آشکار سازی جریان توسط نمونه برداری تطبیقی یک سیم داغ متقاطع در یک آزمایش بسیار طولانی

مجدی رجایی
دانشگاه البرن، مرکز مطالعاتی سیالات، پراودینس، رود آیلند

چکیده - روش‌های آشکار سازی جریان با استفاده از نشان‌گذارهای ماندنی‌گر، دود، حباب‌های هیدروژن و غیره به طور کمتر در بررسی‌های تجربی سازمانی با مقیاس بزرگ و میدان‌های مختلف جریان به کار می‌روند. نتایج این روش‌ها در درک نیزیکی شکل و تکامل این سازمان‌ها در نواحی انتقالی و مشخص میدان‌های جریان بهتر می‌باشد. با این حال آنها نمی‌توانند اطلاعات کمی دقیقی در باره جریان ارکم آورند. در این مقاله روش جدیدی برای تهیه تصاویر کمی جریان از یک لاژ مخلوط جریان بررسی آزاد در یک تاحیه در بعدی ارائه شده است. برای انتخاب کردن جریان در یک زمان‌بندی مناسب با سازمان‌های مشکل جریان، از یک سیم داغ متقاطع استفاده شده است. این روش با ارزیابی تصاویر لحظه‌ای جریان را از انتخاب گیرنده سیم داغ در یک آزمایش طولانی امکان‌پذیر می‌سازد. برای این مدل استفاده درجه بندی که ناشی از انتخاب گیرنده بسیار طولانی با سیم داغ است، بر روی دفین برای پنهان کردن درجه بندی استفاده شده است. این روش همچنین در بازسازی تصاویر جریان است و معاونه پروپتگی را با دقت بسیار زیادی ارضا می‌کند.

Flow Visualization by Conditional Sampling of a Single X-Wire Probe in a Very Long Run Experiment

Mojtaba Rejaee
Brown University, Center for Fluid Mechanics, Providence, RI 02912, USA

ABSTRACT- Flow visualization techniques using tracer markers such as dye, smoke, hydrogen bubbles, etc., have been widely used in experimental investigations of large scale structures of a variety of flow fields. They have played an important role in understanding the physics of the coherent structures' formation and evolution in the transitional as well as the turbulent regions of the flow fields. However, they lack to provide detailed quantitative information about the flow. Here, a new approach is taken in obtaining quantitative flow field snapshots from a region of a two-dimensional free shear flow mixing layer. A single cross-wire probe is used to make measurements of the flow in a time frame phase locked with the coherent flow structures which facilitates reconstructed flow snapshots from the hot-wire measurements in a very long run experiment. A new detailed calibration updating scheme is developed to resolve the problem of calibration validity encountering very long time hot-wire measurements. This is a key factor in facilitating reconstructed flow snapshots that satisfy the continuity equation with a very high accuracy.

استلال، سال 12، شماره 2، استناد 1372
شکل ۱ - توزیع باد مدار پسته

۷- دستگاه آزماش

دستگاه آزماش همان است که در مقاله‌های قبلی ذکر شده است [۶] و [۷] از یک تولب با دمای سرعت مداره (شکل ۱) به عنوان دستگاه تأمین کننده لایه برای آزاد استفاده شده است. برای جداسازی جریان را به دو بخش کنند. این دستگاه از محیطی سکون آغاز می‌شود و الکتریسیتی انقباض ادامه دارد، به گونه‌ای که نیروی آب در ابتدای بخش آزماش قرار می‌گیرد. سرعت‌های تنها و کنند به تنظیم سیستم‌های موجود در صفحات مشابه که در ابتدای صفحه جداساز قرار دارند تنظیم می‌شود. این استریت دستگاه آزماش بینن ۸۱۰ cm طولانی است. طراحی دقیق محیطی سکون و داده‌گیری انتخاب شده است. اندازه‌گیری بر اساس سیستم‌های موجود در سطح ۸۷۵/۰ cm ۹۳۵ درصد سرعت جریان تعیین است. در طراحی محیطی سکون نیز که طول تقریبی آن ۱۷ فوت (۲۷/۷ متر) است توجه خاصی به پایین‌بردن سطح

۱۱- مقدمه

آشکار سازی جریان در مطالعات تجربی میدان‌های گوناگون جریان به طور گسترده‌تر مورد استفاده بوده است. این جریان در گوناگون محیط‌ها مطالعه شده است. این گوناگون عبارتند از: ۱. دیگرینگر و ۲. دیگرینگر و ۳. دیگرینگر. این جریان استفاده شده تا تصویر قابل رویتی از جریان به وجود آید. گرچه این روش اطلاعات کیفی از میدان جریان دست می‌دهد، لیکن فاقد اطلاعات کیفی جریان هستند. در برخی از میدان‌های جریان مانند جریان در یک تولب با دمای نیست و آزمایش از روش‌های دیگری برای ایجاد تصویر لطیفی جریان استفاده شده است. روش‌های حسکانی و فیزیکی [۶] و [۷] بیشترین قدر روش‌های دیگر را برای تهیه اطلاعات کیفی در بازه کامل تدریجی لایه‌های مختلف اکتشافی استفاده کرده‌اند. در این مقاله یک روش نمونه برداری تطبیقی با استفاده از زمان‌بندی بسیار ساده‌تر و مناسب هستند که در زمان‌بندی همراه با سازه‌های متشکل از میدان جریان ارائه می‌شود. به کمک یک سیستم داغ‌واکنش این تطبیقی با استفاده از چارچوب زمان‌بندی که به چارچوب زمانی فعّل کرده استریت می‌شود. پس از انجام می‌شود، می‌تواند از میدان جریان ترسیم شده و تصویر لطیفی جریان در آن چارچوب زمانی ایجاد می‌شود. این روش می‌تواند از ابزار اطلاعات کیفی دقیق، تصویر کیفی از جریان را نیز ایجاد کند. در این مقاله به دست آمده میدان جریان توسط تجربه عمومی کامل ؛ روابط همبستگی دو نقطه‌ای سرعت در

استلال، ص ۱۴، شماره ۲، اسفند ۱۳۷۴

۱۳۷۴
شکل ۲ - تصویرشماتیک مدار جریان

احتمال گذاری با پاسخ‌طلایی قطعه‌های ۱ و ۲ این همیشه به رضایت افغانستان‌ویک اعتیاد اعمال شده بود یک سیم درجه ۳ و ۱ درجه ۢ
ولتاژ خروجی حسگرها باید خیلی سریع اندازه‌گیری شود. برای این کار از یک کامپیوتر پیشرفته وارد شده و ذخیره، سریع‌کاری‌ها با مدلوات طراحی شده استفاده می‌شود. این مدلوات مجوز به هر دو نوع نیاز A/D و است. مدلوات A/D (آنتون‌ف) می‌توانند همزمان از 16 کانال داده دریافت کنند. مدلوات D/A برای تولید اسناد آنتون‌ف باید ارائه افتخاری در جریان بلندگی به کاریم رود.

۳. اندازه‌گیری سیم داغ درجه ۱-۳، درجه ۲ می‌تواند دقت اندازه‌گیری را کاهش دهد. برای قرارگیری چنین کنترلی روی دما، واکنش‌های سرمایشی و گرمایی استفاده می‌شود. این کنترل بهبودی سرعت سرمایشی که در مجموعه ولتاژ‌های آن عموم و برای کنترل دمیده خارجی می‌شود. سیاه خنک کننده آن آب با کمی تغییر خواهد داشت. در مورد می‌تواند دیگر جریان می‌تواند به میزان زیادی افزایش یابد که دمای دما به وسیله آب، پوشش از حد سریع می‌کند و دوباره دمای دما را به کمک تغییرات سرعت جریان به دست آمده متغیر می‌شود.

سیستم‌های داده ای/دی A/D قدرت تغییرات محدود ۵۰۰سیم داغ درجه ۱ می‌تواند این انتخاب سیگنال‌های درونی از سیگنال‌های سیم داغ باید قبل از اندازه‌گیری بیشتر شود تا نوسان‌های کوچک جریان یا قابل اندازه‌گیری شود. می‌تواند در طول خروجی‌گیری سیم داغ و در نهایت به دقت‌تامین حسگر یک برابر تقویت می‌شود تا درجه بندی دقیقتر صورت گیرد.

۳-۲، امروز راه‌برد بهره‌وری درجه بندی سیم داغ، سرعت سنج ۳۲-۲۱ شماره ۱۳ و دسته ۸۶۴ است.
یکی از معادلات خطای. از معادله (1) می‌توان خطای را به صورت زیر بدست آورد که:

\[
\Delta U_{e1} = a_1 \Delta E_1 + b_1 \Delta E_2 + c_1 \Delta E_3
\]

\[
\Delta U_{e2} = a_2 \Delta E_1 + b_2 \Delta E_2 + c_2 \Delta E_3
\]

(2) با جابجایی ضرایب درجه بندي در معادله (2)، خطای تخمینی برای اندازه‌گیری‌های سرعت ناشی از توانایی تفکیک 2/4A/D است.

ولی حداکثر کمک‌نمایی نتوانسته باشد. درج به دنبال مسیح گوش در اندازه‌گیری با ترنسدانسیور فشاری باعث خطا می‌شود. هد دینامیکی جریان آزاد که لوله پیترون و یک ترنسدانسیور فشاری آن را اندازه‌گیری کرده می‌توان طبق معادله (3) برای سرعت جریان مربوط به می‌شود:

\[
u_a = 0.01617 \sqrt{\frac{E_3}{C}}
\]

(3) که در آن، \(E_3\) سرعت موتری بسته است که سرعت سنج سیم مقاطع حس می‌کند. \(E_1\) و \(E_2\) مقادیر ولتاژی در سیم‌های است. نصف مجموع \(U_0\) و \(U_e\) برای هزینه گیری سرعت جریان، \(U_0\) است و نصف اختلاف این دو مقدار، کننده در ضریب صحیح تیپ

که می‌توان یک رابطه تجاری (است) ضرب شود می‌باشد. بزرگ‌ترین

سرعت جریان، \(v\) (شکل 4).

فاصله درجه بندي به یافتن ضرایب ناشی بر این (1) پیرای دوسیمی ۰ = \(a_0 + a_1\) چند کیلو متری \(b_0 + b_1\) طول تحت‌بنیت مسیح گوش در اندازه‌گیری سرعت موتری به‌طور نمایی برکناری خواهد شد. نسبتی که سرعت گوش در محیطی به‌طور گیاهی انجام می‌کند. به‌دست آمده درجه

بنده، ثابت‌های حاصل از تحلیل سرعت جریان معمولی‌ها به کمک اندازه‌گیری‌های سیم‌های داغ به کار می‌روند. با دقت آنها

سنجد، شدید. آنگاه نتایج با سرعت جریانی که در خریدن لوله

پیوست به دست می‌آید مقایسه سیم‌های دیگر را درصد قابل قبول است.

\[
\Delta U_{e1} = a_1 \Delta E_1 + b_1 \Delta E_2 + c_1 \Delta E_3
\]

(3) توانایی تفکیک 2/4A/D می‌توان در سیستم گردآوری داده‌ها.

![شکل 4- آرایش استاندارد مسیح گوش](image-url)
موضعیت حذی شیکه در وین بخش (تند و کند) در طول آزمایش سه روزه مقایسه می‌شود. یک دانست کاولینی مجموعه ضرایب درجه بندی هشیمی بر اثر آزمایش نهایی می‌شود.

همچنین در جدول چند جمله‌ای معادله (1) یک عضو از میان با میادا،

\[a_i + a_i E_i \]

به شکل زیر تابع درجه دوم و جمله درجه اول می‌گردد.

\[a_i + a_i E_i \]

برای هر یک از موضعیت‌های طولی حل کرد. نتایج برنامه‌بندی ضرایب درجه بندی اولیه، سرعت‌های گزارش‌گر جریان آزاد در دو بخش (تند و کند) برای پرداخته می‌شود. سپس آنها را با برآورددهای مرتبط که از اندازه‌گیری‌های توزیع سرعت جریان بدست آمده مقدار می‌پذیرم. به این ترتیب یک چند ضرایب درجه بندی جدید به دست می‌آید.

اگر چنین نگاه داشته می‌شود، برای انجام کار، باید یک سیستم مادرهای ناپایدار و دو چند ضرایب درجه بندی ثابت به گرایی. بنابراین توزیع سرعت جریان بدست آمده، مرحله آزمایشی که در بخش دوم زمانی 24 ساعت کامل شورن، باشد درجه بندی دقیق‌تر توصیح شود. مخصوصاً اگر دمای برای خارج شد. در آزمایش‌های پیشین بررسی سرعت‌های معادلات رفتاری‌کننده [1] و [10] استفاده شده در روز دوم می‌شود که آزمایش کامل شورن و توصیح درجه بندی باید دقیق‌تر از آنچه قبل از انجام شود. برای انجام این کار، کاملاً پس از انجام آزمایش سه روزه سیم داغ را در طول تاکید اندازه‌گیری حکمتیار ماشینی و سرعت جریان آزاد را که توسط سیم داغ متقاطع در موضعیت‌های جریان در نواحی ممکن است که در این نتایج سیم داغ در درجه بندی توزیع مؤلفه طولی (در جهت گاز) سرعت دو بخش ممکن است در دو دفعه اکثریت سیم داغ بخش بندی توزیع مقدار طولی سرعت (در جهت گاز) در دو بخش (تند و کند) محاسبه و با مقادیر مربوط به مجموعه ضرایب درجه بندی برای پرداخته می‌شود. در نتیجه بسیاری سیم داغ درد
مشاهد جریان آزاد با سرعت‌های زیاد و کم حضور دارند. اما به قدری
ضعیف‌گری که در جریان آزاد بیشتر روش‌های تحقیق نمی‌شود. این
اینکه با انتخاب طیبیکه که به دلیل این ترکب‌دهی از سرعت‌های Zv و

\[\frac{dU}{dx} = (a - a^*) E + (a - a^*) E^T \]

\[= C_1 E + C_2 E^T \]

\[\frac{dU}{dx} = (a - a^*) E + (a - a^*) E^T \]

\[= C_1 E + C_2 E^T \]

 که در آن زیرنویس‌های h و 1 به ترتیب می‌توان به جریان آزاد در نقاط

حدی شکست در نواحی تنک و کند در هو موقتی طولی حس می‌شود. در

منواله و دور مجهول \(C_1 \) و \(C_2 \) را داریم. از حفظ دستگاه‌ها و

دور مجهول برای هو موقتی طولی، توصیفات \(C_1 \) و \(C_2 \) برای

ضرایب دچارا و درجه دم درجه بنده‌های حاصل می‌شود. ضرایب توصیح

شده عبارت‌اند از:

\[a_1(x) = (a - a^*) + C_1(x) \]

\[a_2(x) = (a - a^*) + C_2(x) \]

که با تابع‌های داشتن \(a_1(x) \) به دست آمده‌اند. در بازه سیم دوم به

می‌توان در ناحیه نزدیک به جریان آزاد \(C_1 \) به دنبال

یک سرعت دانه واگذاری می‌شود. سرعت‌های جذب جریان

زاویه در ناحیه نزدیک به جریان آزاد \(C_1 \) به دنبال

配上 این سیم داغ \(b \) و مجموعه

ضرایب توصیح شده درجه بنده به دنبال آوردن شده به مقادیر مربوط

دیگر آنها که می‌توان استutz مشاهده کرد.

4- شرایط جریان برزشی آزاد

جریان‌های برزشی آزاد‌که میزان اختلاف گریزی آزاد آن‌ها کم

است به ناپایداری‌هایی که با افزایش طول تاکسچم می‌گیرد

پسیار حساسیت. از طرف دیگر منحنی ناپایداری به‌های برزشی با

توسعه سرعت هدایت می‌ست. (منوژیترودر \(11 \) دارای قلم

تنی در نقطه حداکثر ترمیم تبدیل در این نقطه تقیی

سطح‌سازی و تهیه‌نامه فلز سرعت داشته، در صورت

احتمال برای لایه‌ی میکرو توکس شدن.

ساده‌ترین جریان به‌صورت نظایر پانشمانیی که نوعی ارتعاش در

نیول است. در نهایت به‌بیان از این ارتعاش‌های

هم‌چنین سیستم‌های پانشمانیی که بیشتر

همه‌که تقیی شدن‌زایی باشد، ممکن است تقیی شود. در

توالا مورد بحث، ارتعاش‌های ضایعی با سیستم

دارک که با پیامدهای طبیعی مولتیپل سرعت در

ماتور آبشکار است. این ارتعاش‌های جریان برزشی را ارسام کرده و دقت‌بندی

استقلال، سال 14، شماره 2، استقلال

1374
است. عدد ریترلری جریان که بر منی‌ای الگوی مجموع سرعت‌های جریان آزاد و ضخامت داخلی، می‌باشد
\[E_\theta = \theta_0 > 99 \, \text{mm} \]
هم‌آن با آزمایشگاه‌های برداشته قابلیت فلز‌سازی دارد. سیگنال انتقال می‌دهد. سیگنال‌های تولید شده که با کامپیوتر تولید می‌شود، در مدت زمان‌ها روکرد گرفته می‌شوند. به‌طور طبیعی با سامانوری‌پذیری نابالغ‌داران و دیگری هاموکاک اول آن، با اختلاف فاز از پیش تخمین شده، اندازه‌گیری شانس می‌دهد که در راستای ماهیگیری و تا زمان نیاز یافته سرعت از قابلیت سیگنال به‌صورت کمی از لبه‌هایی صفحه جداسازی می‌گردد. میانگین سرعت جریان آزاد است. با پایین بودن دقته/اتنجه جریان در مدت 3/00 می‌کند که جریان اساساً در محدوده باشد. اما به‌طور گروهی پیک‌سازی اصلی (در انتهای پیش‌گیری و جریان که میانگین از 1/00 انرژی به خودی انتقال کل نیازی اشکال کل در تهیه‌ای از جریان بین [0] یکی دست انتهایی صفحه جداگانه را در بردارد.

5 - روش آزمایش

برای حالت برهم‌کنش چند درجه کرده‌ای 3 مربوط به اختلاف فاز اولیه 270 درجه مولفه‌های صفحه‌ای زیر همانند و موج اصلی سیگنال تحریک که طبق آزمایش‌های قبلی عملکرد تحریک شدید به سپرده شدن جریان برد است پیامدی انجام شد. یک سرعت سنگینش از شکل دیده‌ای که می‌تواند با دقت 0000، انتخاب

\[x = x \times 10^{-17} \, \text{mm} \]

برای اندازه‌گیری سرعت دو بعدی به کار گرفته شد.

1 - فلزات چنین شکل پذیری به‌طور ضرایب انتهای محدوده‌های دینامیکی ضروری است [6 و 10].

زیرا مستلزم استفاده از تفاوت‌های مکانیکی توابع ویره و میانگین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

است.

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]

به طوری که \(E, E', r, r' \) قطع صفحه مؤلفه‌های سیگنال تحریک است. بنابراین

\[
E_y = \frac{r_y - r'}{E_y - E'}
\]
تحريك صورت می‌گیرد. با فرض اینکه در همان چارچوب زمانی که هم‌فاز سیگنال تحريك است، اطلاعاتی از همان نقاط شبکه برداشته شود، می‌توان به کمک این اطلاعات تصور لحظاتی مربوط به بارهای افزوده و تولید کرده، برای هر زمان خاص یا یک دارایی، و مؤلفه سرعت اندمازگی یکی از زمان‌های انجام‌شده که نقاط شبکه روبه‌روی مربوط به زمان شروع آنها به یک دامنه در لحظه‌ای از زمان صفر است. در هر زمان، با قدم جریان پیوستگی برای این تصورات مربوط به مراحل‌های انجام‌شده بندهای مختلف یک جریان قرار داده، کنترل می‌شود. برای یک ناحیه آزمایشگاهی که در مقطعی مختلف یک جریان قرار دارد، کنترل مقطعی دیگر جریان قرار دارد، اختیاری بین حضور و رودهای جریان خروجی حداکثر ۴/۳ است. بندهای دقت در ارتفاع معادله دومیدی پیوستگی، دقت ۶۶/۳% است، شکل (5). به یک بندهای از دو تصور مربوط به زمان‌های مختلف در ناحیه‌ی بین راشان می‌دهد. در این شکل نماینده یک دستگاه مختصات محورهای رسم شده است. برای نمایش مختصات منکرو نصف مجموع سرعت جریان‌های زمین‌خون از سازه‌های گردبای عرضی به وضوح تشکیل شده‌اند و در پایین دست جریان‌های زمین‌خون دست گردبایه‌ها به یکدیگر می‌پیوندند. تصورات مربوط به ماده‌های پیوستگی را با دقت زیادی آزمایش می‌کنند و این یک بار ارائه آنها به عنوان یک تصور لحظه‌ای مناسب لازم است.

تصویر مرکب عامل تصور لحظه‌ای برای استخراج سازه‌های جریان مشکل به شمار می‌رود. ۵۵۰ تصویر مرکب، که برای تعداد نمونه‌های گرفته شده در ۱۲ سیستم مور ژیرامانگ است به وجود می‌آید. فیلم کامیک خطوط جریان لحظه‌ای ساخته شده [11] به روشی مشابه میده که سطح مرکزی ناپایدار به نواحی جریان‌های تند و کنترل بیشتر با بروز مشکلات در صفحه جداول در ۲ = ۱/۴ در همسایگی یکدیگر به هم برخورد تبدیل سطح مشترک در هم بیشتر به سازه‌های ژیرامانگ - منبع عرضی رانش‌های دیده‌اند. با جذب اثرات از جریان‌های منابعی رشید می‌کنند. شکل (7) مراحل اولیه در هم بیشتر سطح مشترک و تبدیل آن به یک سازه مشکل به‌پیوست را نشان می‌دهدکه نسبت به جهت جریان

\[E^* = E^*_{0} - \text{\frac{r^*_1}{r^*_1 - r^*_2}} (E^*_{1} - E^*_{2}) \]

بنابراین طبق معادله (5)، کلیه داده‌های برادند شده با یک برگداهنده شوند و با دقت زمان شروع گروه‌کنش داده‌ها در حالی که در بالا به آن اشاره کرده‌ایم.

در فضای مکانیک شبکه، اندازه‌گیری در مؤلفه‌های مختلف برای در نظر گرفتن جریان‌های زیادی، در چارچوب زمانی مؤلفه‌های سیگنال
شکل 7 - میدان بردارهای سرعت از ناحیه کوچکی از جریان بالا دست در t و t1

 تصویر مکتب برای یک تحلیل همه جایه به روش تصویر لحظه‌ای و برای ایجاد یک فضای تابع ویژه با تعداد ابعاد کم، سازه‌های عرضی با مقياس برگ را تشريی کنند به کار رفته است. این توابع برای استخراج یک سیستم معادلات دینامیکی که رفتار دینامیکی سازه‌های متشکل برگ را بیان می‌کند، استفاده شده است.

[9 و 10].

شکل 6 - میدان بردارهای سرعت برای در تصویر مکتب در t1 و t0

یک زاویه تند می‌سازد. این می‌باشد و سبب می‌شود که سازه نزدیک به جریان میانگین از یک جذب کند و از این جهت جریان به صورت نمایی زیاد شود. این سازه در پایین دست به سازه گردابی کاملاً مدیری تبدیل می‌شود. تکامل تدریجی این سازه مشکل از لحظه t1 تا لحظه t2 در شکل (7) به روش دیده می‌شود. در x(t) = 3/5 cm t1 تبدیل یک سازه کوچکی تشکیل شده که ضمن حرکت به سوی پایین دست، رشد می‌کند. با ماهی‌های زیر سازه در t و بی‌ آمیزی از شکل می‌کند. در x = 6/5 cm t2 تکامل و تبدیل آن به یک شکل نسبتاً مدور در دیده می‌شود. در x = 7/5 cm دیده می‌شود. x(t) کاملاً شکل گرفته و به پایین دست می‌رسد. بدین دست می‌گوییم که این نسبت به t2 تقدیم فاز دارد.

این سازه‌های گردابی به تدریج کاملاً می‌شوند، پس صورت که یک سازه حول سازه‌ای که در مجاورت و بالاتر از پایین دست ان قرار گرفته می‌چرخد و با این می‌آمده و در پایین دست به سازه گردابی تبدیل می‌شود. این رفتار تا‌این‌جا نانوی یک جفت از x(t) x = 9/5 cm پایین‌ترین لایه‌هایی صفحه جداگانه که در کار قابلی

دیده شده [7]، رخ می‌دهد.

