Application of Fuzzy Decision-Making to Facility Layout Planning

H.R. Khazaki, A. Shahandeh, and S.R. Hejazi
Department of Industrial & Systems Engineering, Isfahan University of Technology

Abstract: This research proposes a vigorous methodology based on the fuzzy set theory to improve the facility layout process. Using natural language, the fuzzy set theory is an appropriate tool for controlling complex systems such as facility planning. The closeness rating between departments in a plant depends on qualitative and quantitative factors. Some of these factors may have a greater effect on the closeness rating. Thus, analytical hierarchy process (AHP) is used to find the weight of these factors. In this paper, a computer program, called FDARC, is developed to generate quantitative activity relationship charts. These charts are used by FLAYOUT to develop the layouts. The procedure is compared with two other recent methods. Computational results are used to demonstrate the effectiveness and efficiency of the method proposed.

Keywords: Facility layout, Fuzzy decision-making, Analytical hierarchy process.
ضمنا از مسئله آزمایشی برای مقایسه الگوریتم پیشنهادی
با الگوریتم‌های آندرب و کورل استفاده شده که نتایج
به‌دست آمده بهبود چندانی را نشان نشده. این در
محقق بعدی[8] از نظر مجموعه‌های فازی برای حل مسئله
تخصصی درجه دوم چند هدفه استفاده کرده. یانگ و
هونگ[9] دو روش برای حل مسئله جانمانی و طراحی
آرایه Fuzzy TOPSIS و TOPSIS استقرار در مسیر مشتری
در دو روش با کمک یک سیستم تحلیلی کرده. با توجه به
پیشنهاد مقدار درجه ذهنیکی بین پیشنهاد
داده در این روش عامل‌های ورودی ترتیب فراوانی تحلیل
سلاسل مراتبی (AHP) تعیین ون می‌شوند. مشکل این
روش این است که هر یک از عوامل به‌این یکی
مقداری و تشکیل تاریخی آن مقداری برای مسئله مشخص
گردید. در این روش، این مشخصات به طور دلخواه تعیین
گشت و در صورتی که شخص طراح، در این زمینه تجربه
کافی نداشته باشد، ممکن است جواب‌های به‌سس آمده
دیوپری و میبر بوده، با این تفاوت که در قسمت استنتاج از
روش مستقیم مدادی استفاده شده و یک الگوریتم زنبیک[4]
برای تعیین جانمانی پیشنهادگردهدای است. جانمانی تولید
شده در این روش به صورت گسترش منابع و این هدف نیز
بر مبنا فاسله در نظر گرفته شده است. این روش مشکل
پیشنهاد وجود روش دیگری و میبر یا قطعی به همراه
دارد. در بخاطر این عامل‌های ورودی را به وظیفه یک
وینیک در نظر گرفته می‌باشد. قوانین اگر آن از به صورت
چند ورودی را به یک خروجی طراحی شده‌اند. این صورت
که تمام عامل‌های در نظر گرفته شده به طور همزمان به
عنوان متغییرهای ورودی عمل می‌نمایند. این امر باعث
افزایش شگفت و قوانین شده و در نتیجه تعیین تجربی
قانون‌ها مشکل می‌سازد. همچنین ممکن است که عامل‌های
ورودی از دیده اهمیت یکسانی برخورد نشوند.

به دلیل طیب‌تباری برای یک مسئله جانمانی سه‌تیم،

1- مقدمه

مسئله جانمانی یکی از مسائل مهم برنامه‌ریزی
شهقات[3] است. یک جانمانی خوب باعث افزایش کارایی
عملیات، امتیاز و استفاده می‌تواند از مبنا انسانی، تجهیزات،
فضا و انرژی شده حمل و نقل مواد و دوره از
انسات حرکت را در یک شواهد داشته [1 و 2]. رویکرد
جانمانی با استفاده از مجموعه‌های دارایه محصولی
که با درک تولید مورد شرود این داده‌ها مانند جدول
از به‌کمک هستند با مانند جدول رابطه
فاکت‌ها گفته‌اند. به [2] بخصوص از الگوریتم‌ها فقط داده‌های کیفی را پذیرفت. در
حالی که قبلاً به داده‌های کیفی کار می‌کردند. نمونه‌ی
دنیانی در تأثیر
داند هزینه مقدار کمی و کیفی باعث کاهش کیفیت
طرح استقرار می‌شود. همچنین در بعضی موارد استک
تنوان این مقدار کمی و/یا کیفی را به طور قطعی تعیین کرد.
استفاده از نظریه مجموعه‌های فازی در برنامه‌ریزی
سه‌تیم باعث می‌شود که بتوان با ترکیب داده‌های کمی و
کیفی موثر بر جانمانی جدول کمی رابطه فعالیت‌ها را به
صرفه رضایت بخش توصیع داد.

و به‌همکار[3] یک روش برای مسئله جانمانی سه‌تیم
جانمانی سه‌تیم بر باعث متغیرهای زبانی فازی و
ارتباطات فازی از دانش‌ها. در این روش به‌طور بیشک یک
زنجی انتخاب برای استقرار در جانمانی اختصاص می‌یابد و
جانمانی به کمک شاخص رضایت‌داهنده بین‌هستن در
بخشهای انتزاب‌های می‌شود. در همگی کالریز[5،6] یک روش برای
دست‌بیمار جانمانی سه‌تیم شامل
شناساپیا متغیرهای زبانی برای عامل‌های کمی و
کیفی
ارکذار از ارتباطات تسهیلات، انتخاب و تعیین مقدار
نواع عضوی برای متغیرهای زبانی و روش‌های ایکسکاری
برای انتخاب و استقرار تسهیلات و ارزیابی
دانش‌ها
از دانش‌ها. رانت و راکشی[7] برای حل مسئله جانمانی،
یک الگوریتم سازنده جانمانی می‌تواند ارائه کرده. در این
روش فاصله به عنوان یک متغیر فازی در نظر گرفته شد.
بنا بر این روش‌هایی که برای تامل‌های جغرافیایی و عدم قبلیت دارند، نیز به صورت فازی توسعه پارامتریک (TOPSIS) برای بررسی الگویهای موجود را با توجه به مشخصات الگوی مورد نظر (ELECTRE) رتبه‌بندی می‌کنند. اما روش AHP با محاسبه وزن نسبی الگوی مورد نظر رتبه‌بندی را انجام می‌دهد.

در این مقاله به دلیل بررسی نیاز به اهمیت عامل‌های موثر و روابط جغرافیایی امتیازات و عواملی با استفاده از فراکنش تحلیل سلسله مراتبی (AHP) و از امتیازات و ابزارهای جغرافیایی اهمیت می‌دهد. با استفاده از امتیازات و ابزارهای جغرافیایی نقش و اثرگذاری به‌جای رتبه‌بندی جغرافیایی محور مکرزن و مدل‌سازی، امکان ارائه قرار گرفتن سطح انتخاب دو بخش (یک بخش ورود و دو بخش خروجی) به صورت یک محیط گسترش یافته و تابع هدف به‌صورت حداقل در سه‌شیرت تعیین می‌شود. برای این منظور یک برنامه رایانه‌ای به نام جان‌شماری (FLAYOUT) فازی پیشنهاد کرد.

۲- مجموعه‌های فازی و تصمیم‌گیری

نظربه‌های مجموعه‌های فازی در ده‌هایه توسط پروفسور لطفی عسکری‌زاده (15) برای حل مسائل می‌پردازند. خودرنج و نامتظمه معرفی شد. در نظر گرفتن مجموعه‌های فازی تعیینی به مجموعه‌های فازی فئو است. در نظر گرفتن مجموعه‌های فازی تعیینی، مجموعه‌های فازی به صورت معین تعیین می‌شوند. به عبارت دیگر هر مجموعه‌ای با یک وزنی خوش تعیین مشخص می‌شود. اگر یک مشخص وارد نشود، باید از تصمیم‌گیری نمونه‌برداری شود که "خوشن" باشد. در اینجا یک وزنی خوشن تعیین می‌شود و به‌طور معمول "خوشن" می‌شود. اینکه در اینجا چه اعدادی برای هستند و چه اعدادی برای نتیجه اگر می‌گردد، به‌طور معمول اعدادی فرق می‌کند. این مشاهدات و وزن‌های که در زندگی واقعی به کاربرده می‌شوند این کوچک‌اند. به‌عنوان مثال، وزن‌های این مشاهدات، این کوچک‌اند. به‌عنوان مثال، وزن‌های این مشاهدات، این کوچک‌اند.
تبدیل می‌کند، روش‌هایی مدیریت ناخیه (COA) اولین ماکزیمم و آخرين ماکزیمم (LOM، FOM) در این فضای مورد استفاده قرار گرفته است.

(1) توجه به مدت و روش در روشهای سنتی جامائیکی تا بهترین جدول را به خوبی فعالیت‌ها بنا توجه جامائیکی استفاده می‌شود. جدول را به شرح و همراه به نوعی فعالیت‌ها. برخی یک‌میلگی از آن در این تدوین وجود داشته است. هنگامی که کارشناسان جامائیکی کار برخی ریزی جامائیکی را شروع می‌کنند، با استفاده از تغییراتی را که جامائیکی از این امکان در نظر داشته باشند. به عنوان یک عدد، پیچیدگی و طبیعت می‌باشد و ممکن است این متعادل‌گرها می‌باشد. این تئوری از طریق ارگانیسم باشند. نظریه مجموعه‌ای فازی، ابر مناسب در این جهت می‌باشد. (2)

همان‌طور که قبل گفتیم، به یک مجموعه غیر قوی (FDMS) از چهار ترکیب اصلی با عنوانهای پایگاه دانش، فازی کنده، موتور استنتاج و غیر فازی کنده تشکیل شده است. ابتدا لازم است که بر روی هر یک از مجموعه شخصی شده، سپس مجموعه مرجع، توابع غیرضایع و مقدار ثابت برای آنها تعیین گردد. توابع غیرضایع با استفاده از داشت افراد خیب، مصالحی با افزایش و یا سوابق قبلی واحد از مصالح تعیین می‌شوند. به روشی از هم‌سنجش عامل‌ها (مدیم‌های ورودی) به همراه مقداری زایی احتمالی اضافه که توسط کارشناسان جامائیکی مورد استفاده قرار می‌گیرند. عبارت است این "FDMS" از چهار ترکیب (FDMS) اصلی تشکیل شده است (شکل (2)).

(1) فازی کنده: وظیفه فازی کنده خواندن مقدار متهوری کرداری و به‌نامی آنها به که از مقدار متهوری زایی می‌باشد. (2) داشتن: مجموعه از مقداری که در تعیین آنها از متهوری زایی استفاده می‌شود. تعادل مقداری که هر متهوری زایی استعداد و قاعدگی های بایگاه از نقطه ها به شکل یک-انگاری می‌باشد. (3) موتور استنتاج "FDMS" از روش‌های آورده، کنترل کنده و تشکیل پایگاه دانش به موتور استنتاج ناب‌نیا با پیداگفت و رودهای فازی با اساس قواعد بایگاه دانش، خروجی فازی مناسبی را ایجاد می‌نماید.

(2) غیر فازی کنده "FDMS" خروجی فازی را به یک مقدار قطعی می‌باشد max و min
شکل ۲ - توابع عضویت مثالی برای جریان مواند [۱۲]

شکل ۳ - توابع عضویت دورنگاهی برای ارتباط نظارتی [۱۲]

نامطلوب (X) اختصاص یافته و توابع عضویت مثلثی طبقه‌بندی (VL) خیلی بالا (L)، پایین (M)، متوسط (H)، بالا (VH) استفاده می‌شود. در نظر گرفته شده است [۱۲]. قدم به پی از انرژی کردن متغیرها و ورودی و متغیر خروجی، این‌جا مینیمم تکمیل گیری (Xواریان تکمیلی) می‌باشد. این قواعد معمولاً به شکل اگر-آنگه هستند [۱۲ و ۱۱]. برای این مفاهیم دو اخلاقی ورودی ورودی برای تمام ارتباط‌های بین ثبات استفاده از فاکتور‌حلی سلسله مرتبی (AHP) که اولین بار توسط ساختار [۲۱] پیشنهاد شد و می‌توان آن مقایسه زوجی گریزیها با یکدیگر می‌باشد. تعمیم وزن دادن به این مقایسه‌ها، تکمیل گردیده‌اند از قضاوت‌های ارتباط‌های شناختی بر منابع جدول ۱ استفاده می‌شود. اگرهمیت عامل یا بر عامل یا بر نشان دهنده، اهمیت عامل ز بر عامل یا بر نشان دهنده ماتریس مانند زیر تشکیل می‌شود:

\[A_n \times n = [a_{ij}] \quad i, j = 1, 2, \ldots, n \]

(۷)

عمومالایی ورودی از تجربه و دانش افراد خبره، عنای روش ذهنی استفاده می‌شود. نیش دادن تعیین عضویت ذهنی و دادن به تجربه فرد خبره بستگی دارد. شکل تابع عضویت، دانش، تجربه و سیلیقه فرد خبره درباره اهمیت ارتباط‌ها را نشان می‌دهد. (شیب "نداده" در رابطه باک ارتباط مهم و شیب "پهن" برای ارتباط‌های آهسته کمتر) [۱۲].

در این تحقیق برای تعیین مقادیر متغیرها از تجربه و دانش افراد خبره [۱۵] استفاده شده است. عنای بر اخلاقیه کتی (خلاقان، تجهیزات و جریان پرسی) توابع عضویت مثلثی مانند شکل ۳ و برای اخلاقیه ویژه ذهنی دارند (ارتباط نظارتی، ارتباط اطلاعاتی و ارتباط محیطی) توابع عضویت دورنگاهی مانند شکل ۳ در نظر گرفته شده است. همانطور که ملاحظه می‌گردد، مجموعه مرجع برای تمام این متغیرها مجموعه [۱۰] می‌باشد.

برای متغیر خروجی عنای نورهای نزدیکی، مقادیر زمانی ضرورت مطلوب (A)، بسیار مهم (B)، مهم (C)، لازم (D)، خیلی مهم (E) و غیرهم (F) می‌باشد.
شکل ۲- توابع عضویت یو-متغیر خروجی [۱۲].

جدول ۱- مقدار ترجیحات برای مقایسه‌های زوجی [۸].

<table>
<thead>
<tr>
<th>ترکیب (تفاوت شفاهی)</th>
<th>مقدار عادی</th>
<th>کاملا مهتم‌ترین</th>
<th>کاملا مطابق</th>
<th>اهمیت بیشتر</th>
<th>اهمیت متوسط</th>
<th>کمی مطابق</th>
<th>کمی بیشتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸و ۹و ۱و ۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

رویابدی در نظر گرفته و متغیرهای زبانی و توابع عضویت این متغیرها را مشخص گردید. متغیرهای زبانی در نظر گرفته شده به صورت: خیلی بالا، بالای متوسط، بالای پایین، پایین و صورت زیر به ترتیب می‌آیند: اگر جریان مواد خیلی بالا و وزن آن خیلی بالا باشد، آنگاه ترکیب A خواهد بود. اگر جریان مواد خیلی پایین و وزن آن خیلی پایین باشد، آنگاه ترکیب X خواهد بود. و به همین ترتیب کلیه قوانین به طور تجربی تعیین می‌شود. این قوانین برای عامل‌ها و بیشتر مقایسه و جریان تجهیزات، جریان پرستی، ارتباط نظری، ارتباط اطلاعاتی و ارتباط محیطی در شکل (۶) مشخص شده‌اند. همان طور که ملاحظه می‌شود قوانین اگر- آنگاه شامل n هر عامل جدیدی روش پیشنهاد شده است. این روش‌ها عبارتند از:

۱- روش حداکثر مربعات معمولی
۲- روش حداکثر مربعات لگاریتمی
۳- روش بردار و زیست
۴- روش‌های نیوتنی

روش‌های نیوتنی دقت کمتری اما قابل قبول داشته و به‌دلیل محاسبات کمتر و ساده‌تر که داردند، اغلب مورد استفاده قرار می‌گیرند. روش میانگین هندسی، یکی از این روش‌های تقیبی است که در محاسبه وزن عامل‌ها در فرآیند جانابی مورد استفاده قرار گرفته است [۱۱].

n(n-1) اگر n تسهیل وجود داشته باشد، تعداد کل ارتباطات خواهد بود. اگر ن که وزن را به عنوان یک عامل استقلال، سال ۲۷، شماره ۲، اسفند ۱۳۸۷ ۱۳۹۶
شکل ۵- توابع عضویت برای عامل وزن [۱۳]

شکل ۶- قواعد اگر– آنگاه برای (الف) جریان مواد (MF) و عامل وزنی اش (ب) جریان پرسنلی (WF) و عامل وزنی اش (ج) جریان تجهیزات (EF) و عامل وزنی اش و عامل زمینی (و) ارتباط نظامی (SL) و عامل وزنی اش (و) ارتباط محیطی (EL و عامل وزنی اش [۱۱])

استقبال، سال ۲۷، شماره ۲، اسفند ۱۳۸۷
جدول ۲- داده‌های ورودی بین ماشی‌ها برای مثال توضیحی

<table>
<thead>
<tr>
<th>عامل ۱</th>
<th>عامل ۲</th>
<th>عامل ۳</th>
<th>عامل ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماشی‌ها</td>
<td>جریان مواد</td>
<td>ارتباط نظارتی</td>
<td>ارتباط محیطی</td>
</tr>
<tr>
<td>۱-۵</td>
<td>۱</td>
<td>۵</td>
<td>۸</td>
</tr>
<tr>
<td>۶-۱</td>
<td>۲</td>
<td>۸</td>
<td>۶</td>
</tr>
<tr>
<td>۳-۱</td>
<td>۳</td>
<td>۷</td>
<td>۱</td>
</tr>
<tr>
<td>۴-۲</td>
<td>۴</td>
<td>۶</td>
<td>۱</td>
</tr>
<tr>
<td>۵-۲</td>
<td>۵</td>
<td>۵</td>
<td>۳</td>
</tr>
<tr>
<td>۶-۳</td>
<td>۶</td>
<td>۳</td>
<td>۱</td>
</tr>
<tr>
<td>۷-۳</td>
<td>۱</td>
<td>۸</td>
<td>۵</td>
</tr>
<tr>
<td>۸-۳</td>
<td>۲</td>
<td>۷</td>
<td>۱</td>
</tr>
<tr>
<td>۹-۳</td>
<td>۳</td>
<td>۶</td>
<td>۱</td>
</tr>
<tr>
<td>۱۰-۳</td>
<td>۴</td>
<td>۵</td>
<td>۱</td>
</tr>
<tr>
<td>۱۱-۳</td>
<td>۵</td>
<td>۴</td>
<td>۱</td>
</tr>
<tr>
<td>۱۲-۳</td>
<td>۶</td>
<td>۳</td>
<td>۱</td>
</tr>
<tr>
<td>۱۳-۳</td>
<td>۷</td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td>۱۴-۳</td>
<td>۸</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۱۵-۳</td>
<td>۹</td>
<td>۸</td>
<td>۱</td>
</tr>
<tr>
<td>۱۶-۳</td>
<td>۱۰</td>
<td>۷</td>
<td>۱</td>
</tr>
<tr>
<td>۱۷-۳</td>
<td>۱۱</td>
<td>۶</td>
<td>۱</td>
</tr>
<tr>
<td>۱۸-۳</td>
<td>۱۲</td>
<td>۵</td>
<td>۱</td>
</tr>
<tr>
<td>۱۹-۳</td>
<td>۱۳</td>
<td>۴</td>
<td>۱</td>
</tr>
<tr>
<td>۲۰-۳</td>
<td>۱۴</td>
<td>۳</td>
<td>۱</td>
</tr>
<tr>
<td>۲۱-۳</td>
<td>۱۵</td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td>۲۲-۳</td>
<td>۱۶</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۲۳-۳</td>
<td>۱۷</td>
<td>۸</td>
<td>۱</td>
</tr>
<tr>
<td>۲۴-۳</td>
<td>۱۸</td>
<td>۷</td>
<td>۱</td>
</tr>
<tr>
<td>۲۵-۳</td>
<td>۱۹</td>
<td>۶</td>
<td>۱</td>
</tr>
<tr>
<td>۲۶-۳</td>
<td>۲۰</td>
<td>۵</td>
<td>۱</td>
</tr>
<tr>
<td>۲۷-۳</td>
<td>۲۱</td>
<td>۴</td>
<td>۱</td>
</tr>
<tr>
<td>۲۸-۳</td>
<td>۲۲</td>
<td>۳</td>
<td>۱</td>
</tr>
<tr>
<td>۲۹-۳</td>
<td>۲۳</td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td>۳۰-۳</td>
<td>۲۴</td>
<td>۱</td>
<td>۱</td>
</tr>
</tbody>
</table>

در ورودی و پیک خروجی می‌باشند. تعداد کل قوانین از فرمول زیر محاسبه می‌شود:

\[N = \sum_{i=1}^{m} \frac{n}{L_i} \]

که تعداد مجموعه قوانین n، تعداد متغیرهای m ورودی و Li مقادیر بینی مربوط به پارامترهای ورودی آم را نشان می‌دهد.

پس از فازی کردن متغیرها و تشکیل پیکره‌های دانش، به موتور استنتاج نیاز است. موتور استنتاج ورودی خروجی فازی را ایجاد و براساس قوانین اگر-آنگاه خروجی فازی مناسب را تولید می‌نماید. روشی که در این قسمت به کار برده می‌شود روش ممتدی است که به کمک پیک مثلث توضیح داده می‌شود.

مثال توضیحی

فرض کنید ۵ مالین وجود دارد. عامل‌های ذیل نظر گرفته شده‌اند:

- جریان مواد
- ارتباط نظارتی
- ارتباط محیطی
- ارتباط اطلاعاتی

که مقادیرشان در جدول ۲-۱ نشان داده شده است. همان‌طور که ملاحظه می‌شود تعداد کل ارتباطات ۲۰ می‌باشد (۴×۵).
جدول 3- شدت اهمیت عامل‌ها برای مثال توضیحی

<p>|</p>
<table>
<thead>
<tr>
<th>1 بر 2</th>
<th>2 بر 3</th>
<th>3 بر 4</th>
<th>4 بر 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0/17</td>
<td>0/17</td>
<td>0/17</td>
</tr>
<tr>
<td>3-4</td>
<td>0/14</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>5-6</td>
<td>0/13</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>7</td>
<td>0/16</td>
<td>0/17</td>
<td>0/17</td>
</tr>
</tbody>
</table>

و ژن هر عامل به دست می‌آید.

AHP با استفاده از روش سه طراحی تعیین شده و در جدول 4.

نشان داده شده است. برای مثال دو ماتریس 1 و 2 را در نظر گرفتیم، طراح عده 3 را به عنوان شدت اهمیت عامل 2 بر عامل 3 تخصیص داده است. بنابراین سه که همیاً عامل 2 بر عامل 3 کمی مهم تر می‌باشند. محاسبات مربوطه برای این دو بخش در جدول 4. نشان داده شده است. وزن عامل 1 برای باین 3/5 هر وزن عامل 2 برای 7/5 وزن عامل 3 برای 2/48 وزن عامل 4 برای ماتریس گردد. است. وزن عامل‌های برای تمام ارتباط‌ها به همین صورت محاسبه شده و در جدول 5 نشان داده شده است.

قلم عده فازی کردن متغیرها می‌باشد. این فرآیند برای دو ماتریس 1 و 2 به صورت زیر انجام می‌شود:

عامل 1 (جزیره موارد) برای 1 می‌باشد (جدول 2) این مقدار

استقلال، سال 27، شماره 2، استپس 1387
جدول ۵- وزن عامل‌ها برای تعیین ارتباط‌های مطالعه‌ی توضیحی

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مابین‌ها</td>
<td></td>
</tr>
<tr>
<td></td>
<td>جریان مواد</td>
<td>ارتباط محیطی</td>
</tr>
<tr>
<td></td>
<td>۰/۳۷۵۶</td>
<td>۰/۱۸۳</td>
</tr>
<tr>
<td></td>
<td>۰/۶۷۳۶</td>
<td>۰/۵۷۵</td>
</tr>
<tr>
<td></td>
<td>۰/۷۲۷۶</td>
<td>۰/۵۷۵</td>
</tr>
<tr>
<td></td>
<td>۰/۷۸۱۶</td>
<td>۰/۵۷۵</td>
</tr>
<tr>
<td></td>
<td>۰/۷۸۱۶</td>
<td>۰/۵۷۵</td>
</tr>
</tbody>
</table>

این آنگاه نرخ نژادی‌که X خواهد بود.
قانون چهارم: اگر جریان مواد باشند و وزن آن باشند، آنگاه نرخ نژادی U خواهد بود.
میزان عضویت برای هر یک از فاوانی فوق برای انتظار با:

\[w_1 = \min \{0.5, 0.647\} = 0.5 \]
\[w_2 = \min \{0.5, 0.353\} = 0.353 \]
\[w_3 = \min \{0.5, 0.647\} = 0.5 \]
\[w_4 = \min \{0.5, 0.353\} = 0.353 \]
نتیجه‌ی سه قانون اول، نرخ نژادی U خواهد بود، با این‌که برای این‌که عضویت نهایی برای نرخ نژادی X برای انتظار به:
\[\mu_X = \max \{w_1, w_2, w_3\} = \max \{0.5, 0.353, 0.5\} = 0.5 \]
همچنین میزان عضویت نرخ نژادی U برای انتظار یک مقدار یک می‌باشد، با این‌که برای این‌که عضویت نهایی برای نرخ نژادی X برای انتظار به:
\[\mu_U = 0.353 \]

شکل (۸) این مثال راه‌کار را بهبودی نشان می‌دهد. در ادامه با استفاده از روش‌های قانونی که

\[R_{12}^M = \frac{1 \times 0.5 + 2 \times 0.353}{0.5 + 0.353} = 1.414 \]

که نرخ نژادی U از دو مانند (۱) از نظر جریان مواد می‌باشد، به این می‌شود نرخ نژادی U از دو مانند (۱) از نظر ارتباط محیطی (R_{12}^M) و ارتباط می‌باشد.

استناد: سال ۷۷، شماره ۲، استاند ۱۳۸۷
4- روش ابتکاری استقرار بخشها

بیشتر روش‌های قبلی جامعی بر پایه سیستم شبکه شطرنجی و بدون در نظر گرفتن ابعاد واقعی بخشها و محله‌ای ورود و خروج می‌باشند. بنابراین نتایج به‌دست‌آمده

وجود دارد بهترین اگر نرخ تزیکی از بخش i به بخش j و ازبخش j به بخش i آن‌گاه، نرخ تزیکی $r_{ij} + r_{ji}$ مقابل خواهد بود.

2- بخش بعدی بخشی است که جمع نرخ تزیکی مقابل آن با اولین بخش انتخاب شده از همه بیشتر باشد.

3- بخش سوم بخشی است که حاصل جمع نرخ تزیکی مقابل آن با تمام بخش‌هایی که انتخاب شده‌اند ازبین‌گرفتی

بخش‌هایی که شرایط انتخاب شده را دارند اولی را کنون
طرح کلی سه نوع استقلا در حوالی یک نقطه کاندید و سطح ملاحظه می‌شود. این سه حالت در سمت چپ با راست نقطه کاندید و با در وسط نقطه کاندید خواهد بود. بخش‌های بیا افقی یا عمودی بدون هم‌پوشانی با سایر بخش‌ها در ناحیه مورد نظر قرار گرفته. سه حالت افقی و سه حالت عمودی، شش حالت را بوجود می‌آورند. حال اگر این شش حالت را ۱۸۰ درجه چرخانده، شش حالت دیگر به‌دست می‌آید. بنابراین ۱۲ حالت برای هر نقطه کاندید وسط جستجو می‌شود.

در حوالی یک نقطه کاندید گوشه به طور کلی پنج نوع استقلا بوجود می‌آید. این پنج نوع استقلا با شماره‌های ۱ تا ۵ در شکل (۹) مشخص شده‌اند. پنج حالت افقی و پنج حالت عمودی (شماره‌های ۶ تا ۱۰) ده حالت را بوجود می‌آورند. مانند نقاط متقاطع کاندید برای استقرار بخش بعدی در نظر گرفته می‌شود. به صورت شکل‌های غیرعمودی خواهد بود. در اینجا فرض می‌شود که بخش‌ها به صورت مستقل شکل بوده و ابعاد هر بخش از قبل مشخص شده است. همچنین نقاط ورود و خروج براز هر بخش در وسط اضلاع در نظر گرفته می‌شود.

این حالت براز مستطیل جانینایی کازیکر پیشتری دارد زیرا که مشابه‌ای را می‌توان به شکل مستطیل در نظر گرفت و ابعاد و نقاط ورود و خروج شان را به راحتی مشخص کرد. نابر این استفاده شده به صورت کمیته کرون هرینه حمل و نقل مواد در نظر گرفته شده است (پیوست).

اولین بخش به صورت افقی در مرکز نقطه قرار می‌گیرد. نقاط وسط و گوشه بخش یا پخش‌های استقرار با هم به عنوان نقاط کاندید برای استقرار بخش بعدی در نظر گرفته می‌شود. به
جدول ۶- ابعاد و محل نقاط ورود و خروج مشیگان

<table>
<thead>
<tr>
<th>مشیگان</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول (متر)</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۶۰</td>
</tr>
<tr>
<td>عرض (متر)</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
</tr>
</tbody>
</table>

۶ اگر تابع هدف بهتر از قبل بود، طرح استقرار آزاده شده و مقادیر تابع هدف بر روی کنید برای جستجوی دیگر حالات در نقطه مشیگان به قدم ۵ برگردید.

۷ انتخاب دیگر نقطه کنید. اگر همه نقاط کنید بررسی شدند، به قدم ۶ برودی در غیر این صورت به قدم ۴ بروید.

۸ انتخاب بخش بعدی. اگر همه بخش‌ها انتخاب شده‌اند به قدم ۹ بروید در غیر این صورت به قدم ۳ بروید.

۹ بهترین جاماییی را گزارش کنید.

در صورتی که برای مثال توضیحی ابعاد مشیگان و محل نقاط ورود و خروج مطلوب جدول ۶ باشد، جاماییی به نمایندگی با استفاده از FLOWAY به صورت شکل (۵) خواهد بود.

مسیر انتخاب مشیگان برای ورود به جاماییی در این مطالعه ابتدا مشیگان ۴ و سپس مشیگان ۱، ۲، ۳، ۴ و ۵ بودند. که طبق روش انتخابی که در بخش ۵ بیان شد، قرار گرفته‌اند. مقادیر مربوط به هزینه حمل و نقل برای این مثال برای پیشگیری ۱۹۱۵ محاسبه گردید. در بخش بعدی نتابی محاسباتی حاصل از مقایسه روش بیش‌شناسی با روش‌های دیگری و کری نشن‌داده می‌شود.

۷- نتایج محاسباتی

در این بخش نتایج حاصل از روش بیش‌شناسی برای توسعه فازی جدول رابطه عاطفی‌ها با روش‌های دیگری و میبرد. به FDARC می‌گردد. برناهای (۱۱) مقایسه می‌گردد.

۱. یافتن مسیر انتخاب بخش‌ها بر اساس روش انتخاب بخش‌ها.

۲. قرار دادن اولین بخش در مرکز نگه داشته باشد انتخاب افت. انتخاب بخش بعدی برای استقرار طبق مسیر انتخاب بخش‌ها.

۳. انتخاب نقطه کنید و کنترل موجه بودن آن در صورتی که موجه است به قدم بعدی بروید. اگر موجه نبود به قدم ۷ بروید.

۴. قرار دادن بخش انتخاب شده طبق حالت ممکن درصوصت ۵ هم پوشانی مقدار تابع هدف را محاسبه کنید. سپس به استقلال سال ۲۷ شماره ۱۳۸۷
جدول 7- مقایسه نتایج حاصل از روش‌های مختلف برای مسله‌ی ۴ بالی.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>میزان انتخاب</th>
<th>هزینه حمل و تقل</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>دریکر</td>
<td>۵-۴-۳-۲-۱</td>
<td>۳۸۰۵</td>
<td></td>
</tr>
<tr>
<td>پیشنهاد</td>
<td>۶-۵-۴-۳-۲-۱</td>
<td>۳۵۵۱</td>
<td></td>
</tr>
</tbody>
</table>

جدول 8- مقایسه نتایج حاصل از روش‌های مختلف برای مسله‌ی ۸ بالی.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>میزان انتخاب</th>
<th>هزینه حمل و تقل</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>دریکر</td>
<td>۵-۴-۳-۲-۱</td>
<td>۱۲۷۴۳</td>
<td></td>
</tr>
<tr>
<td>پیشنهاد</td>
<td>۶-۵-۴-۳-۲-۱</td>
<td>۱۱۹۵۳</td>
<td></td>
</tr>
</tbody>
</table>

جدول 9- مقایسه نتایج حاصل از روش‌های مختلف برای مسله‌ی ۱۰ بالی.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>میزان انتخاب</th>
<th>هزینه حمل و تقل</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>دریکر</td>
<td>۵-۴-۳-۲-۱</td>
<td>۱۸۶۸۹</td>
<td></td>
</tr>
<tr>
<td>پیشنهاد</td>
<td>۶-۵-۴-۳-۲-۱</td>
<td>۲۱۰۴۸</td>
<td></td>
</tr>
</tbody>
</table>

روش کار به این صورت است که جدول کمی رابطه فعالیت‌ها و برنامه‌ها به منظور ایجاد جانه‌ای با استفاده از زبان برنامه‌نویسی ویژوال بیسک ۶ کدنویسی شده و بر روی یک رایانه پنتیوم IV مگاهرتز اجرا گردیده.

منظور توسعه جدول کمی رابطه فعالیت‌ها و برنامه FLAYOUT به منظور ایجاد جانه‌ای با استفاده از زبان برنامه فعالیت‌های که از روش پیشنهادی، روش دریکر و روش کری در جدول (۶) تنا (۱۲) مقایسه شده‌اند. همان‌طور که می‌شود جواب‌های بدست‌آمده از روش پیشنهادی، از جواب‌های روش دریکر و روش کری بهتر است. در (۱۱) مقاله تابع هدف توسط یک نمودار می‌باشد که به وجود جواب‌های متفاوتی با ابعاد مختلف مقایسه‌شده و به‌وجود حاصل شده به‌طور واضح نمایش یافته است. مدت زمان مورد نیاز برای اجرای مسائل با اندازه‌های مختلف در جدول (۱۳) نشان داده است. کودک‌های زمان مسافرتی کارایی روش‌ها از این نظر نشان می‌دهد. به‌طورکلی می‌توان نتایج به‌دست‌آمده را به‌صورت زیر خلاصه نمود:

- منظور توسعه جدول کمی رابطه فعالیت‌ها و برنامه FLAYOUT به منظور ایجاد جانه‌ای با استفاده از زبان برنامه فعالیت‌های که از روش پیشنهادی، روش دریکر و روش کری در جدول (۶) تنا (۱۲) مقایسه شده‌اند. همان‌طور که می‌شود جواب‌های بدست‌آمده از روش پیشنهادی، از جواب‌های روش دریکر و روش کری بهتر است. در (۱۱) مقاله تابع هدف توسط یک نمودار می‌باشد که به وجود جواب‌های متفاوتی با ابعاد مختلف مقایسه‌شده و به‌وجود حاصل شده به‌طور واضح نمایش یافته است. مدت زمان مورد نیاز برای اجرای مسائل با اندازه‌های مختلف در جدول (۱۳) نشان داده است. کودک‌های زمان مسافرتی کارایی روش‌ها از این نظر نشان می‌دهد. به‌طورکلی می‌توان نتایج به‌دست‌آمده را به‌صورت زیر خلاصه نمود:
جدول ۱۰ - مقایسه نتایج حاصل از روش‌های مختلف برای مسئله با ۱۲ بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>سیستم انتخاب</th>
<th>هزینه حمل و نقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کری</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۳۰۴۲</td>
</tr>
<tr>
<td>دیورپی</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۳۰۶۵</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۱۸۷۵</td>
</tr>
</tbody>
</table>

جدول ۱۱ - مقایسه نتایج حاصل از روش‌های مختلف برای مسئله با ۱۵ بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>سیستم انتخاب</th>
<th>هزینه حمل و نقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کری</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۷۰۶۱</td>
</tr>
<tr>
<td>دیورپی</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۴۹۵۲</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۶۸۲۸۵</td>
</tr>
</tbody>
</table>

جدول ۱۲ - مقایسه نتایج حاصل از روش‌های مختلف برای مسئله با ۲۰ بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>سیستم انتخاب</th>
<th>هزینه حمل و نقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کری</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۱۵۲۷۹</td>
</tr>
<tr>
<td>دیورپی</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۱۵۴۱۴</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>بین ۶ تا ۱۰۰۰۰</td>
<td>۱۳۴۴۱</td>
</tr>
</tbody>
</table>

شکل ۱۱ - مقادیر نتایج هدف محاسبه شده با استفاده از روش‌های مختلف.

جدول ۱۳ - متوسط زمان موردی برای برنامه‌های FDARC و FLAYOUT برای مسئله مختلف بر حسب تعداد بخش‌ها.

<table>
<thead>
<tr>
<th>برنامه‌ها</th>
<th>تعداد بخش‌ها</th>
<th>۶ بخش</th>
<th>۸ بخش</th>
<th>۱۰ بخش</th>
<th>۱۲ بخش</th>
<th>۱۵ بخش</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDARC</td>
<td>متوسط زمان</td>
<td>۶/۹۰۴۵</td>
<td>۱/۰۰۸۰</td>
<td>۱/۸۳۶۸</td>
<td>۲/۷۵۸۵</td>
<td>۲/۳۴۷۴</td>
</tr>
<tr>
<td>FLAYOUT</td>
<td>متوسط زمان</td>
<td>۶/۸۶۸۵</td>
<td>۱/۰۰۰۰</td>
<td>۱/۸۷۵۸</td>
<td>۲/۸۵۳۲</td>
<td>۲/۶۵۱۵</td>
</tr>
</tbody>
</table>

استقلال، سال ۲۷، شماره ۲، اسفند ۱۳۸۷

۴۵
8. خروجی حاصل از برنامه FDARC را می‌توان در هر برنامه جانمانی کردن کمی رابطه فعالیت‌ها را به عنوان ورودی دریافت می‌کند. مورد استفاده قرار داد.

9. با استفاده از برنامه FLAYOUT طراحی می‌تواند باعث واقعی بخش‌ها و محیط نقاط و خروجی را از قبیل تعيین کرده و یک جانمانی عملی را به‌دست آورد.

10. مدت زمان اجرای برنامه‌های نهایی شده در حد قابل قبولی قرار دارد.

8- تبدیل گیری

در این پایان نامه یک سیستم تصمیم‌گیری فازی برای توسعه جدول رابطه فعالیت‌ها طراحی گردید. برنامه رایانه‌ای حاصل از این روش (FDARC) به صورتی نهایی شده است که اجرای آن بر روی رایانه‌های شخصی، برای کاربران ساده و آسان باشد. خروجی این برنامه را می‌توان در هر روش که جدول کمی رابطه فعالیت‌ها یا جدول از یک به عنوان ورودی دریافت می‌کند، مورد استفاده قرار داد. در این تحقیق خروجی به‌دست آمده از FLAYOUT به عنوان ورودی برای ایجاد جانمانی با ابعاد واقعی مورد استفاده قرار گرفته، کارایی و ارتباطی روش پیشنهادی در مقایسه با روش‌های مطرح نشان داده شد.

1. Fuzzy set theory
2. Analytical hierarchy process
3. Fuzzy development of activity relationship chart
4. Fuzzy layout
5. Facilities planning
6. Activity relationship chart
7. Technique for order preference by similarity to ideal solution
8. Genetic algorithm
9. Multiple criteria decision making
10. Term
11. Semantic rule
12. Syntactic rule
13. Fuzzy decision making system
14. Fuzzifier
15. Knowledge base
16. Inference engine
17. Defuzzifier
18. Center of area
19. First of maxima
20. Last of maxima
21. Decision-making logic
22. Decision rules

واژه نامه

1. این روش به طراح اجاق می‌دهد که از همه عامل‌های موثر بر جانمانی استفاده کننده به طوری که برنامه‌های کمی و هم عامل‌های کمی را به طور همزمان در جدول رابطه فعالیت‌ها نتیجه گرفته.

2. با استفاده از این روش طراحی می‌تواند با همه عامل‌های به طرف قابل توجه استفاده کند. در حالی که قبل از این استفاده نباید بر یک قضاوت خالص، جدول رابطه فعالیت‌ها شکل گرفته.

3. هرینه حمل و نقل مواد مهاره در صدایی از هرینه‌ها تولید را به‌طور اختصاصی می‌دهد. مقداری از روش پیشنهادی با روش‌های دیگری و کری نشان می‌دهد که هرینه حمل و نقل مواد نسبت به این دو روش‌ها بهتر است.

4. در روش‌های دیگری و کری لازم است که کاربر برای حل مسئله تولید که پیچیده‌تر از عضویت پیشنهادی روش دیپ و باتی‌چارا استفاده شده است.

5. تعداد عوامل اکثر آنها روش دیپ و باتی‌چارا با افزایش تعداد عامل‌های ورودی به طور چشمگیری افزایش می‌یابد. در روش پیشنهادی این عوامل در حد قابل قبول قرار داده.

6. استفاده از روش AHP برای تعیین وزن عامل‌های ورودی، این امکان را به طراح می‌دهد که شدت اثرهای مختلف را برای عامل‌های مختلف در نظر بگیرد.

7. استفاده از عامل‌های پارامتری برای تعیین جدول رابطه فعالیت‌ها باعث انعطاف‌پذیری روش پیشنهادی شده است.

استقلال: ۳۷، شماره: ۲، اسفند ۱۳۸۷
16. طاهری، م.، "شناسه‌یابی با نظریه مجموعه‌های فازی"، انتشارات جهاد دانشگاهی مشهد، 1376.
20. زاهدی، م.، "تطوير مجموعه‌های فازی و کاربرد آن"، نشر کتاب دانشگاهی، 1378.

مراجع

می‌بینیم کد منهای حمل و نقل

\[m \in Z = \left(\sum_{i \in I} x_{ij} + y_{ij} \right) \]

\[\forall j = 2, 3, \ldots, n. \]

کد:

\[x_{ij}, y_{ij} \] مختصات نقطه ورود برای بخش آ

\[x_{ij}, y_{ij} \] مختصات نقطه خروج برای بخش آ

\[x_{ij}, y_{ij} \] جهانی مواد بین بخش‌های آ و ی

\[x_{ij}, y_{ij} \] ضرب هزینه جهانی بین بخش‌های آ و ی

استقلال، ص. 27، شماره 2، استقلال 1387.