌توانید بیشتر عمل شده و در نهایت توزیع فشار در ناحیه جریان به صورت

استقلال، سال 27، شماره 1، شهريور 1387

128
شکل 8- توزیع فشار در محور نقره مدل چرخان کوئیز از محاسبات ریاضی معادله (23) (خط چپ) با استفاده از حل انگرالی حاضر (خط چپ) و از روش‌های متناول دیفرانسیل (خط پتیه) وقتی داده‌های اولیه سرعت بدون هم‌هم‌هاد در به‌همنار فشار تمام نقطه دیگر محاسبه شود (معادله دیفرانسیل
پیشگوی است). جنبات تکنیک مورد نیاز برای حل این نتایج در مراجع (8 و 16) ارائه شده است. در اینجا همین روش بر روی ناحیه چرخان مورد بررسی اعمال شده است.
توسعه مختلف سرعت و فشار در گره‌های میدان از نوع الم سازه استفاده شده است. مقدار از گسترش تقریب میانی 10 در دیفرانسیل کمتری فراهم می‌سازد.
جنبات پیش از نحوه گسترشی محاوره 22(23) تا 26(23) آمده است. برای حل
دستگاه معادلات حاصل بر روی SOR 24(23) که یک روش تکراری برای حل دستگاه معادلات خطي است استفاده
شد. معادلات حاکم برای میدان محاسباتی تصویر با
سولوئهای هم‌اندازه با اندازه A0 برای با
5/04 گسترشی میدان
شده است. برای مقایسه، توزیع فشار به‌دست آمده در روش انگرالی و دیفرانسیل در کتاب توزیع واقعی میدان فشار از معادله (23) در راستای محور نقاره مدل چرخان کوئیز شده است. شکل 8(23) نمایانگر این توزیع فشار است. مقایسه
دیداری منحنی در این شکل نشان می‌دهد که جنباتی از روز
شکل انگرالی دارای ناپای تندیکنی هم‌هم‌هاد در مقایسه

با روش مدلای است.

به متأشیر فراهم سابقه مقایسه کمی بین نتایج این دو روش با مقادیر واقعی، خطا ناشی از هر یک از این روشها نسبت به مقدار واقعی از روي دقت (32) محسوب می‌شود.

$$Z_{r} = \frac{1}{Z_{r}} \left| \frac{p_{1} - \tilde{p}_{1}}{p_{1}} \right|$$

(33)

در اینجا \tilde{p}_{1} فشار متأشیر به داشته باشد. بر اساس این دقت مشاهده شده است که با استفاده از شکل انگرالی مقدار معادله (34) دست یافته شده است در حالت که با روش‌های سلولهایی به خطا 6 درصد یا که دقت با روش‌های مقدار نسبت به روش انگرالی است.

3- مقایسه اثر هم‌هم‌هاد

داده‌های سرعت ناشی از ت串یز بر کشکی عموماً با هم‌هم‌هاد هم‌ماند. از آنجا که استخراج داده‌های فشار از روي داده‌های سرعت از طریق معادلات ضعیف‌تر است. منجر به اثر معادله‌های دیفرانسیل فشار در مقابل داده‌های سرعت هم‌هم‌هاد در قابلیت پیش‌بینی نسبت در این بخش از تحقیق برای نشان دادن اثر هم‌هم‌هاد بر

129

استقلال، سال 27، شماره 1، شهریور 1387
شکل 9- ناحیه سرعت جریان کوتک با حضور همهمه گویی سفید

شکل 10- توزیع فشار در محور تقارن مدل جریان کوتک از محاسبات ریاضی معادله (32) (خط پر) با استفاده از حل انتگرالی حاضر (خط چین) و از روش‌های متداول دیفرانسیلی (خط نقطه) وقتي داده هاي اوليه سرعت با همهمه ترکيب شده‌اند.

آزمگاه دو روش نسبت به مقیاس واقعی از معادله خطای (33) استفاده شد. محاسبات خطای این مقیاس را برای شکل انتگرالی 14/1850 و برای روش معقول 14/7662 به دست داده است. شکل کلی نمودار حاصل هم به‌خوبی نشان دهنده ناپرداز کمتر این روش در تحقیف اثر همهمه میدان سرعت بر محاسبات فشار است. این رفتار به ماهیت انتگرالی این روش مربوط و استفاده از تمام نقاط میدان در محاسبه فشار یک نقطه مربوط می‌شود.

نتیجه گیری

در این مقاله ارزیابی مراحل استفاده از شکل انتگرالی معادله روشون فشار در تخمین توزیع فشار از روی داده‌های سرعت دقت تخمین‌های حاصل از شکل انتگرالی و شکل رایج محاسبه توزیع فشار، از همهمه‌های مصنوعی در داده‌های تصویر استفاده شده است. همهمه گویی سفید (32) با نسبت PC-MRI ثابت به همهمه SNR=10 به داده‌های ناحیه جریان کوتک اضافه شد. مقدار تعیین برای نسبت ماکزیموم سرعت به جذر مربع SNR واریانس همهمه است. میدان سرعت ناشی از اعمال این همهمه بر داده‌های سرعت کوتک بصورت شکل (9) می‌باشد. با انجام محاسبات به کمک شکل انتگرالی فراهم شده در این تحقیق و همچنین با استفاده از الگوریتم بخش (3) توزیع فشار بر روی محور تقارن ناحیه جریان کوتک به صورت شکل (10) به دست آمده است. در اینجا نیز برای تخمین کمیت خطای ناشی از

130

استقلال، سال 27، شماره 1، شهرورد 1387
جدول 1- خطای توزیع فشار در تعداد اجزای مزی مختلف

<table>
<thead>
<tr>
<th>تعداد اجزای مزی</th>
<th>مقدار خطای نسبی متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>0.4628</td>
</tr>
<tr>
<td>160</td>
<td>0.5105</td>
</tr>
<tr>
<td>176</td>
<td>0.4687</td>
</tr>
<tr>
<td>184</td>
<td>0.5170</td>
</tr>
</tbody>
</table>

بررسی نشان می‌دهد در بیشترین موارد، تحقیق حاکم مزی در تعداد 152 اجزای مزی تغییرات عمده در دقت محاسبات توزیع فشار مشاهده نشده و هر تعداد جزء مزی متعلق به این بیشتر است. جدول (1) نشان می‌دهد که مشخصی که مشاهده مزی برای توزیع تعداد اجزای مزی نیاز به پیوسته‌تر برای تشخیص تعداد اجزای مزی مورد نیاز بیشتر است. هر رصد.

انتگرالی و دیفرانسیلی می‌بین این پیش‌بینی است. در شکل 1‌، نشان داده شده، داده‌های انتگرالی در نظر گرفته شده‌اند. در اینجا، نشان داده شده، میزان انتگرالی مزی در کل است. تغییرات خطای نسبی متوسط را بر حسب تعداد اجزای مزی متعلق به این مورد بیان کرده است. جدول (1) نشان می‌دهد که مشخصی که مشاهده مزی برای توزیع تعداد اجزای مزی نیاز به پیوسته‌تر برای تشخیص تعداد اجزای مزی مورد نیاز بیشتر است. هر رصد.

واژه‌نامه

1. splines
2. noise
3. ultrasound
4. phase-contrast
5. pressure poisson equation
6. segmentation
7. snake
8. smooth
9. Bezier
10. threshold
11. populated
12. Ill-posed
13. singular integrals
14. distribution theory
15. singular convolution
16. immersed boundary method
17. support
18. Couette
19. magnitude image
20. de-Casteljau
21. level set
22. collocated
23. two point central approximation
24. successive over relaxation
25. white gaussian noise

مراجع