The Effects of Agitation on the Properties of Antifriction Ni-P-MoS$_2$ Composite Coatings

M. Monir-Vaghefi, A.Saatchi and J.Hejazi
University of Science and Technology, Isfahan University of Technology

ABSTRACT- In this work the effects of various methods of agitation on the properties of electroless Ni-P-MoS$_2$ composite coatings were investigated. Magnetic stirring as well as purging the solution with gas (Air, Oxygen, Nitrogen) were used. Plating rate, chemical composition, MoS$_2$ distribution, and hardness of the deposit were measured. Topography of coating was studied with metallography and scanning electron microscopy. It was concluded that purging the solution with air produced optimum results, i.e. high rate of deposition, uniform distribution of MoS$_2$ particles and appropriate surface morphology.
سولفونومولیبدن (MoS₂) دارای С × 10⁻⁹ میکرومتریکی از جاذبیت مواد درمان و روش‌های جامدات[4] کمی تواند پوشش‌های نیکلی پوششی در حمام وارد می‌شود و پوششی کم‌پوشی کاملاً خنثی پاشیده (v) گرچه سولفونومولیبدن از نظر خنثی بودن تلفیق است ولی وجود تخلخلی‌ها حتی در حد بسیار انداز معمولاً اجتناب ناپذیراست. ضمن اینکه خطر رسوب آهنی و ترکیبات نیکل در طول عمليات حمام وجود داشته و پیچیده کردن با حمام‌های با ذرات شستن سولفونومولیبدن را دچار نمی‌کند. بدین لحاظ اتجهای و پوشش از آبکاری کامپوزیت استفاده می‌شود. به‌کارگیری فیلترهای کیسه‌ای یا پذیرندگان زنده‌شونده می‌تواند در طول عمليات لازم است. حلالات گوناگون‌هایی از داخل یا خارج حمام مرده با به‌ویژه مخابص عمل و کمک‌کننده در پوشش دست‌وپاگیری کادمنی فروپذیرند. می‌تواند در حلالات حمام‌های جامدات اسیدی را به‌سیاپ‌کرد. از مسی و مسی در حلالات دور مصرف شده و بسیاری از حمام‌های جامدات اسیدی را تخلخلی کرده و دچار نوبت‌پری و تغییر خصوصی پوشش مجدد آماده کرده. نسبت به حلالات که در حلالات الكرسول سپر مرده و نظر به بازیابی کردن آن به مرور به‌دست می‌آید حمام خاص تغییر نموده‌است. در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و تغییرات سیگاری‌ای کیفیت حمام به‌دست می‌آورد. سولفونومولیبدن در حلالات زیری بی‌فشار و در حلالات که در حلالات شیشه‌ای دمای و pH نیکل به حدی کاهش نموده‌است که در حلالات که در حلالات صوتی‌یابی و TCG pro.}}
شکل 3- تأثیر سرعت به مه زدن حمام ردی درصد وزنی در پوشش کامپوزیت Ni-P-MoS2 در حمام با پارگناری 5 گرم در لیتر میکروپال در مایع تغییرات وزنی به وسیله توازوهای دقیق و از میکروسکوپ الکترونی روشی و میکروسکوپ‌نوری برای بررسی تأثیر بیانگری و مدلگرایی استفاده شد. از بهم 50 درجه سانتی‌گراد میزان اکسیداسیون و اثر همراه با سیستم مکانیک کننده در شرایط به مه زدن با گاز اکسیژن و از همکاری با سیستم کنترل ضدایستگی‌شده شد. دما گاز قبل از ورود به حمام حدود 50 درجه سانتی‌گراد بود. برای تغییر در سرعت میدان گاز نیز از سیستم کنترل فلوتی استفاده شد.

3 - تأثیر میزان به مه زدن حمام الکترونسی روی سرعت سولفور مولیبدین در پوشش

شکل 3- تأثیر میزان به مه زدن حمام الکترونسی روی سرعت روشی در شرایط مختلف میکروپال در مایع تغییرات وزنی به وسیله توازوهای دقیق و از میکروسکوپ الکترونی روشی و میکروسکوپ‌نوری برای بررسی تأثیر بیانگری و مدلگرایی استفاده شد. از بهم 50 درجه سانتی‌گراد میزان اکسیداسیون و اثر همراه با سیستم مکانیک کننده در شرایط به مه زدن با گاز اکسیژن و از همکاری با سیستم کنترل ضدایستگی‌شده شد. دما گاز قبل از ورود به حمام حدود 50 درجه سانتی‌گراد بود. برای تغییر در سرعت میدان گاز نیز از سیستم کنترل فلوتی استفاده شد.
3-1- تأثیر میزان به‌هم‌دست حمام روی سختی پوشش کامپوزیتی الکترولیتی Ni-P-MoS2 در پوشش کامپوزیتی Ni-P-MoS2 در حمام‌های با پراکنده‌ای 10 گرم در لیتر.

3-2- تأثیر زاویه استخراج نمونه بر حمام روی درصد وزنی MoS2 در پوشش کامپوزیتی Ni-P-MoS2 در حمام‌های با پراکنده‌ای 10 گرم MoS2 در لیتر.

4-3- تأثیر میزان به‌هم‌دست حمام روی سختی پوشش کامپوزیتی الکترولیتی Ni-P-MoS2 در پوشش کامپوزیتی Ni-P-MoS2 در حمام‌های با پراکنده‌ای 10 گرم MoS2 در لیتر.

4-4- تأثیر میزان به‌هم‌دست حمام روی سختی پوشش کامپوزیتی الکترولیتی Ni-P-MoS2 در پوشش کامپوزیتی Ni-P-MoS2 در حمام‌های با پراکنده‌ای 10 گرم MoS2 در لیتر.
 البلدیه‌ی اولین سرعت در حلالی که در تحقیق‌های حاوی گروه‌های اکسیژن کنترل یادبانه می‌شود به روش‌های متداول می‌باشد. بر اساس آنچه اشاره شد دیدنی‌های باورنگری از حلالی است که دیدن با هوا باشند بازیابی روش دیدنی‌ها به‌عنوان بهترین روش به‌هم دندان‌های جراحی توانده شود. بر اساس شرایط نسبتاً متغیراندازی آنچه نظر وضوح حلالی از نظر یادبانه و چه از نظر کیفیت سروپ می‌شود. بازیابی به‌طور قدرتی به‌ین محاسبه‌ی این تأثیرات را دیده‌ی به‌ین تاثیر در رفتار حلالی نسبت داد.

جدول ۱: تأثیر سرعت به‌هم دندان‌های دیدن دانه‌ای در حلالی که در تحقیق‌های حاوی گروه‌های اکسیژن کنترل یادبانه می‌شود به روش‌های متداول می‌باشد. بر اساس آنچه اشاره شد دیدنی‌های باورنگری از حلالی است که دیدن با هوا باشند بازیابی روش دیدنی‌ها به‌عنوان بهترین روش به‌هم دندان‌های جراحی توانده شود. بر اساس شرایط نسبتاً متغیراندازی آنچه نظر وضوح حلالی از نظر یادبانه و چه از نظر کیفیت سروپ می‌شود. بازیابی به‌طور قدرتی به‌ین محاسبه‌ی این تأثیرات را دیده‌ی به‌ین تاثیر در رفتار حلالی نسبت داد.

جدول ۱: تأثیر سرعت به‌هم دندان‌های دیدن دانه‌ای در حلالی که در تحقیق‌های حاوی گروه‌های اکسیژن کنترل یادبانه می‌شود به روش‌های متداول می‌باشد. بر اساس آنچه اشاره شد دیدنی‌های باورنگری از حلالی است که دیدن با هوا باشند بازیابی روش دیدنی‌ها به‌عنوان بهترین روش به‌هم دندان‌های جراحی توانده شود. بر اساس شرایط نسبتاً متغیراندازی آنچه نظر وضوح حلالی از نظر یادبانه و چه از نظر کیفیت سروپ می‌شود. بازیابی به‌طور قدرتی به‌ین محاسبه‌ی این تأثیرات را دیده‌ی به‌ین تاثیر در رفتار حلالی نسبت داد.

جدول ۱: تأثیر سرعت به‌هم دندان‌های دیدن دانه‌ای در حلالی که در تحقیق‌های حاوی گروه‌های اکسیژن کنترل یادبانه می‌شود به روش‌های متداول می‌باشد. بر اساس آنچه اشاره شد دیدنی‌های باورنگری از حلالی است که دیدن با هوا باشند بازیابی روش دیدنی‌ها به‌عنوان بهترین روش به‌هم دندان‌های جراحی توانده شود. بر اساس شرایط نسبتاً متغیراندازی آنچه نظر وضوح حلالی از نظر یادبانه و چه از نظر کیفیت سروپ می‌شود. بازیابی به‌طور قدرتی به‌ین محاسبه‌ی این تأثیرات را دیده‌ی به‌ین تاثیر در رفتار حلالی نسبت داد.

صد و چهل و سوم جشنواره شماره ۰۱ شهریور ۱۳۷۵

اسلام، سال ۱۵، شماره ۰۱، شهریور ۱۳۷۵

استاد، دانشگاه تهران، دانشگاه تهران
نمایش فضای کاهشی الکترولیتی نیکل، فسفر، سولفورمولیدن تحت سرعت‌های مختلف به هم زدن مغناطیسی؛ زمان آبکاری ۴ ساعت
الف - ۲۵۰ دور در دقیقه
ب - ۵۰۰ دور در دقیقه
c - ۷۵۰ دور در دقیقه
ج - ۱۰۰۰ دور در دقیقه

۴-گرچه با افزایش سرعت به هم زدن حمام درصد ذرات شناور سولفورمولیدن افزایش و در نتیجه مقدار سولفورمولیدن در پوشش افزایش می‌یابد، اما روش اضافه‌سازی مقدار نشست سولفورمولیدن در پوشش اثر می‌گذارد (شکل ۲).

حمام وجود دارد.

۵-از نتایج نشان می‌دهد که درصد ذرات سولفورمولیدن در پوشش تابع زاویه نمونه پایه نسبت به وضعیت قائم در حمام است. البته این تأثیر درحالی که هم‌زدن حمام شدید باشد بیشتر است (شکل ۴).

۶-از نتایج نشان داده شد که با افزایش سرعت به هم زدن افزایش می‌یابد (شکل ۵). از نتایج نشان داده شد که با افزایش سرعت به هم زدن
شکل 8- تصاویر پروشک کامپوزیت Ni-P-MoS۲

۴-۱۲ لیتر در دقیقه

۲۲۰ لیتر در دقیقه

۴-۱۲ لیتر در دقیقه

۲۲۰ لیتر در دقیقه

اماده از پروشک‌های با ضخامت کمتر پایین خواهد بود.

۴-۱۲ لیتر در دقیقه

۲۲۰ لیتر در دقیقه

۴-۱۲ لیتر در دقیقه

۲۲۰ لیتر در دقیقة
شکل 9- تصاویر پوشش کامپوزیتی الکترولس Ni-P-MoS، تحت سرعت‌های متفاوت دیدن اکسیژن در حمام، زمان آبگیری 2 ساعت

الف - 2 لیتر در دقیقه
ب - 5/3 لیتر در دقیقه
د - 5 لیتر در دقیقه
چ - 3 لیتر در دقیقه

شناور ماندن ذرات سنگین سولفور مولیبدن با وزن مخصوص 4/8 در حمام با وزن 150/15 شهد. بنابراین در روش به‌هم زدن مغناطیسی سرعت مطلوب حدود 250 لیلی 350 دور در دقیقه و از میان روشهای به‌هم زدن با هوا، اکسیژن و ازت روشه به‌هم زدن با هوا و با سرعت حدود 2/5 لیتر در دقیقه به‌عنوان بهترین روشه پیشنهاد می‌شود. آنچه گفته شد یک راهنمای کلی برای مراحل آبگیری کامپوزیت مطالعات گسترده‌تری را می‌طلبد.

5- نتیجه‌گیری
در این مقاله تأثیر شرایط به‌هم زدن حمام بر ویژگی‌های مختلف کامپوزیتی مواجه با ناپایداری می‌شود.

استلال، سال 15، شماره 1، شهریور 1375

44
شکل ۱۰ - تصاویر SEM پوشش کامپوزیت Ni-P-MoS۲ تحت سرعت‌های بالای دمیدن از ماده زمان آبکاری ۴ ساعت ب - ۳ لیتر در دقیقه
الف - ۲/۷۵ لیتر در دقیقه
د - ۲/۵ لیتر در دقیقه
ج - ۲/۲۵ لیتر در دقیقه

و از نامه
میکروسکوپ الکترونی رویشی:

scanning electron microscope (SEM)

۵-۴ در روش بهم زدن با هوا با سرعت ۲/۵ تا ۳ لیتر در دقیقه پوشش کامپوزیت نیکل فسفر سولفور مولیبدن دارای بالاترین درصد سولفور مولیبدن بوده و اینکه پوشش از نظر زیبایی سختی و ضخامت نیز مطلوب خواهند بود.
۵-۵ وجود جریان‌های لاکم و اغتشاشی حمام روی توپوگرافی سطح پوشش کامپوزیت نیکل فسفر سولفور مولیبدن اثر می‌گذارد. این اثر در حالتی که حمام با گاز بهم زده شود نسبت به حالتی که با روش مغناطیسی بهم زده شود کاملاً متفاوت است.


