کچیده
هدف از این مقاله بررسی روش و تدوین یک برنامه کامپیوتری است که پروسه‌های انتقال (جرم، میانیت و نوری) را درQB یک راک‌ره‌ها که با سروتی سیاست‌های کاربردی شیب‌های سازی نماید. برای تحلیل جریان یک‌خطه‌های مشخص و دو‌خطه انتقال راک‌ره‌ها ایده‌آل می‌شناسد که با توسط سیستم‌های پیش‌بینی، سیستم‌های قابل کنترل به‌منظور مدل‌سازی و بهبود می‌پیوند. آن‌ها از دنیای طبیعی و همیشه صنعتی برای انتقال حرارت مدارک‌های ضریب انتقال حرارت و هم‌سازی‌ها در جریان دو خطه مشخصی که توسط یافته‌ای از روی‌روش قلم به قدم به طرق عقیده حل می‌گردد.

برخی از محاسبات جریان، فرایندهای ساده یا مدل‌های معروف یکی روش عمده این برنامه‌ها کامپیوتری دو دین شده‌است. این برنامه‌ها با‌درست جریان یک سیستم و دو خطه‌ای را می‌توانند تحلیل و راه‌حل‌هایی یکه‌سان مسئله مشخص اعمال شده و نتایج قابل قبولی به دست دهد.

مقله
استفاده از برنامه حاضری هسته‌ای به‌منظور یافتن قابلیت بالای آژانس‌های انتزاع در واکنش‌های با تغییرات فسیلی آزمایش زیادی پرخوردار است. انتزاع حاصل از محاسبات یک برنامه از لحاظ الگوریتمی و دقت سنگین است. نوع مدل‌سازی راک‌ره‌ها که در اینجا صورت گرفته‌است، راک‌ره‌های سیستم‌های میلامی‌ست. سیستم‌های پارامتر و درصد سخت‌گیری با ناحیه الگوریتم و راه‌حل‌هایی انتزاعی داده‌های آزمایش‌های درمانی است. دریافت و منتقل

دانشیاران دانشگاه مهندسی کامپیوتر دانگشا و از دانشگاه مهندسی کامپیوتر دانگشا صنعتی اصفهان

** نام و نام خانوادگی دانشگاه مهندسی کامپیوتر دانگشا صنعتی اصفهان
استقلال

می‌شود در حین حرکت سیال در میان‌سیال‌های سوخت، جوشش موضعی سیال صورت می‌گیرد. از طرفی برای ارزیابی انتقال حرارت و کاهش در میان‌سیال‌های سرخ، حرکت سیال صرفه، درمان‌های میله‌ای مانند بکه با روش‌داین زایده‌ای بررسی آن حرکتی اجباری مصونی به سیال واردی شود.

یک هواپیمایی پیش‌بینی شده بین میله‌های، گزینه‌ای بهتر از تحقیقاتی که در حال انجام بوده‌است. از طرفی از نظر، تحقیقاتی که در حال انجام بوده‌است، درست داشته اطلاعات صحیح از اخلاق‌سیاست جویان پایان‌ریزی‌های مختلف ترومودیولوگی در روند مصرف‌های و جریان‌ها. حال این مسئله معمولاً از طرف تحقیقات صحیح و تجدید صورت می‌گیرد که در این جازه ها برای انجام تحقیقات با استفاده از این مداخلات محل شد جویان مسیریست. برای حل مسئله این روش، مداخلات ساده، شده حاکم برجای سیال شیوه مداخلات پیش‌بینی می‌شود و انتظار می‌رود. مقاله حاضربرمانی ایده‌های موجود در کامپیوتری کرایه‌ای و گره‌های عمده در مراجع [1] و [2] تدوین شده است. البته استفاده مستقیم از کامپیوتر می‌تواند علت کمربان‌الاطلاعات امکان پذیرنده ولاداری‌سی حاضربرمانی ایده‌های موجود و نیازی حاکم برکه‌ای دائم گرته است. لیا جرایت برنامه کامپیوتری ورود محاسبات متغیر است. کد‌نوسه پایه‌های برای مغالت برخی از محدودیت‌های موجود در کامپیوتر کولا راتناروک از اینکه است.

راکتورهای هسته‌ای

اساس راکتورهای هسته‌ای برخوردار نیترات نیتروژن به هسته‌های عناصر می‌گردد. ۱۳۸ یک پلیرسیم ۱۳۹ است که می‌تواند شکاف شده باشد. از آنجایی که فناوری بسیار پیشرفته و پیشرفته‌ای در حال انجام می‌باشد به هسته‌های کورک‌هایی تفسیر می‌گردد. در این راستا، تحقیق پیش‌بینی راه حل و نیز به هسته‌های کورک‌های با بالازایی تدوین نیترات نیتروژن به هسته‌های نیترات نیتروژن تفسیر می‌گردد. ۱۴۰

استعمل قیمتهای (93) و راه‌حل‌های دیگر راه حل‌های دیگر

در طول رازکور، دو تکنیک و سایر متغیران مثل باطری‌های مصرف، ترموالکترونیک پلاستیک و پلاستیک بخار‌وخار دیگر انرژی الکتریکی به همین‌که در این

دراین
چاپ شده‌ای، من نمی‌توانم متن را از تصویر خوانندام. لطفاً متن را در قالب یک فایل وارد شود و من می‌توام خواندن آن را انجام دهم.
خاصیت کدنگاری‌نارنجی‌پری افزایش احتمال یک‌ورود آن داده است که با بهبود فشار خون، تغییراتی در مقدار قلب و اثرات جراحی و میزان ترکیب این میکرو — سیستمی باید بیشتر باشند.

![دایره چکش و محیط قلبی]

شکل ۲ - مقطع افقی قلب و ورود آن به محیط قلبی

توصیف کانال‌های جریان

نحوه آراشی میله‌هایی در ورود جریان به سیال در ناحیه مختلف مقطع عورت‌ها و وجود میله‌های چسبان ناشی از میله‌های جریان در طول میله‌های سوخت می‌شود. شکل ۳ سری‌های سیال وردکانالهایی بین میله‌های سوخت نمایش می‌دهد. حرکت کلی سیال از ازاین به بالا و ریختش جنبی سیال به صورت نشانی این نمایش داده شده است. این حرکات درال‌ساخت ورود جریان (W) یا نیژ‌لذگ فیبرکوانت حرارت واقع شارپ‌پراکس (W) نوساین‌های مختلف ایجاد می‌کند. همچنین حرکتهای جنبی سیال (W) می‌تواند درال‌ساخت ورودی میکروکاتی و اکسیژناتور میکروکاتی و
شیمی‌اسیب‌های عددی پروسه‌های انتقال

شکل ٣- نمایش کانال‌های جریان

برای سادگی در تحلیل مسئله، میدان جریان را یک توان به توانی مختلی تقسیم کرد. به این ترتیب، میدان جریان را به میدان‌های دسته‌بندی شده و کانال‌های می‌گوییم. در شکل، میدان‌های حاصل از ترکیب دو کانال در جریان می‌باشند. به این ترتیب، میدان‌های جریانی در کانال‌ها و کانال‌های جریان در بر در نظر گرفته می‌شوند. در این شرایط، تأثیر هموگلوبین و هم‌زیستی دارو در کانال‌ها و کانال‌های جریان به صورت یک دریافت تشخیص شدید را بررسی می‌کنیم. در تحلیل جریان در کانال‌های جریانی به کار گرفته می‌باشد. در این شرایط، کانال‌ها و کانال‌های جریان به صورت یک دریافت تشخیص شدید را بررسی می‌کنیم.
معادلات حاکم

der شکل 4، مقطعی از کانال i به طول dz همرود کانال مجاور j ار نشان داده شده است.

معادله پروشتی برای کانال i به صورت زیر است:

\[
\frac{dm_i}{dz} = w_{ij} - w_{ik} \quad \frac{dm_j}{dz} = -(w_{ij} + w_{ik})
\]

این رابطه با توجه به کره‌کره مرحل زمانی افتخارات چریان و در نتیجه برقراری روابط به دست آمده است. در صورتی که کانال i با N کانال مجاور باشد، در این صورت:

\[
\frac{dm_i}{dz} = - \sum_{j=1}^{N} w_{ij}, \quad i = 1, 2, ..., M
\]
که درآن \(M \) تعداد کانال‌های موردیدان جریان است.
به روشی مشابه می‌توان معادله انتقال رابطه کانال از که در مجاورت‌های \(i \) و \(k \) است، به صورت زیرنوشت:

\[
\frac{dh_i}{dz} = \frac{q'_i}{m_i} + \sum_{j=1}^{N} w'_{ij} (h_j - h_i) + \sum_{j=1}^{N} w'_{ik} (h_k - h_i)
\]

(3)

معرف انتقالی سیال است. درصورتی که \(N \) کانال درمجاپات کانال \(i \) درتارکه‌بندی می‌باشد، معادله

نتیجه به صورت زیر می‌آید:

\[
m_i \frac{dh_i}{dz} = q'_i + \sum_{j=1}^{N} w'_{ij} (h_j - h_i) - \sum_{j=1}^{N} w_{ij} h^* , \quad i = 1, 2, ..., M
\]

(4)

که درآن \(h^* \) نرخ انتقال حرارت برواجدگان کانال است و \(h \) از عناصر زیر محاسبه می‌شود:

\[
h^* = \begin{cases} 0 & \text{if } W_{ij} > 0 \\ (h_j - h_i) & \text{if } W_{ij} < 0 \end{cases}
\]

(5)

حال، معادله معنی‌دار درمان‌دادن محوری‌های سوخت رابین رابین، می‌آوریم، برای این منظور،

با توجه به دو عامل بودن جریان و پربراکس اشکال \(v' \) انتخاب حجم مشخص می‌شود.

(6)

در آن \(x \) کیفیت و \(\alpha \) نسبت حجمی گازها و وزن‌نیروی‌های \(g \) به ترتیب معرف مایع و گاز است.

معادله معنی‌دار به شرح زیر است:

\[
-\frac{dp_i}{dz} = \frac{f_i}{2g \rho_i D_{hi}} \left(\left(\frac{m_i}{A_i} \right)^2 + \frac{\rho_i \cos \theta + \frac{f_{ap} w'_{ij} (u_j - u_i)}{g c A_i} + \frac{f_{ap} w'_{ik} (u_k - u_i)}}{g c A_i} \right)
\]

(7)
دراین رابطه، عوامل u و v فشار، f ضریب اصطکاک را به عنوان $\frac{1}{\rho}$ نشان می‌دهد. همچنین، A سطح مقطع، θ ضریب تبدیل و m حجم خالص، D قطر هیدرولیکی، $\frac{g}{g_1}$ ضریب توده‌پذیری v همزمان و f_D و f_I ضرایب تصحیح غیرکنواختی سرعت به علت اصطکاک و ضرایب اصطکاک نروی توده‌پذیری در جریان دو ازدهم باعث می‌شود. معادله ممکن دامتداد محورمیله‌ها به صورت زیر دوست می‌آید:

\[
\begin{align*}
\frac{w_{ij}}{A_1 \beta_c} + \frac{w_{ik} u_i}{g_c A_1} (f_D - 2) + \left(\frac{m_i}{A_i} \right)^2 \frac{1}{g_c} & \left[\frac{\partial v_i}{\partial h} \frac{dh_i}{dz} + \frac{\partial v_i}{\partial p} \frac{dp_i}{dz} \right] \\
- \left[1 + \frac{1}{g_c (m_i/A_i)} \right] & \frac{dp_i}{dz} = 1 \frac{1}{g_c (m_i/A_i)} \left[\frac{f_I \beta_i}{2 \eta D h_i} + \frac{\partial v_i}{\partial h} \frac{dh_i}{dz} \right] + \\
\rho \alpha \cos \theta & + \frac{1}{g_c A_1} \sum_{j=1}^{N} f_I w_{ij} (u_i - u_j) + \frac{1}{g_c A_i} \sum_{j=1}^{N} w_{ij} k^* \\
& i = 1, 2, \ldots, M
\end{align*}
\]
\\
\begin{align*}
k^* &= \begin{cases}
(u_i (f_D - 2)) & \text{if } w_{ij} > 0 \\
(f_D u_i - 2 u_i) & \text{if } w_{ij} < 0
\end{cases}
\end{align*}

که در آن

معادله ممکن دامتداد عمودی محورهای میله‌ها که نرخ صرفه‌جویی محور می‌شود، جریان‌های عرضی را به صورت زیر انتهایی می‌داند:

\[
p_i - P_i = e_j w_{ij} \quad |w_{ij}|
\]

که در آن c_j ضریب انت هست و ارتباطه زیر هست می‌آید:
در این رابطه ρ فاصله فضایی خالی بین دو میله سوخت و 1 معادل قطر میله است و δ دانسته گریزان دوفازی از ورای رابطه می‌تواند سیال درکاتالیستی که می‌تواند خارج می‌شود. اگر عداد مرزهای بین کاتالیستهای موجود در دو گریزان ک باشد به همین معادله شکل (11) می‌توان نوشت. نواراین روابط (25) شیمی 3M معادله (نقاط جرم) ممکن محوی وانزی و k معادله (میزان عرضی) است. معادلات فوق هیئت گروهی و تعدادشده می‌باشد. درجه انرژی، سیال دوفازی محصول جریان‌های متشاهد عرضی روابط بین خواص ترمودینامیکی سیال (جدول ۳)، تعیین کمیت واقعی سیال دوفازی به معادلات فوق اضافه کرد. بهترین‌ها

اختصاصی تشریح این روابط می‌پذیرانم.

این ابتدال به کارگرفته در محاسبه گریزان عرضی در اثر انتقالات و اثرات می‌کنیم. دیب گریزانی عرضی در اثر انتقالات در حالات کلی‌می‌تواند ازدیابی گریزان محوی به صورت زیر باشد:

$$w'_{ij} = \frac{1}{2} \mu_s \left(\frac{m_i}{A_i} + \frac{m_j}{A_j} \right)$$

(12)

که درمان β ضریب تناسب و تابعی از Δ رابطه گریزان و مقداران مسایل است با:

$$\beta = \frac{4}{\delta_{ij}} \frac{A_i + A_j}{P_{w_i} + P_{w_j}} a \text{Re}^b$$

(13)

dرا رابطه آخر a و b مقادیر ثابت اند و Re مقدار نیز زیستی در می‌آید:

$$\text{Re} = \frac{8(m_i + m_j)}{(P_{w_i} + P_{w_j}) (\mu_i + \mu_j)}$$

(14)

ضریب اصطکاک گریزان تک فازی مابه رامزی توان از اصطکاک
استناد

\[f_1 = aRe_{k}^b + c \]

به دست آورده 27.05 \(a = 0.06 \) و \(b = 0.056 \) است. ضریب تصمیم اصطکاک
در جریان دونما (\(\phi \)) رابطه‌برداره‌ای ازمدل آرمان به دست می‌آوریم [1].

\[\phi = 1 \]

\[\phi = \frac{(1-x)^2}{(1-\alpha)^{1.42}} \]

\[0.39 < (1-\alpha) \leq 1 \]

\[\phi = 0.478 \frac{(1-x)^2}{(1-\alpha)^{2.23}} \]

\[0.1 < (1-\alpha) \leq 0.39 \]

\[\phi = 1.73 \frac{(1-x)^2}{(1-\alpha)^{1.64}} \]

\[0 < (1-\alpha) \leq 0.1 \]

درروابط فوق، \(\alpha \) نسبت حجمی گازفریت وازرابطه زیر به دست می‌آید:

\[\alpha = 0 \quad ; \quad h < h_f \]

\[\alpha = \frac{0.833 + 0.167x}{(1-x)v_f + xv_g} \quad ; \quad h > h_f \]

ضریب کیفیت موردی درنحوی میله‌ای سوخت رامی توان بالاستفاده ازمدل لولی [1] به
دست آورده. برای این کارتخیلات واقعی کیفیت (\(k' \)) رابطه‌برداره‌ای ازطول محاسبه می‌کنیم.
سپس بازکردن کیفیت واقعی به جای کیفیت ترمودینامیکی (\(x \)), تغییرات حجمی گازفریت طول
کانال به دست می‌آوریم. بااستفاده ازمدل لولی داریم:

\[x'(z) = x(z) - x_d(z) \exp \left(\frac{x(z)}{x_d(z)} - 1 \right) \]

که در آن \(x \) کیفیت در نقطه جداچندن جابه‌ای بخارات طحع درادای جوشش هسته‌ای وبرابریست
شیب‌سازی عددهای پررهای انتقال:

\[x_d(a) = -\frac{c_p\Delta T_{sub}d}{h_f} \]

(19)

نرمالی ویره، مایع اشباع و به‌طور جدایگان محاسبه می‌شوند. \(\Delta T_{sub}d \) اختلاف دمای اشباع و دمای سیال در نقطه جدایگان

جعبه‌ای برای درک کردن طبقه‌بندی و توزیع دمای سیال تک نک فازی اطراف

دیواره محاسبه می‌شود. این‌که شتاب حباب و نیرویی شناوری حباب ناچیز است، جمع جعبه‌ای درگ و کشک سطحی در حالت تعادل یا از صفرنشینی‌های بن‌تریب ناکافی

حباب تادیوبه \(\eta_B \) که مناسب باشگاه حباب است، از زیر محاسبه می‌شود:

\[y_B^+ = \frac{y_B u}{\rho_f \mu_f} = c \frac{(\sigma D_p \rho_f)^{\frac{1}{3}}}{\mu_f} \left[1 + c \left(\frac{\rho_f (\rho_f - \rho_g) D_p}{\tau_w} \right) \frac{1}{2} \right] \]

(20)

\[\epsilon/D_h = 10 \]

که در آن \(10 \) است و با فرض زیری نسبی، \(c = \epsilon/D_h = 10 \) از رابطه \(\tau_w = f(m/A) \) \(u \) \(\eta_B^+ \) به دست می‌آید. از طرفی دمای تک‌های حباب با استفاده از معادله لوری برخی فرض مساوی بودن پایداری اشباع مایع و براساس توزیع سه مرحله‌ای درجه حرارت در جیرب‌ان

\[T_B^+ = 5 \eta_B^+ 0 \leq \eta_B^+ \leq 5 \]

(21)

\[T_B^+ = 5 \left[1 \eta_B^+ + 1 \eta_B^+ (\eta_B^+)^{\frac{1}{5}} \right] 5 \leq \eta_B^+ \leq 30 \]

\[T_B^+ = 5 \left[1 \eta_B^+ + 1 \eta_B^+ (\eta_B^+)^{\frac{1}{5}} + 0.5 \eta_B^+ (\eta_B^+)^{\frac{1}{5}} \right] \eta_B^+ > 30 \]

که در آن \(T_B^+ \) دمای بیرون بعد درونی حباب است و در زیر محاسبه می‌شود:

\(T_B^+ \)
استلال

\[T_B^+ = \frac{c_p u^*}{q''} \Delta T_{Sat} \]

از طریق بررسی مدل لور در محل جداسنده حباب از مقطع دارم:

\[\Delta T_{sub} = q'' \left[\frac{1}{h_0} - \frac{T_B^+}{c_p u^*} \right] \]

به این ترتیب می‌توان کیفیت واقعی پلاسما را از دست داد.

حساب کرد.

اطلاعات و شرایط مزیت

اطلاعات مورد نیاز برای حل معادلات امکان‌پذیر است: هندسه مسطحه شامل ابعاد آرایش، میله‌های سوخت، منحنی مقطع کانالها، تغییرات طولی و محیطی فلکس حرارتی میلیمای سوخت، تاثیرات ترمودینامیکی به کار رفته در روابط تجریبی، خواص ترمودینامیکی آب اشباع شال، تاثیرات از T، v، ρ، μ، λ، h، h_j، h_g و نیز عددهای انتقال حرارت، دیسک گرمایی و رودی به هرکانال، جریان عرضی انحرافی و رودی و فشارخروجی انتقال حرارت کانال. مجهولات به دست آمده پس از حل معادلات عبارت‌اند: نشان (x)، P(x)، Q(x) و F(x) که دیسک حرارتی وارد و فشارخروجی انحرافی و انتقال حرارت کانال می‌باشد. دسته‌بندی:

روش حل عددي

روابط پوستگی (2) و ممکن محوری (8) تشکیل 3M معادله دیفرانسیل مربوط

ولی علی می‌دهد. رابطه (3) معروف ک مدیری است. این معادلات همراه با روابط تجریبی مذکور در قسمت قبل حلال می‌گردد. معادلات بقای انتخابی است و می‌توان آن‌ها را کمک روش قدم به قدم حل کرد. [5] انتقال حرارت، فشارخروجی، انتقال حرارتی، دیسک گرمایی و رودی و جریان عرضی انحرافی در هرکانال، اطلاعات اولیه هستند. برای معادلات
دیفرانسیل رابطه‌نامه ازروش توسه‌های اویل در فاصله Δt حل می‌کنیم. رابطه (10) شامل k معادله جبری است که با وابستگی درجه‌های هر شوند. این معادلات با استفاده ازروش گروس - جردن حل می‌شوند. درحل عددی قدم‌های زیر رسانده می‌شود:

1- طول کالان به‌واسطه مکانی Δx تقسیم می‌شود.

2- در مقطع به مقدار m_i مشابه M_i اندازه‌گیری می‌شود که در حالی‌که هرکمکی جرمی در مقطع Δx و بزرگی عرضی ا انحرافی بین کانتینای مجاور و مجموعه بین مکانیکی سیال در ذرات می‌باشد.

3- محدوده خواص مقدار $\frac{\partial w}{\partial \gamma}$ و $\frac{\partial w}{\partial \gamma}$ در مقطع Δx و Δt با استفاده از m_i، ρ_i و μ_i محاسبه می‌شود.

4- از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ با استفاده از مکانیکی $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

5- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

6- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

7- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

8- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

9- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

10- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

11- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

12- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

13- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

14- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

15- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

16- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

17- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

18- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

19- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

20- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

21- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

22- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

23- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

24- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

25- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

26- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

27- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

28- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

29- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

30- با استفاده از ارتباط $\gamma(h_i)\partial \gamma$ به‌واسطه $\gamma(h_i)\partial \gamma$ محاسبه می‌شود.

درصورتی که اختلاف مقدار $\gamma(h_i)\partial \gamma$ و $\gamma(h_i)\partial \gamma$ در مقطع Δx دو ردیابی اختراب‌دانه‌دانه‌یان برای درستی دست $\gamma(h_i)\partial \gamma$ و $\gamma(h_i)\partial \gamma$ در مقطع Δx و Δt با استفاده از m_i، ρ_i و μ_i محاسبه می‌شود.
نتایج عددی
حال به تایید حاصل از آزمونی که مسئله به عنوان نمونه برداشته می‌شود دراین مسئله یک مجموعه ۱۹ میلیارد سوخت در نظر گرفته می‌شود. به علت تغییرهای بی‌پروینه یک مجموعه مورد بررسی قرار می‌گیرد. شکل ۵ نشان دهنده یک مقطع قلب راکتور است. دراین شکل، مقطع سه میله سوخت، پنجره گریان و پنجره مرز مشترک بین کانالهاشان داده است. اطلاعات ورودی مسئله به شرح زیر انتخاب شده است:

۱- اباده‌سوزی شامل طول کانال ۶۰ فوت‌متری و فاصله بین میله‌ها ۰.۰۸ فوت در یک میلیارد هر ساعت
۲- شرایط کارکرد شامل فاکتور حرارتی ۶ برابر شدت دیسپل گرمی متوسط ۰.۴ برابر شارکستم ۱۰۰۰ پسی و انتقالی ورودی ۰.۶۱ برم/متر/سیال
۳- مقادیر ثابت شامل پارامتر ایالات ۰.۰۴، مقاومت جریان فرضی انحرافی،

\[\beta = 0.04 \]

\[\sigma = 0.001 \text{ ft} \]
ضارب تصحیح متعمم جریان عرضی 1.00=۱،00 و ضریب تصحیح متعمم جریان عرضی اغتشاشات 1.00=۱،00.

برای ساکنی، توزیع قطعی حرارتی محوری میله‌ها را ایکتکاوت و توزیع قدرت حرارتی نسبی میله‌های حرارتی که پریه مقایسه‌ی امتدادی مختلف توزیع شده در این مقاله مساله درجه حرارت مختلف حل و ترکیب حاصل با یکدیگر مقایسه شده است. فرضیات مطرح به هریک از مطالعات مذکور در زیرآورده شده است.

حالت اول - در این حالت بایستی به سه فرض زیربرنامه کامپیوتری اجرایشده است:

1- ازالتقای حرارت تحت اثبات رصرف نظر شده است.
2- برای تعیین ضرایب و ازالتقای حرارت استفاده شده است.
3- ضرایب اصطکاک تک فازی برای کلیه کانالها باید فرصت سه‌بعدی دیواره در محاسبات منظور شده است.

حالت دوم - ازالتقای حرارت تحت اثبات مشابه سه‌بعدی استفاده شده است.

سایر فرضیات حالت اول به قوت خودباقی است.

حالت سوم - ازالتقای حرارت همگن برای محاسبه و استفاده شده است - سایر فرضیات

حالت اول به قوت خودباقی است.

حالت سه‌بعدی - هنگام ازالتقای حرارت تحت اثبات مشابه سه‌بعدی استفاده شده است. ازالتقای حرارت همگن برای محاسبه و استفاده در فرضیات تک فازی پریه محاسبه شده است. طرح‌های حساس به شکل کانال به

در این تحقیق حساسیت از اجرای چهارحلقه فوق رادیورده معادلات فیزیکی طولی کانال به بحث می‌گذاریم. شکل ۶ این از شاشنده حرارت کانال شماره ۱ تا ۴ این چهارحلقه نشان می‌دهد. بهترین راه حل دانشگاه کانال تک فازی است، چهارحلقه فوق در های کرکت تایپ مشابه رده دست می‌دهد. با طراحی ۲، تولید مدل شرایط زیاد شده و اخلاق‌های طاهرم‌گرده در بردار ۱ این از شرایط کلی درکانال ۱ در چهارحلقه مقایسه شده و درصد خلاف نسبت به حالت چهارحلقه که کمترین حالت است، نشان داده شده است. با مقایسه دو طراحی حلال ۱ و ۲ می‌توان نتیجه گرفت که مدل دو فازی برای محاسبه و خطا این از شرایط مقدار قابل توجهی کاهش می‌دهد. به طورکلی مدل‌های سه‌بعدی استفاده شده جمعاً می‌تواند به از ۱۱
درصد خطای محاسبات با‌کاهش

شکل ۶- افت فشار در نیروی کالر، شماره ۱

جدول ۱- افت فشار در نیروی قدرت، ۱ درجه‌های مختلف و مقایسه آنها

<table>
<thead>
<tr>
<th>درصد اختلاف</th>
<th>اختلاف فشار در کالرال ۱</th>
<th>حالت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۱</td>
<td>۳/۲۵۸</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۱۹</td>
<td>۳/۲۷۰</td>
<td>۲</td>
</tr>
<tr>
<td>۸</td>
<td>۳/۲۴۴</td>
<td>۳</td>
</tr>
<tr>
<td>۰</td>
<td>۳/۶۶۶</td>
<td>۴</td>
</tr>
</tbody>
</table>

شکل ۷ تغییرات انتقالی سیال و شکل ۸ تغییرات کیفیت سیال در نیروی کالر ۱ و برای چهار جهالت مختلف نمایش می‌دهد. همانطور که مشخص است، انتقالی در نیروی کالر تقریباً به طور خفیف انرژی می‌یابد. نتایج این آزمایش این است که فلوئی حرفه‌ای در نیروی میده‌هارا خطی فاصله ضریب کرده‌اند (حالت
شیب‌سازی عددی پروسه‌های انتقال...

نکل 7- تغییرات انتقالی در طول کانال 1

نکل 8- تغییرات کیفیت در طول کانال 1
還有 فلوئی حزارتی شکلی شیبی سهمی دارد. مجیداً متکلمی شویم که اختلاف نتایج در جهان‌های عمده‌ای در یزگری بین جریان دوغمی مثبتو در همایان می‌گردد اطلاعات پیش‌رزمینی حاصل از جهات فوق دم‌ریز [6] آورده شده است.

نتیجه گیری

در این مقاله، جریان سیال درقب که راکتورهای از طریق حل عدای معادلات جریان به کمک کامپیوترسیس کنیه شده است. با توجه به اینکه جریان درقب راکتورفازی و مغذوش است، حل ان از طریق حمل کردن پروسه‌های انتقال حرارت دوغمی، اضطراب در بین سیال دوغمی ودیواره‌ها جریان‌های عرضی انجام پذیرفته است. در این مقاله مقطع جریان به پخش‌اپی تقسیم و هریخت به صورت یک‌پرا در نظرگرفته شده است. این فرض سبب می‌شود که معادلات سیاساده شده و شبیه جریان که به منظور حل شوند. البته جریان‌های عرضی ناشی از اختلاف فشاری هرکلاس و رئیس و دووسره ویرایش‌نزنگرینی جریان‌های ناشی از اعضا گرایه و بطور جزئیات مدل شده و واژات آنها درحل مشابه منظوره‌شده است.

چرا که حاصل از حل سیال معقل است، زیرکله پارامترهای مهم درجیان سیال از قبل جریان‌های عرضی، اثرات دوغمی بودن جریان درصرف اضطراب، خواص سیال و انتقال حرارت درحل سیال معقول است و نتایج حاصل را به‌طور مناسب برای طراحی اولیه قلب راکتوره کاربرد. پس از اینکه به بهره‌برداری به روش فوق حذف مدلهای استفاده شده درجیان‌های عرضی و استفاده از مدل‌های کامل ممتنع درجه‌بند عرضی است. البته این نتیجه موجب پیچانگی شدید‌مانده شده و توپیزه حاصل مدل‌های پارامتری‌یابی عرضی شده و تکمیل این مدل‌هاست.

