کاربرد روش الامان مرزی در حل سه بعدی مسائل دینامیکی محوطه‌ای مخلوط اشباع

امیرضاخویی و امیرمحمودی نیا
دانشکده مهندسی عمران، دانشگاه ولز-سوانسی، انگلستان
مدرس و زمان‌گذاری اصلی، نوزدهم

چکیده - در مقاله حاضر برای تحلیل دینامیکی ارتعاش دانش بک محیط مخلوط اشباع از فرآیندی الامان مرزی سه بعدی استفاده شده است. مدل‌های حاکم بر محیط از تبدیل نرمال بر مدل‌های دینامیکی محیط‌های مخلوطی استیویت بی‌پی‌ای (معدل‌های بنیادی، دارسی، مسیتی و پیپرنتیکسی) و مدل‌های جدید‌تر نشانیده که جای گیری بی‌پی‌ای به دست می‌آید. مطالعه‌های انجارلی محدد مخلوط اشباع با کاربرد روش وابسته به فرم‌بندی و طبقه‌بندی بی‌پی‌ای حاکم بر محیط اشکی‌گیرد. است و که با انجارلی تبادل جزء به جزء می‌شود. ردیابی می‌شود و دسته‌بندی مایع و دگرگونی مرز می‌شود. حلالی داخل می‌شود. اساسی و بیشتر به این فرآیندی که بر اساس بای‌بای توده یا جامد و نشان احتمالی جامد بارها بایا بارها تخلخل‌های به توده تجربه و گردید و یک تبادل پیامدهای در ماژر تبدیل شوند با استفاده از روش‌های تبدیلی پیش‌بینی می‌گردد. بر مبنای این حملات ایاسی می‌توان مدل‌های انجارلی روز میان را حذف نمود و مدل‌های انجارلی که فقط مرزهای سیستم را شامل می‌شوند، به دست آورده. در نهایت هنگام استفاده از انجارلی مرزی باید از تبدیل‌های جدیدی روش الامان مرزی صورت گیرد. در این‌جا به‌طور مثالی مدل الامان مرزی ارائه شده، ارتعاش حالت - دانش بک محیط مخلوط اشباع به دست آمده و نتایج حاصل از تأثیر فلوید پذیری محیط در تغییرات تابع نرمی‌دینامیکی پی در تغییرات فرکانسی مختلف بررسی گردیده است.

Application of the Boundary Element Method to Three-Dimensional Dynamic Solution of Fluid-Saturated Porous Media Problems

A.R. Khoei and A.M. Kaynia
Civil Engineering Department, University of Wales Swansea, Singleton Park, Swansea SA28PP, U.K.
Norwegian Geotechnical Institute, P.O. Box 3930, Ullevål Hageby, N-0806 Oslo, Norway

ABSTRACT - In this paper, an advanced implementation of the direct boundary element method applicable to steady-state dynamic analysis involving three-dimensional fluid-saturated porous media is presented. The coupled differential equations in terms of solid displacement and pore-fluid pressure are derived from the field equations by the application of the Fourier transform. The boundary integral formulation is obtained by the weighted residual method and the associated fundamental solutions, which define the solid displacement field and the pore pressure due to point forces in the solid and point sources in the medium, are obtained by the method developed by Kapradze. As a numerical example of the boundary element model, the dynamic

استنلال، سال 14، شماره 1، شهریور 1374
response of three-dimensional rigid square foundations bonded to the surface of a water-saturated half-space is numerically obtained. The results presented in this paper display the variations with frequency of the real and imaginary parts of the compliance functions of rectangular foundations and the effect of soil permeability on these functions.
فتاپی به‌هناکه محققان با حکم‌های نازک از فناوری چشم‌یابی و مباحث

است خاصیت‌های شناختی دارد به طوری که در فاصله کوتاهی از
نقشه ایجادشان مستقل شده و از این می‌روند. اغلب ترکیباتی جدید
ماکت‌های مخاطی به‌صورت مفهومی تدوین می‌شوند. (زورا و
تویین (7)، پیرمیکرو (9)، پیرمیکرو (7)، پیرمیکرو (9)]

طالبانه های این استفاده توسط پیروی می‌تواند در

اساس یکان‌های یادداشت‌گیری می‌شود. مدل (1) توسط شده باشد. اگرچه

برای تعیین حالت ایمن ماده‌ها محققین مفهومی می‌تواند و

تویین (7)، پیرمیکرو (9)، پیرمیکرو (7)، پیرمیکرو (9)]

با استفاده از این ماده‌ها، می‌توان کنار در

فاصله‌ای جاده و مانع مخفیت‌های اضافه‌ای را در اثر این می‌تواند در

محیط نامتodos در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و مانع (ب) طور جدایی‌برنگی باشند و

یافته (آ) در فناوری جاده و ماند
سیس حذف \(w_i \) (چابه جایی می‌باشد) بین این معادله‌ها،
کوئی معادله‌های دیفرانسیل میکروفناکی منطقی شوید به صورت زیر به دست می‌آید:

\[
(l + \mu)\tilde{u}_{l,ij} + \mu\tilde{u}_{l,ii} - \alpha_i\tilde{p}_{l,ij} + \omega_i\tilde{p}_{l,ii} + \tilde{I}_l = 0
\]

(4)

\[
\xi \tilde{p}_{l,ij} - \frac{io\omega}{Q} \tilde{p}_{l,ij} - io\alpha_i \tilde{u}_{l,ij} + \tilde{q} = 0
\]

(5)

و \(\rho_i = \rho - io\omega \tilde{T}_{l,ij} \) و \(\tilde{T}_{l,ij} = (\frac{v}{k} + io\omega) \tilde{C}_i \)
و \(\tilde{C}_i = \alpha_i = \alpha - io\omega \tilde{T}_{l,ij} \) و پیمان در این دو معکوس تبدیل یافته جایی
\[\tilde{u}_{l}(x, t) = \int_{-\infty}^{+\infty} e^{-i\omega t} u_l(x, t) dt \]

(8)

\[\tilde{p}(x, \omega) = \int_{-\infty}^{+\infty} e^{-i\omega t} p(x, t) dt \]

(9)

جانب توجه است که معادله‌های دیفرانسیل میکروفناکی منطقی
امضای دارای شکل کلی مشابه معادله‌های عمومی ترموالاستیسیته
است که توسط ساوا و تویاسا به دست آمده است [24].
کوئی معادله‌های دیفرانسیل میکروفناکی منطقی اشکال (4)
و (5) و (8) و (9) را در شکل ماتریسی آن می‌توان به صورت زیر نمایش داد:

\[L_{ij} \tilde{U}_j = \tilde{B}_l \]

(10)

\[[L_{ij}] = \begin{bmatrix}
\mu\Delta + (\lambda + \mu)D_l^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_l^1D_r^1 & (\lambda + \mu)D_l^1D_r & -\alpha_iD_r^1 \\
(\lambda + \mu)D_l^1D_r & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_rD_r^1 & -\alpha_iD_r \\
(\lambda + \mu)D_lD_r & (\lambda + \mu)D_rD_r^1 & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & -\alpha_iD_r \\
-\omega_iD_r & -\omega_iD_r^1 & -\omega_iD_r^1 & \xi \Delta + \frac{io\omega}{Q}
\end{bmatrix} \]

(11)

که در آن [\(L_{ij} \)] ماتریس اپراتورهای دیفرانسیلی، (ب) بدرد نیرو و
بدردچگاه‌های دیفرانسیلی می‌باشد. به صورت زیر تعریف می‌شوند:

\[[L_{ij}] = \begin{bmatrix}
\mu\Delta + (\lambda + \mu)D_l^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_l^1D_r^1 & (\lambda + \mu)D_l^1D_r & -\alpha_iD_r^1 \\
(\lambda + \mu)D_l^1D_r & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_rD_r^1 & -\alpha_iD_r \\
(\lambda + \mu)D_lD_r & (\lambda + \mu)D_rD_r^1 & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & -\alpha_iD_r \\
-\omega_iD_r & -\omega_iD_r^1 & -\omega_iD_r^1 & \xi \Delta + \frac{io\omega}{Q}
\end{bmatrix} \]

(11)

که در آن [\(L_{ij} \)] ماتریس اپراتورهای دیفرانسیلی، (ب) بدرد نیرو و
بدردچگاه‌های دیفرانسیلی می‌باشد. به صورت زیر تعریف می‌شوند:

\[[L_{ij}] = \begin{bmatrix}
\mu\Delta + (\lambda + \mu)D_l^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_l^1D_r^1 & (\lambda + \mu)D_l^1D_r & -\alpha_iD_r^1 \\
(\lambda + \mu)D_l^1D_r & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_rD_r^1 & -\alpha_iD_r \\
(\lambda + \mu)D_lD_r & (\lambda + \mu)D_rD_r^1 & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & -\alpha_iD_r \\
-\omega_iD_r & -\omega_iD_r^1 & -\omega_iD_r^1 & \xi \Delta + \frac{io\omega}{Q}
\end{bmatrix} \]

(11)

که در آن [\(L_{ij} \)] ماتریس اپراتورهای دیفرانسیلی، (ب) بدرد نیرو و
بدردچگاه‌های دیفرانسیلی می‌باشد. به صورت زیر تعریف می‌شوند:

\[[L_{ij}] = \begin{bmatrix}
\mu\Delta + (\lambda + \mu)D_l^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_l^1D_r^1 & (\lambda + \mu)D_l^1D_r & -\alpha_iD_r^1 \\
(\lambda + \mu)D_l^1D_r & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_rD_r^1 & -\alpha_iD_r \\
(\lambda + \mu)D_lD_r & (\lambda + \mu)D_rD_r^1 & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & -\alpha_iD_r \\
-\omega_iD_r & -\omega_iD_r^1 & -\omega_iD_r^1 & \xi \Delta + \frac{io\omega}{Q}
\end{bmatrix} \]

(11)

که در آن [\(L_{ij} \)] ماتریس اپراتورهای دیفرانسیلی، (ب) بدرد نیرو و
بدردچگاه‌های دیفرانسیلی می‌باشد. به صورت زیر تعریف می‌شوند:

\[[L_{ij}] = \begin{bmatrix}
\mu\Delta + (\lambda + \mu)D_l^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_l^1D_r^1 & (\lambda + \mu)D_l^1D_r & -\alpha_iD_r^1 \\
(\lambda + \mu)D_l^1D_r & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & (\lambda + \mu)D_rD_r^1 & -\alpha_iD_r \\
(\lambda + \mu)D_lD_r & (\lambda + \mu)D_rD_r^1 & \mu\Delta + (\lambda + \mu)D_r^1 + \omega_i^2 \rho_i & -\alpha_iD_r \\
-\omega_iD_r & -\omega_iD_r^1 & -\omega_iD_r^1 & \xi \Delta + \frac{io\omega}{Q}
\end{bmatrix} \]

(11)
در معادله (14) ماتریس دیفرانسیل [Aij] اجوتین [Lij] (معادله (5)) موسوم است، به صورت زیر تعیین می‌شود:

\[
[A_{ij}] = \begin{bmatrix}
L_{11} & L_{12} & L_{13} & -L_{14} \\
L_{21} & L_{22} & L_{23} & -L_{24} \\
L_{31} & L_{32} & L_{33} & -L_{34} \\
L_{41} & L_{42} & L_{43} & -L_{44}
\end{bmatrix}
\]

(17)

که در آن \(\Delta \) و \(D_i = \frac{\partial^2}{\partial x_i^2} \) معرف لایاسین است.

3- معادله‌های انگرال مزی

برای تعیین معادله‌های انگرالی که فقط در مرز‌های سیستم قابل تعریف باشد از تکنیک باقی‌مانده و زنی استفاده می‌شود و معادله دیفرانسیل (9) را به یک معادله انگرالی در میدان \(v \) تبدیل می‌نماییم. با تغییر تانسور و زنی \(G_{ik} \) عبارات باقی‌مانده و زنی معادله (9) عبارت است از:

\[
\int (L_{ij} \bar{U}_j - B_{ij}) G_{ik}^* \, dv = 0
\]

(18)

با یک دارای معادله‌ای (10) - (12) در معادله انگرالی (13) و به‌صورتی که با دوباره انگرال کردن جزء به جزء بر روی میدان \(v \) این عبارات انجام می‌شود:

\[
\int \left(A_{ij} \bar{G}_{j}^* \bar{U}_i \, dx + \int \left(\delta_{ij} \bar{G}_{j}^* - \bar{U}_i \bar{G}_{j}^* \right) ds + \int \bar{G}_{j}^* \left(\bar{G}_{j}^* - \bar{G}_{j}^* \right) ds \right)
\]

\[
+ \left(\bar{G}_{j}^* \bar{G}_{j}^* - \bar{G}_{j}^* \bar{G}_{j}^* \right) ds \right) - \int B_{ij} \bar{G}_{ij}^* \, dv = 0
\]

(19)

\[
(i, j, k = 1, 2, 3, \alpha = 1, 2, 3)
\]

که در آن (3) یک تابع دلتای دیراک است. با تغییر تانسور و زنی بر معادله (12) می‌توان به جای اولین عبارات معادله (14) را قرار داد. \(C_{ij} \) مانند در معادله انگرالی (11) سطح‌های مشترک شکل است و برای نقاط واقع در داخل ناحیه \(v \) و نقطه میانه \(C_{ij} = \delta_{ij} \) در نقاط واقع بر مرز سیستم بایست انتخاب شود.

\[
\int \delta_{ij} \bar{G}_{ij}^* \, dv + \int \delta_{ij} \bar{G}_{ij}^* \, ds + \int \delta_{ij} \bar{G}_{ij}^* \, ds
\]

\[
= \int C_{ij} \bar{G}_{ij}^* \, ds + \int \delta_{ij} \bar{G}_{ij}^* \, ds
\]

(20)

معادله (19) را می‌توان به شکل زیر نشان داد:

\[
C \bar{U} + \int P \bar{U} \, ds = \int U \bar{P} \, ds
\]

(21)

که ماتریس به \(P \) و \(\bar{P} \) بردارهای \(\bar{U} \) و \(\bar{U} \) در معادله (20) عبارات از:

\[
\mathbf{A}_j = (\bar{u}_1, \bar{u}_2, \bar{u}_3, \bar{u}_4)^T
\]

(11)

\[
\hat{\mathbf{B}}_j = (-\bar{r}_1, -\bar{r}_2, -\bar{r}_3, -\bar{q})^T
\]

(12)

که در آن \(\Delta \) معرف لایاسین است.

استلال، سال 14، شماره 1، شهریور 1374
کنترل انرژی انتقال‌های زیربنه:

\[
\begin{align*}
\lambda^*_{1} + \lambda^*_{2} &= k^*_{1} + \text{log} \left(\frac{1}{Q} \left(\frac{1}{\lambda + \gamma \mu} \right) \right) \\
\lambda^*_{1} - \lambda^*_{2} &= \text{log} \left(\frac{Q}{\xi \kappa} \right) k^*_{1} \\
\end{align*}
\]

\[\tag{26}
\]

\[
G^*_{\alpha \beta} = \sum_{L=1}^{\infty} \left\{ \psi^*(t) \delta_{\alpha \beta} - \chi^*(t) \right\} r_{\alpha} r_{\beta}
\]

\[\tag{27}
G^*_{\alpha \beta} = \sum_{L=1}^{\infty} r_{\alpha} s_{\beta}(t)
\]

\[
G^*_{\alpha \beta} = \sum_{L=1}^{\infty} \psi(t) \left(\alpha, \beta = 1, 2, 3 \right)
\]

کدران یا فاصله‌ای نقطه‌ای در برابر \(\overline{U} \) و مقدار بردارهای نشان و دنبال خروجی در برابر \(\overline{U} \) با محاسبه‌ای توانایی \(G_{ij} \) و \(\tau_{ij} \)، ماتریسی‌های \(\overline{U} \) و \(\overline{P} \) را تعریف می‌دهیم و چون حل تحلیلی معادله (20) ناممکن است با استفاده از روش عددی همچون روش رامز مزی، معادله انرژی‌گیر مزی (26) را حل می‌کنیم.

4- حل اساسی

برای برآوردهای حل اساسی (توابع غیر) \(G_{ij} \) که با استفاده از آن توانایی نظری \(\tau_{ij} \) در نظر گرفته و بر اساس ماتریس‌های \(\overline{U} \) و \(\overline{P} \) را تشکیل داده، انرژی انتقال‌های زیربنه (18) استفاده می‌کنیم. با نمایش تانسور وژنی به صورت زیر:

\[
G_{ij} = B_{ij} \Phi^*
\]

\[\tag{22}
\]

کدران آن ابرتوپله عامل برناهای \(B_{ij} \) یک تابع اسکالر (عددی) است. با جاگذاری معادله (22) در معادله (18) خواص داشت:

\[
A \Phi^* + \delta(x - y) = 0
\]

\[\tag{24}
\]

\[
A = \text{det}(A_{ij})
\]

\[\tag{25}
\]

که

استقلال، سال 14، شماره 1، شهریور 1374

172
می‌کند، پارامترهای عملکردی در این بخش‌ها از مرز گام عملکرد می‌شود. به علاوه طبیعت بار نقطه‌ای مورد انتظار در تعیین اینگریز، نشانه‌های نتیجه و زیادی به تدلیل حاضر برای انتگرال‌گری حلالی‌های اساسی منفرد در محدوده‌های شامل نقاط منفرد است.

لیبل سه بعدی محیط‌های منفرد اشاعه از حل مدل‌های انتگرال مزیت مربوط به مدل (20) و تعیین مقادیر مزیت که شامل شناسایی، فشار متفاوت، و بردارهای نشان و دی‌خورشی است، صورت می‌گیرد. قوانین حل محیط‌های انتگرال (20) در مدل‌های شناسایی سه بعدی با مزیت‌های ناحیه‌ای استفاده شده است. لذا مرز را به مدل‌های مربوط به سطح لیبل نشان می‌دهد. هر یک از این مدل‌ها می‌توانند به صورت نتیجه، نقطه‌ای در جدول‌های مورد استفاده قرار گیرد. شکل (1-الف) جسمی را که توسط مدل‌های این ناحیه مسازی شده، نمی‌شانیم. برای این مدل‌ها مقادیر مجهول در مرز مانند بوده و برای کل مدل این مقادیر نتیجه است. برای کل مدل خطي که مقادیر مجهول به صورت یک تابع خطی روی آن تعیین می‌کند.

با چاگریزی توابع گرین از مدل‌های (22) در معادله (16) توابع تنش نظری به صورت زیر به دست می‌آیند:

\[
\tau_{op}^* = \frac{\mu}{2} \sum_{l=1}^{L} \left\{ \frac{\partial \phi}{\partial n} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \chi}{\partial x} \right) + \frac{\partial \phi}{\partial n} \left(\frac{\partial \chi}{\partial x} - \frac{\partial \phi}{\partial x} \right) \right\}
\]

\[
\tau_{ut}^* = \frac{\mu}{2} \sum_{l=1}^{L} \left\{ \frac{\partial \phi}{\partial n} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \chi}{\partial x} \right) + \frac{\partial \chi}{\partial n} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \chi}{\partial x} \right) \right\}
\]

\[
\tau_{pp}^* = \frac{\mu}{2} \sum_{l=1}^{L} \left\{ \frac{\partial \phi}{\partial n} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \chi}{\partial x} \right) + \frac{\partial \chi}{\partial n} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \chi}{\partial x} \right) \right\}
\]

\[
G_{xy}^* = \frac{\mu}{2} \sum_{l=1}^{L} \left\{ \frac{\partial \phi}{\partial n} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \chi}{\partial x} \right) + \frac{\partial \chi}{\partial n} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \chi}{\partial x} \right) \right\}
\]

تکیه در آن آن است.

5- روشن‌کاری روش مزیتی

از جمله روش‌های قواعدی که کاربرد فراوانی در مسائل مکانیک محیط‌های پوسته‌های تحلیل‌های استاتیکی و پی‌پوشین دینامیکی دارد و در حل مدل‌های انتگرال مرزی مناسب است، روشن‌کاریهای بیشتری در حل مدل‌های انتگرال مرزی که خود یک فرمول‌شناسی دقیق مسئله است باعث می‌شود تا با استفاده از حل مدل‌های انتگرالی وارد شود. اهیمت روشن‌کاری یره و نسبت به سایر روش‌های عقدی در کامیابی‌یافتن مسئله است که آن به پیوستن استفاده از مدل‌های تناهی‌های مورد نظر است. این روش به خصوص در حل مسائل محیط‌های نامناسب و یا ناهم‌ناپایا مناسب است، زیرا توابع گرین مورد مسئله در فرآیند روشن‌کاری مرزی به صورت خودداری شناخته‌شده‌اند. در مدل‌های راه‌کار می‌باشد. این تابع گرین با حل اساسی برای بار نقطه‌ای یک جسم نامناسب‌دانی از اعمال نیرو و یا مقدار و جهت معلوم به نقطه‌ای یک جسم که از هم‌سو به نامناسب‌دانی است به عنوان با حل تحلیل نامناسب‌دانی دیفرانسیل حاکم برای پیش‌بینی و تغییر مکانیابی جسم به دست می‌آید. در مورد اجزای فیزیکی که این جسم نامناسب‌دانی را به قسمت‌هایی محصور است.
با مرتقب کردن دستگاه معموله (32) به صورتی که کلیه مجهوله‌ها به
سمت چپ معادله انتقال یافته، در این صورت خواهیم داشت:

\[A \{ X \} = \{ B \} \] (35)

که در آن \[A \] ماتریس ضرایب و \(B \) برداری است که مقداری آن بر
اساس شرایط مرزی معلوم به سیستم به دست آمده و بردار مجهولی شامل\(\bar{P} \text{ و } \bar{N} \) است. با حل دستگاه
معادله‌های (35) به یکی از روش‌های مناسب تبدیل نظریه‌گوی
مجهوله‌های هر گره به دست می‌آید.

6- رفتار انگرال‌های متغیر
برای تشکیل دستگاه معموله‌ای (35) که با حل این مقدار
مجهوله‌گر مرزی به دست آمده، نیاز به مهارت‌های انگرال‌های
معادله (32) در هر گره و سپس ادامه آنها در کلیه گره‌های مرزی
است. در مقام‌های حاضر با استفاده از مدوله‌های ثابت مطابق تغییرات زمینه برداری \(\bar{U} \text{ و } \bar{P} \) در تابع نفوذی \(C_{ij} \)
به صورت مجموع انگرال‌های مرزی به شکل زیر نوشته می‌شود:

\[C_{ij} \bar{U}_j + \sum_{s} \int_{s} \bar{P}^* \bar{U} ds = \sum_{s} \int_{s} \bar{U}^* \bar{P} ds \] (31)

که \(s \) سطح ماله است. مفهوم معادله (31) آن است که در
هر محل بالا یا پایین گره با یک گره مرزی \(\bar{G} \) و حرکت بر روی سایر
المانها، معادله (31) را تشکیل دادن در این صورت بر روی گره‌ها
دهست از مدل معموله‌های دست می‌آیند. در این مقاله برای حل عدده\(n \)
معادله‌ها \(C_{ij} \) ماتریس محاسبه می‌گردد. \(C_{ij} \) استفاده \(G_{ij} \)
در این صورت مقداری به ویژه \(\bar{U} \) و \(\bar{P} \) در طول ماله ثابت می‌باشد و

\[\bar{U}_j = \sum_{s} \left(\int_{s} \bar{P}^* ds \right) \] (32)

برای ثابتی در صورتی که یک چرخه بر میدان گرفت استفاده می‌شود. \(\bar{C}_{ij} \)
برای حل معادله (32) محاسبه می‌گردد. \(\bar{C}_{ij} \) به یکی از روش‌های غیر
ظریه‌گویی مطابق تغییرات زمینه برداری \(\bar{U} \text{ و } \bar{P} \) در تابع نفوذی \(C_{ij} \)
به شکل زیر به دست می‌آید:

\[H_1 \bar{U} + H_2 \bar{P} = G_1 \bar{S} + G_2 \bar{P} \] (33)

\[\bar{H} \bar{U} = \bar{G} \bar{P} \] (34)

33- مثالی از شکل مجعی شده بر روی روز است که ارتباط
بین گره \(1 \) توان گرفت در آن استفاده شده برای تومانهای \(1 \)
شبکه \(j = 1 \text{ تا } 3 \) دیگر مقداری کند. \(\bar{C}_{ij} \) ریز هستی
معادله (32) برای حل انگرال‌های مرزی \(n \)
در این صورت مقداری به ویژه \(\bar{U} \text{ و } \bar{P} \) در تابع نفوذی \(C_{ij} \)
به شکل زیر به دست می‌آید:

\[H_1 \bar{U} + H_2 \bar{P} = G_1 \bar{S} + G_2 \bar{P} \] (33)

\[\bar{H} \bar{U} = \bar{G} \bar{P} \] (34)

استقلال، سال 14، شماره 1، شماره 1774
در حالت $i = j$، معنی‌دار واقعی‌ترین آسیاب زرا در برگردان او، اجرا می‌شود.
رفرنجران رفتار سطحی برده ذوب یا حلالی اساسی شامل نقاط متندان.

رفرنجرات حلالی اساسی در نقطه متندانی حالت سه‌بعدی به صورت زیر بیان می‌شوند:

$$ G_{oq}^* \propto \frac{1}{r} \quad G_{e}^* \propto \frac{1}{r} $$

$$ G_{\mu}^* = \frac{1}{r} \quad \tau_{oq}^* \propto \frac{1}{r} \quad \tau_{\mu}^* \propto \frac{1}{r} \quad (\alpha, \beta = 1, 2, 3) $$

همان‌گونه که دیده‌می‌شود، G_{ij}^*، G_{eij}^* و G_{eeij}^* و G_{eij}^*، انرژی‌های انرژی‌های خاصی یا انرژی‌های انرژی‌های خاصی و در نتیجه انرژی‌های خاصی می‌باشند.

برای مثال سه‌بعدی، هر زیرحلقه مشکل (الف) به‌دست می‌آید. در این روابط نشان داده شده، حرکتی در نقطه‌های مشخص به صورت زیر ممکن است:

$$ [H_{oij}]_{\text{ii}} = \sum_e \int \tau_{\rho e}^* ds $$

$$ = \sum_e \int_{0}^{\theta_e} \int_{-\theta_e}^{\theta_e} R(\theta) \tau_{\rho e}^* r dr d\theta $$

(38)

پنجماً:

با تعریف تغییر متغیر θ به ρ به صورت زیر:

$$ \theta = \xi (\theta_1 + \theta_2) + \frac{1}{\xi} (\theta_1 - \theta_2) $$

(39)

شکل ۲ - (الف) آنالیز سه‌بعدی، (ب) استیگا همگانی

باقی‌ها: استقلالی، ۱۴، شماره ۱، شتر ۱۳۷۴
شکل ۲ - مدل امان مجزی یک چسب مربعی واقع بر نیم - فضای خاکی اشباع

محدوده محیطی خاکی اشباع واقع در زیر به عبارت‌اند از [۱۶]:

\[
\lambda = \frac{2}{77} \times 10^5 \text{kN/m}^2, \mu = \frac{1}{85} \times 10^5 \text{kN/m}^2
\]

\[
Q = \frac{999 \times 10^5}{10^5} \text{kN/m}^2, \alpha = \frac{\rho}{\rho_0}, n = \frac{0.00}{195}
\]

\[
\rho_l = 1000, \rho = 270. \quad m = 5130 \text{Kg/m}^3
\]

\[
\text{F}_{\beta_d}(R) = \int_{0}^{R} \frac{R}{r} \text{f}_{\beta_d} ^{dr}
\]

در اینجا، \(\beta_{d} \) تابع برش‌های خاکی اشباع تحت اثر ارتعاشات قائم، اتفاق و گردشی و برش‌های گردو انسدادی است. (شکل ۲)

به عنوان نتایجی از کاربردهای فرمول‌های انتقالی انتقال مزری در محیط‌های متخلف اشباع سه بعدی که با استفاده از روش امان مجزی به صورت دو بعدی ارائه گردید، توانی دینامیکی یک چسب مربعی واقع بر محیطی نیم فضایی خاکی اشباع تحت اثر ارتعاشات قائم، اتفاق و گردشی و برش‌های گردو انسدادی است. (شکل ۲)

\[
\lambda = \lambda (1 + \frac{\xi}{2})
\]

\[
\mu = \mu (1 + \frac{\xi}{2})
\]

که در آن \(\xi \) نسبت استحکام مواد است و برای محیط‌های خاکی برای 0.5/4 در نظر گرفته شد. استحکام خواص

استنال سال ۱۴، شماره ۱، شهريور ۱۲۷۴
تعریف تابع نرم به صورت بی بعد زیر:

\[C_{VV}(a_r) = \frac{\mu b \Delta r}{P_r} \]

(44)

که در آن تابع مشکل از دو جزء حقیقی و موهومی برده و به صورت زیر تعریف می‌شود:

\[C_{VV}(a_r) = Re(C_{VV}) + i \text{Im}(C_{VV}) \]

(45)

در معادله‌های بالا و

\[V_d = \frac{w_b V_{a d}}{\mu V_{b d}} \]

(51 - b)

می‌توان در شکل‌های 5 - (الف) و (ب) تغییرات جزء حقیقی و موهومی قائم یک چگالی بر روی محیط خاکی اشتعال برای نفوذ‌پذیری‌های 200/0000 = 200 cm/sec رسماً جزئی است در این منحنی هم‌میزان تناوب حسال از یک محیط خاکی نشان دهنده تکثیر مداد (محیط خاکی دارای نقطه مشخص) نمایش داده شده است. این منحنی بر اساس رفتار دینامیکی یک محیط با نفوذ یکی کم (کی نیا و بانرژی [42]) قابل انتقال بر یک محیط تکثیر با پارامترهای الاستیسیتی‌های معادلات زیرتند بوده است:

\[\lambda_a = \frac{\lambda + \alpha^2 \mu^2}{\mu + \alpha Q^2} \]

(46)

بر اساس نتایج حاصل از منحنی‌های (5 - الف) و (5 - ب) با گواهی نفوذ پذیری محیط مقدار جزء حقیقی و موهومی قائم دینامیکی کاسه می‌یابد. جالب توجه است که تابع نرم محیط تکثیر و منحنی‌های مربوط به محیط با نفوذ‌پذیری‌های کم دارای نتایج مشابهند. در شکل (5 - ج) نتایج حاصل از جزء حقیقی و موهومی قائم دینامیکی محیط تداخل اشتعال برای نفوذ‌پذیری بالا (محیط زهکشی شده) و محیط خاکی است. دینامیکی تکثیر مقاوم‌کننده بوده است. از این تقابل می‌توان در نفوذ‌پذیری‌های بالا آب موجود در محیط تداخل در رفتار محیط خاکی داشته و معادلات یک محیط تکثیر خشک است. لازم بود ذکر که نتایج حاصل از منحنی‌های شکل (5) در حالتی تکثیری که برای میانی با

\[\text{تعداد سال: ۱۴، شماره: ۱، شهریور ۱۳۷۴} \]
شکل ۶ - توایع نرمال انتقال دینامیکی پی صلب مربوطی (الف) جزء حقیقی، (ب) جزء موهومی، (ج) مقایسه محیط اشناع زهکشی شده با نفوذپذیری بالا با یک محیط خشک تکفاز

شکل ۵ - توایع نرمال قائم دینامیکی پی صلب مربوطی (الف) جزء حقیقی، (ب) جزء موهومی، (ج) مقایسه محیط اشناع زهکشی شده با نفوذپذیری بالا با یک محیط خشک تکفاز

استقلال، سال ۱۴، شماره ۱، شهريور ۱۳۷۴
توفیق نرمی-قهرخیه دینامیکی از صلب مرغی: (الف) جزء حقیقی، (ب) جزء موهومی، (ج) مقایسه محیط اشاعه زهکش شده با نفوذپذیری بالا با یک محیط خشک تکفاز

شکل 7 - توانایی نفوذپذیری دینامیکی بی صلب مرغی: (الف) جزء حقیقی (ب) جزء موهومی، (ج) مقایسه محیط اشاعه زهکش شده با نفوذپذیری بالا با یک محیط خشک تکفاز

قدردادن

این مقاله حاوی طرح تحقیقاتی بوده که از محل اعتبارات شرایط پژوهشی دانشگاه صنعتی اصفهان پژوهشگران بوده است. در این رابطه نویستگان از حمایت دانشگاه صنعتی اصفهان تشکر می نمایند.

نرمال بی افزایش می‌یابد. همچنین رفتار یک محیط مخلوط اشاعه زهکش شده (با نفوذپذیری بالا) را می‌توان معادل با یک محیط دینامیکی تکفاز در نظر گرفت. به علاوه دیده شده که رفتار یک محیط اشاعه نفوذپذیر (با نفوذپذیری کم) قابل اطمینان بر یک محیط تکفاز با بارمانی است. هر دو مدل هم اکنون توسط کنیا و پاترژی [26] به دست آمده‌اند.

