تأثير شرایط به‌همه‌زدن حمام الکترولس روي کیفیت پوشش‌های ضداصطکاک
کامپوزیتی نیکل، فسفر سولفور مولیبدن

محمود میرورفافی، احمد سعیدی و جلال حجازی
دانشگاه علم و صنعت ایران، دانشگاه صنعتی اصفهان
(دریافت مقاله: ۱۳۷۲/۳/۲۰ - دریافت نهایی: ۱۳۷۵/۳/۲۰)

چکیده - به‌دلیل خواص مناسب سولفور مولیبدن از نظر تاپیت عضوی و پایداری در دماهای نسبی بالا، این ماده
جانشین مناسبی برای ایجاد کامپوزیت نیکل/فسفر/فسفار سولفور مولیبدن (MoS۲) در حمام الکترولس برای تغییر ذرات روز زمینه ضروری است. تا این مقاله در برگیرنده تأثیر عوامل مختلف پهن‌تر دست‌رساندن نیکل، فسفر و سولفور مولیبدن Ni-P-MoS۲ است. این بار از نظر تنش شکل ساختاری ساخت ساخت رشدی تکیف‌کننده، فسفر سولفور مولیبدن، آزمایش‌های ساختاری، مایع‌زیانی و تریگرایی سطحی و تکنیک‌های پیشرفته‌ی تریگرایی توضیحی و اکسترم و سطح‌های ساخت رشدی با گسترش نهایی تشدید است. برای به‌همه‌زدن حمام از نظر تنش شکل ساختاری ساخت رشدی تکیف‌کننده، فسفر سولفور مولیبدن، آزمایش‌های ساختاری، مایع‌زیانی و تریگرایی سطحی و تکنیک‌های پیشرفته‌ی تریگرایی توضیحی و اکسترم و سطح‌های ساخت رشدی با گسترش نهایی تشدید است.

The Effects of Agitation on the Properties of Antifriction Ni-P-MoS 2 Composite Coatings

M. Monir-Vaghefi, A.Saatchi and J.Hejazi
University of Science and Technology, Isfahan University of Technology

ABSTRACT- In this work the effects of various methods of agitation on the properties of electroless Ni-P-MoS 2 composite coatings were investigated. Magnetic stirring as well as purging the solution with gas (Air, Oxygen, Nitrogen) were used. Plating rate, chemical composition, MoS 2 distribution, and hardness of the deposit were measured. Topography of coating was studied with metallography and scanning electron microscopy. It was concluded that purging the solution with air produced optimum results, i.e. high rate of deposition, uniform distribution of MoS 2 particles and appropriate surface morphology.

استنسل: سال ۱۵، شماره ۱، شهریور ۱۳۷۵
سولفونماین‌های (MoS۲) دارای ساختارهای کوئینتولوروبنزیکی از جاذبه‌های مواد درمان و گفتگوهای جامعه‌ای [۳] که می‌توانند در خواص نیکلی نیوکاتئریزه‌ای دارای بازخوردهای مصرفی منجر به نیروگهی‌های سولفونماین‌های جاف، رنگ‌های درآمدهای اکسترالی روبنزیکی ریشه دارد. سولفونماین‌های جاف، رنگ‌های درآمدهای اکسترالی روبنزیکی ریشه دارد. سولفونماین‌های جاف، رنگ‌های درآمدهای اکسترالی روبنزیکی ریشه دارد.

۱ - مقدمه

سولفونماین‌های (MoS۲) دارای ساختارهای کوئینتولوروبنزیکی از جاذبه‌های مواد درمان و گفتگوهای جامعه‌ای [۳] که می‌توانند در خواص نیکلی نیوکاتئریزه‌ای دارای بازخوردهای مصرفی منجر به نیروگهی‌های سولفونماین‌های جاف، رنگ‌های درآمدهای اکسترالی روبنزیکی ریشه دارد. سولفونماین‌های جاف، رنگ‌های درآمدهای اکسترالی روبنزیکی ریشه دارد. سولفونماین‌های جاف، رنگ‌های درآمدهای اکسترالی روبنزیکی ریشه دارد.

۲ - آزمایش‌ها

نمودن‌های از نفوذ‌های ساده و زنجیره‌ای انتخاب شدند و پس از آماده کردن سطح تحت عملیات جریان بی‌داخلی و شستشوی لازم، قرار گرفت و سپس در به یک حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آسیبدی به مدت ۵ دقیقه پوشش اولیه داده شد که نیازمند به حمام الکترولیز تیکل، فسفر نیترات آاس
مقدار ذرات MoS$_2$ در حمام الکتروس برحسب گرم در لیر

شکل 2- تأثیر میزان برگذاری ذرات MoS$_2$ در حمام در سرعت الکتروس

میکروتری با تغییرات وزنی به وسیله ترازوهای دقيق و از سمت کوپلین به تغییرات پیوسته و میکروسورپ نوری برای بررسی تغییرات شرایط و مناطق اضافی استفاده شد. از بهم چسباندن نخرد به مرحله نخست و رسوب به مرحله دوم روندهای میزان برگذاری در پوشش زمان کاهش یافته است.

شکل 3- تأثیر میزان به هم زدن حمام الکتروس روی مقدار سولفور مولبدین در پوشش

در حمام الکتروس به هم زدن حمام دمای محدود در مقدار مورد نظر به حمام تازه اضافه شدند و با روشنایی به هم زدن متفاوت، سه دسته به هم اتصال و ازت به منظور تغییر نکلنی دات شرکتاً مسیر مطاومین سولفور مولبدین در حمام 5 گرم در لیتر انتخاب شد. نتایج طبق شکل (3) به سمت ادامه ملاحظه می شود افزایش سرعت به هم زدن در تمامی روشنایی به هم زدن به سطح به هم زدن بازگشت منجر به افزایش درصد سولفور مولبدین در پوشش می شود.

شکل 4- تأثیر میزان بارگذاری ذرات سولفور مولبدین در حمام الکتروس روی سرعت رسوب در شرایط مختلف به هم زدن

حمام الکتروس تجاری اسیدی در دمای 10/ درجه سانتیگراد pH حداکثر 40 با مقدار مختلف سولفور مولبدین از 2/5 تا 10 گرم در لیتر استفاده شد. سرعت به هم زدن متفاوت به هم زدن و ازت در 1/5 لیتر در 250 دور در دقیقه. با روش دو جهته، اکسیون و ازت در 2/5 لیتر در 1375 استقلال، سال 15، سیمپوزیم 408.
3-1- تأثیر میزان به هم زدن حمام الکترولیس روی سختی پوشش کامپوزیتی Ni-P-MoS	extsubscript{2} در سولفور مولیبدن در حمام روی درصد وزنی

[شکل 4] تأثیر زاریه استقرار نمونه در حمام روی درصد وزنی MoS	extsubscript{2} در پوشش کامپوزیتی Ni-P-MoS	extsubscript{2} در حمام روی درصد وزنی MoS	extsubscript{2} در پوشش کامپوزیتی Ni-P-MoS	extsubscript{2}

۴-۲- تأثیر شرایط به هم زدن حمام الکترولیس روی سختی پوشش کامپوزیتی Ni-P-MoS	extsubscript{2}

[شکل 5] تأثیر میزان به هم زدن حمام الکترولیس روی سختی پوشش کامپوزیتی Ni-P-MoS	extsubscript{2} در حمام روی درصد وزنی MoS	extsubscript{2} در پوشش کامپوزیتی Ni-P-MoS	extsubscript{2}

38

استنلال، سال ۱۵، شماره ۱، شهریور ۱۳۷۵
زدن حجم به روی معنای‌گذاری باشد نسبت به روش دمیدان‌گاز

بیشتر است. هنگامی که سرعت دمیدن به آنتی‌اکسیدان می‌باید
سرعت راسب‌شدن تقیبی ثابت می‌ماند (شکل ۴). چنین دیدگاهی
برای آن دسته از ذرات که دانسته با نمادند و برای شناور مانند نیاز
به سرعت‌های بالایی به هم زدن دارند جالب است که افزایش شدید
به هم زدن با هوا سرعت رسوخت را کاهش‌دهنده کمتری می‌یابد.
مکملان. لازم به یادآوری است که نسبت سلول‌های مولیبدن حدود
۸/۰/۸ گرم به سانتی‌متر مکعب و مولول‌الکتروس جنگل اسیدی
به کار رفته درای دانسته حدود ۱/۰۰ گرم به سانتی‌متر مکعب
است.

سرعت راسب شدن هنگامی که حجم با افزایش از هم زده شود
نسبت به حالتی که حجم با هوا می‌باشد، شدت بیشتر است (شکل ۶).
به یک افزایش سرعت دمیدن با افزایش حجم از نظر پایداری بیشتر
حاسی می‌شود و کنترل دچاری را زیاد نشان می‌دهد. در خاک
در حالی روش سطح پوشش دمیدن به‌طور مستقیم روابط
در می‌کنند. که در این حالت هنگامی که حجم از
خارج و نیاز به بیشتری می‌کند. در حالتی که در حالت‌های حاصله یا و
اکسیون کنترل پایداری حجم به‌سازه نصیب می‌گردد. از آنجا
که سرعت راسب شدن در حالتی که دمیدن با یک اکسیون باشد به
حالی است که دمیدن با هوا باشد تنابیرین روش دمیدن با هوا
به‌عنوان بهترین روش به هم زدن می‌تواند طراحی کامل است. بر اساس
آنچه اشاره شد می‌باشد اکسیون و از در حالت منجر به
شرایط نسبتاً منفی‌تر چه بیشتر و ضعیف‌تر حجم از نظر پایداری و
چه از نظر یکپارچگی روابط می‌شود. تنابیرین به‌طور قابل به‌پیه‌دن
می‌توان این تأثیرات را معمولاً به تحقیق از درخت حجم نسبت
داد.

شکل ۶- تأثیر سرعت به هم زدن و نوع به هم زدن حجم روی سرعت
روسپ پوشش کامپوزیت الکتروسی نی-پی-موسی در حسایس با
یارگار دری گذرانده شده شیر ۱/۰۰ گرم به سانتی‌متر مکعب

- بررسی نتایج

سپت ۱- افزایش میزان افرادی ذرات سلول‌های مولیبدن در حسایس
منجر به کاهش سرعت راسب شدن می‌شود. این کاهش در خاکی که
بهم زدن حجم با گاز باشند بیشتر از به‌هم زدن مکانیک است
(شکل ۵) به نظر می‌رسد افزایش بیشتر از حضور ذرات سلول‌های
مولیبدن خطر بروز ابری شدن حجم را افزایش می‌دهد و با حداکثر
باید کنترل سرعت راسب شدن و غیر انتها بوده‌ای در حسایس
می‌شود. تنابیرین در یک میزان یارگاردا مطلوب ذرات در حسایس
با این‌جای سرعت راسب شدن را به‌سوی سارعی عامل مثلاً تغییر در
سرعت به هم زدن افزایش دارد.

سپت ۲- افزایش سرعت به هم زدن حجم که برای شناور کردن ذرات
سلول‌های مولیبدن صورت می‌گیرد باعث کاهش سرعت راسب‌شدن
می‌شود. این کاهش هنگامی که بهم زدن با دمیدن کاهش نسبت
به هم زدن مکانیکی بیشتر است (شکل ۸). تنابیرین با استفاده
حتی المقدار از سرعت‌های به هم زدن کمتر استفاده کرد. البته مروت
بر اینکه شناور شدن نامطلوب ذرات سلول‌های مولیبدن ظاهر نشود.
عدم شناسایی کامل خطر جمع ذرات در پوشش‌ها را مکرون است
به‌عنوان داشته‌باشند. ضمن اینکه مطالعه مقاومت پوشش‌های
کامپوزیتی دری نمایش می‌دهد که امکان خطر جمع در حالتی که به‌هم

استقلال، سال ۱۵، شماره ۱، شهریور ۱۳۷۵

۲۹
شکل 7- تصاویر SEM پوشش کامپوزیت الکتروس نیکل فسفر سولفورمولبیدن تحت سرعت‌های مختلف به هم زدن مغناطیسی

زمان آپارامتر ۴ ساعت
الف - ۲۵۰ دور در دقیقه
ب - ۲۰۰ دور در دقیقه
ج - ۳۰۰ دور در دقیقه

حمام وجود دارد

غل و گرمی با انزایش سرعت به هم زدن حمام درصد ذرات شناور سولفورمولبیدن انزایش و در تبیه مقیاس سولفورمولبیدن در پوشش انزایش می‌باشد و زمان‌بندی به هم زدن حمام باعث کاهش سختی پوشش می‌شود (شکل ۴). از انزایی که با انزایش سرعت به هم زدن حمام وجود دارد

مقدار نشست سولفورمولبیدن در پوشش اثر می‌گذارد (شکل ۴).

استقلال، سال ۱۵، شماره ۱، شهريور ۱۳۷۵
شکل 8- تصاویر پروسه‌کامپوزیت‌سنج و دیگر SEM تحت سرعت‌های مختلف دمیدن‌های در حمام زمان آبکاری 2 ساعت Ni-P-MoS سطحی در میزان دمیدن‌های 2/5 لیتر در دقیقه ب - 2/5 لیتر در دقیقه پ - 4/5 لیتر در دقیقه ج - 2 لیتر در دقیقه

حجمم است که با افزایش سرعت به هم زدن و ایجاد حالت جریان لایه‌ای در حمام ترورگرافی سطحی نیز تغییر می‌کند. در این حالت وضعیت پستی و بلندی‌ها بر وجود جریان لایه‌ای در حمام تأکید می‌کند. شکل (ج و د). از طرفی در روش دمیدن با افزایش دمیدن حالت جریان در حمام اکسیژن و با سرعت‌های پایین‌تر دمیدن حالت جریان در حمام لاکمیب و با افزایش سرعت دمیدن از آنجایی که حمام با تاییداری مواجه می‌شود وضعیت ترورگرافی مطلوب نخواهد بود (شکل 10). بنابراین نتایج می‌تواند منحصر مصرف‌های از این بر رفتار حمام است. به‌منظور حفظ کیفیت سطح از نظر ترورگرافی پایستی از سرعت‌های به هم زدن شیبداری می‌توان با جریان اغتشاشی اجتناب کرد و از طرفی دیگر سرعت‌های به هم زدن اندک ممکن است منجر به عدم آماده از پروسه‌های با ضخامت کمتر پایین خواهد بود.

3- تغییر در شدت به هم زدن و نوع به هم زدن روی ترورگرافی سطحی پروسه کامپوزیت Ni-P-MoS اثر می‌گذارد (شکل‌های 7 و 8). در حالتی که پروسه کامپوزیت‌نگ در حمام با به هم زدن با گاز ترورگرافی بدراست ترورگرافی سطحی از پستی و بلندی کمتری نسبت به حالت به هم زدن منظم‌سنج بخوردار است (مقاومیت شکل 7 با شکل‌های 8 و 10). این را شاید برای بان شرایط جهانی بهتر و سرعت رسوپ کمتر نسبت دهد.

هنگامی که سرعت به هم زدن منظم‌سنج پایین‌تر باشد پستی و بلندی ترورگرافی سطحی نشان دهنده حالت جریان اغتشاشی است.
پوشش کامپوزیت Ni-P-MoS\textsubscript{2} تحت سرعت‌های مختلف دیدن اکسیون در حمام، زمان آبکاری ۴ ساعت

۰-۲ لیتر در دقیقه

الف - ۲ لیتر در دقیقه

د - ۳ لیتر در دقیقه

ج - ۳ لیتر در دقیقه

شناور دانش‌العلوم سنگین سولفور مولیبدن با وزن مخصوصی در حمام با وزن ۷۵/۵ درصد بستگی دارد. بستگی‌های آلی در روشن، سرعت مطلوب حدود ۲۵۰ لیلی در دقیقه و إعیان آبکاری پوشش کامپوزیت نیکل فسفور مولیبدن به لحاظ کیفیت پوشش تشخیص داده شد.

۱-۵ - خطر تجمیع ذرات سولفور مولیبدن در پوشش در حالتی که به‌هم‌زن حمام به روش مغناطیسی باشد، نسبت به روش دیدن با گاز پیشرفت است.

۱-۵ - در سرعت‌های بالای به‌هم‌زن با گاز ازت حمام الکترولیس کامپوزیت مناجه با تابیداری می‌شود.

نتیجه‌گیری

در این مقاله تأثیر شریط به‌هم‌زن حمام بر ویژگی‌های مختلف

۴۷
شکل ۱۰- تصاویر پوشش کامپوزیت Ni-P-MoS۲ تحت سرعت‌های بالای دیده در حمام، زمان آبکاری ۴ ساعت SEM

الف - ۲/۷۵ لیتر در دقیقه
ب - ۳/۵ لیتر در دقیقه
د - ۴/۵ لیتر در دقیقه
ج - ۴/۵ لیتر در دقیقه

و از نامه میکروسکوپ الکترونی روبشی: scanning electron microscope (SEM)

۵- ۴- در روش به هم‌زن دن‌ها با سرعت ۲/۵۰ و ۲/۷۵ لیتر در دقیقه پوشش کامپوزیتی نیکل، فسفر، سولفور مولبیدن دارای بالاترین درصد سولفور مولبیدن بوده و اینکه پوشش از نظر زیری، سختی و ضخامت نیز مطلوب خواهد بود.

۴- ۵- وجود جریان‌های لاکی و اغتشاشی حمام روز تیپوگرافی سطح پوشش کامپوزیتی نیکل، فسفر، سولفور مولبیدن اثر می‌گذارد. این اثر در حالتی که حمام با گاز به هم زده شود نسبت به حالتی که با روش مغناطیسی به هم زده شود کاملا متفاوت است.

5. Ramesh, C. S., Sechadri, S. K., and Layer, K. G. L., "Characteristics of Nickel-Flyash Electro-

