Volume 32, Issue 2 (Dec 2013)                   jame 2013, 32(2): 77-89 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

N. Setoudeh. Effect of high-energy milling on the formation temperature of the resultant phases in Al/Al2O2/ZrSiO4 system. jame 2013; 32 (2) :77-89
URL: http://jame.iut.ac.ir/article-1-561-en.html
Department of Materials Engineering-Yasouj University-Yasouj-Iran , nsetoudeh@mail.yu.ac.ir
Abstract:   (5589 Views)
A powder mixtures of 18.72% wt, 17.67% wt Al2O3 and 63.6% wt zircon were prepared and milled in a planetary ball milled for one up to 10 hours in presence of air. After removal Iron impurity from as-milled samples, they were isothermally heated in temperature range of 1300-1450 0C for one hour in an air atmosphere. After cooling the samples, they were studied using XRD analyses. The XRD and PSA analyses were showed that the size of particles in the mixtures decreased with increasing of milling time and the mixtures became amorphous nature. The isothermal runs observed that pre-milling on the mixtures has great effect, wherever the zircon decomposition temperature and mullite formation temperature decreased to about 1300 0C in a one-hour-milled sample. The amount of tetragonal zirconia increased with increasing in milling time at 1300 0C, however the amount of tetragonal zirconia decreased with increasing of temperature up to 1450 0C. The amount of tetragonal zirconia at 1300 0C in the three hours milled samples was the highest value among all samples.
Full-Text [PDF 275 kb]   (1324 Downloads)    
Type of Study: Research | Subject: General
Received: 2015/02/9 | Accepted: 2015/05/6 | Published: 2015/05/6

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb