تأثیر مرفولوژی کاریبدهای بر رفتار تریبولوژیکی چند‌نواهی نیکل سخت نوع ۴

مهدی صالحی و عبدالستار آیتاللهی
دانشکده مهندسی مغناطیسی و دانشگاه صنعتی اصفهان (دریافت مقاله: ۱۳۷۷/۹/۲۱ - دریافت نسخه نهایی: ۱۳۷۸/۶/۲۵)

چکیده - در این پژوهش تأثیر حجم و مرفولوژی کاریبدهای بیوپتکسی در ساختار میکروسکوپی بر رفتار تریبولوژیکی ASTM چند‌نواهی نیکل سخت نوع ۴ بررسی شده است. بین میزان حجم کربن تا ۲/۲ درصد، تغییراتی نشان داده شد.

آزمایش‌های سایت‌گزارش در حالی که شکست به‌صورت دیسکی به‌روی دیسکی تحت شرایط خشک حل‌سوزی که به علت اثرات فیزیکی و شیمیایی به‌روی آمارها استفاده گردید و برای مشخص نبود شناسایی نپیگرای سطوح و ذرات سایت توسط میکروسکوپ الکترونی روی شی صورت بی‌پایان. آن‌ها می‌توانند نشان می‌دهند که افزایش حجم کاریبد باعث کاهش تغییر شکل پلاستیکی سطوح و نهایتاً افزایش مقاومت سایت است. در شرایط انرژی و شرایط مطابق شرایط شرایط شرایط سایت شده است. در شرایط انرژی و شرایط مطابق شرایط شرایط سایت شده است. در شرایط انرژی و شرایط مطابق شرایط شرایط سایت شده است. در شرایط انرژی و شرایط مطابق شرایط شرایط شرایط شرایط شرایط می‌تواند نشان می‌دهد که به‌روی دیسکی تحت شرایط خشک حل‌سوزی که به علت اثرات فیزیکی و شیمیایی به‌روی آمارها استفاده گردید و برای مشخص نبود شناسایی نپیگرای سطوح و ذرات سایت توسط میکروسکوپ الکترونی روی شی صورت بی‌پایان. آن‌ها می‌توانند نشان می‌دهند که افزایش حجم کاریبد باعث کاهش تغییر شکل پلاستیکی سطوح و نهایتاً افزایش مقاومت سایت است.

The Effect of Carbides Morphology on Tribological Behaviour of Ni-Hard 4 Cast Irons

M. Salehi and A.S. Ayatollahi
Department of Materials Engineering, Isfahan University of Technology

ABSTRACT- In this research the effect of volume and morphology of eutectic carbides on tribological behaviour of Ni-Hard 4 cast irons have been investigated. Therefore, as a result of the fact that the carbon content effects the carbides morphology of Ni-hard cast iron, the chemical compositions of five different specimens were kept constant with the exception of the carbon content, which was varied from 2.3 to 3.2%. The general composition of those alloys was selected according to Group D Class I of ASTM A532 standard. The microstructure and carbides morphology of homogenized specimens were examined by microhardness testings and metallographic examinations. Metallographic techniques include optical and scanning electron microscopy have been also used to characterise the predominant wear mechanism. The
Ni-hard 4 cast iron surfaces worn by a process of plastic deformation and fracture to produce wear debris. SEM examination of worn surface topography and wear debris shows the tendency to plastic deformation and wear decreased as the carbon content of the specimen increased.
جدول 1 - ترکیب شیمیایی نمونه‌های آزمایشی

<table>
<thead>
<tr>
<th>Astm</th>
<th>Cr/C</th>
<th>CE</th>
<th>%Ni</th>
<th>%Mo</th>
<th>%Cr</th>
<th>%S</th>
<th>%P</th>
<th>%Mn</th>
<th>%Si</th>
<th>%C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A524 2-2</td>
<td>0.22</td>
<td>0.04</td>
<td>0.23</td>
<td>0.27</td>
<td>0.22</td>
<td>0.16</td>
<td>0.09</td>
<td>0.26</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>0.26</td>
<td>0.115</td>
<td>0.044</td>
<td>0.23</td>
<td>0.27</td>
<td>0.22</td>
<td>0.16</td>
<td>0.09</td>
<td>0.26</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>0.26</td>
<td>0.115</td>
<td>0.044</td>
<td>0.23</td>
<td>0.27</td>
<td>0.22</td>
<td>0.16</td>
<td>0.09</td>
<td>0.26</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>0.26</td>
<td>0.115</td>
<td>0.044</td>
<td>0.23</td>
<td>0.27</td>
<td>0.22</td>
<td>0.16</td>
<td>0.09</td>
<td>0.26</td>
<td>0.26</td>
<td>0.24</td>
</tr>
</tbody>
</table>

جدول 2 - ترکیب شیمیایی نمونه‌های آزمایشی

<table>
<thead>
<tr>
<th>مکانیسم سایش</th>
<th>نیکل سطح نوع 2 تحت شرایط ویژه‌ای</th>
<th>تریبوسیستم بررسی شد.</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمارشسازی</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

2-2 مواد و روش‌های آزمایشی

در فلز پژوهی انجام شده برای انتخاب این سطح سه سه‌نقطه‌ای
نیکل سطح نوع 2 تحت تأثیر تغییر در دمای کرابین در ترکیب
شیمیایی آن بررسی شد. لذا ترکیب‌های شیمیایی عمدتاً این
آلیاژها بر تغییر استاندارد ASTM 5324 استاندارد D نوع 1
مینای کار انتخاب شده و در نهایت نمونه‌ها درصد تغییر داده
شد است. جدول 1 ترکیب‌های شیمیایی این گروه از چندین سفید
آلیاژ را نشان می‌دهد.

به منظور تهیه نمونه‌های آزمایشی مورد نظر برای آزمایش‌های
متالوگرافی، ضرره و سایش قطعات به شکل Y، ریختگری شد.
تهیه ذوب کربنیک از دستگاه‌های تولیدی گرفتن و از امکاناتی نظیر
کوپروماک و ترموکوپل برای تنظیم ترکیب شیمیایی و دمای ذوب
استفاده شد. ترکیب‌های شیمیایی نمونه‌های آزمایشی در مورد (1)
نشان داده شد است.

قطات ریختگری تغییر تراست دستگاه‌های تولید مورد بررسی
شد و با مشابهی، نمونه‌هایی به قطر 20 و ضخامت 10
میلی‌متر برای انجام آزمایش سایش تهیه شدند. به منظور جلوگیری
از کاهش دما شروع مارینتی م س و استاندارد م نیز به لیزری
الفیشی 260/824 م‌س/8 حاصل شد. همچنین می توان توان وریزه بار

استقلال سال 15 شماره 2، سال 1376
مورد نظر را از 1 تا 3 کیلوگرم بر روی نمونه اعمال کرد. مسافت لغزش توسط یک شماره اندازه‌گیری می‌شود. میزان مسافت به‌وسیله اندازه‌گیری کاهش وزن نمونه بعد از مساوی‌گیری مورد نظر محاسبه می‌شود. هنگام تور کرنش سنجش‌پذیر بر روی پایه عمومی دستگاه نصب شده که در نهایت امکان اندازه‌گیری ضربه اصطکاک را فراهم می‌کند. نیروی اصطکاک توسعه انرژی به بازوی عمودی انتقال داده می‌شود و کرنش حاصله تحت تغییر مقاومت الکتریکی کرنش سنجش‌پذیر می‌شود. تغییرات مقاومت الکتریکی یک پارسیون با تغییرات ولتاژ در حالت مولت تبدیل شده و سپس به یک نقطه کننده ارسال می‌شود. تبدیل شده این تغییرات را از طریق یک پورت ضریب ارتباط‌های قبیلی به شمارگر در یک کامپیوتر جاسازی شده توسط مناسب نور افزایش مشاهده می‌کند.

سرعت نمونه برداری بین 1 تا 100 نمونه در ثانیه قابل تنظیم بوده و کامپیوتر در هر مسافت 5000 داده را می‌تواند ثبت و رسم کند. تعداد نمونه برداری در آزمایشات سایش 100 نمونه در ثانیه تنظیم شده است.

با درجه بندی کردن این سیستم، می‌توان تغییرات ورودی را به تغییرات نیروی اصطکاک ربط داده و با استفاده از نرم افزارهای گرافیکی نمودار نیروی اصطکاک بر حسب زمان رسم کرد. همچنین می‌توان با استفاده از رویکردی با توجه به نیروی اعمالی محور عمودی نمودار را به ضرب اصطکاک تبدیل کرد. برای نظر گرفتن سرعت لغزش در دستگاه سایش می‌توان محور آن را در نهایت همین انجام نمودار ضربه اصطکاک را بر حسب مسافت لغزش رسم کرد.

۲-۲ روش اجرای آزمایش‌های سایش

به منظور انجام آزمایش‌ها، ابتدا دستگاه سایش خارجی - لغزشی درجه بندی شده و آزمایش‌ها تحت بار 15 کیلوگرم و در مسافت 1000 متر انجام گرفت. برای کلیه نمونه‌ها در فواصل 50 سانتی‌متر نتایج ثبت گردید.
شکل 1- ساختار میکروسکوپی چندهای لیکل سخت گرنگ، چهار با درصد کرین مختلف
دستگی به ترکیبی شیمیایی چند نسبت به موقعیت پونتیکیک دارد.

نتایج میکروسکوپی سنگی از فازهای آن در جدول (۴) آمده است.

مقدار میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگرم در میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است. میزان میکروسکوپی سنگی در ساختار است.

مقدارگر
شکل ۵- منحنی مشخصه ساییس چند نیکل سخت با ۲/۷۶ درصد کرون در مسافت ۵۰۰۰ متر

چرخه‌گیری شکل پلاستیکی در سطح ایجاد شده و در لایه‌های نزدیک سطح کار سخت انجام می‌شود و در تابع تراکم ساختمه کشیده می‌باشد و همگامی که یک سطح نامی پایدار بین دو سطح درگیر پدید آمده، تراکم ساختمه تقریباً ثابت مانده است. در توانانی حاصل از منحنی مشخصه ساییس احتمالاً می‌توانند ناشی از یکتکایت بودن تقریب خواص سطح و حجم قطعه باشد.

شکل ۳- منحنی مشخصه ساییس نمونه‌ها تحت بار ۱۵ کیلوگرم تیره

شکل ۴- تأثیر درصد کرون بر مقاومت ساییس چندنیکل سخت تحت بار ۱۵ کیلوگرم تیره و مسافت ۱۰۰۰۰ متر

آلیاز است. در این مورد زمینه مارترینی نسبت به سایر فازها، از سختی و استحکام بالاتری برخوردار است. این دو ویژگی هم‌گنین سبب می‌شود تا ذرات کاربید در زمینه مارترینی نسبت به سایر زمینه‌ها دو ترکند. شوندن [۱].

شکل ۵- منحنی مشخصه ساییس نمونه با ۲/۷۶ درصد کرون

تا مسافت ۵۰۰۰ متر راشند می‌شود. هماگونی که ملاحظه می‌شود نرمی ساییس در ابتدای زیاد بوده و به تدریج کاهش می‌یابد و از حدود ۱۰۰۰ متر به بعد تقریباً ثابت مانده است. در مراحل ابتدایی ساییس از نو ساییس اولیه یا ساییس آب‌پذیری یکده بوده و به مورر به ساییس یکتکایت تبدیل می‌شود. در این امر، این است که در آغاز با کروکچترین لغزشی که بین دو سطح صورت می‌گیرد یک
شکل 7- تصویر میکروسکوپ الکترنی ترکه‌های حاصله بر روی پرخی از ذرات سایشی را نشان می‌دهد

خشکسی است. حرکتهای لغزشی تکراری توزیع با چرخش‌های می‌تواند تنها سبک‌ریز را به سطح وارد کند. در این آزمایش آن شروع شده و به مرور زمان رشد کرد. نتیجه این امر می‌تواند منجر به کاهش ذرات از سطح شده و حفره‌هایی را مشاهده آنچه توسط کواریزی در تصویر دیده می‌شود ایجاد کند.

شکل (8) سطح ساییده شده نمونه را در مساحت ۵۰۰۰ متر نشان می‌دهد. حفره‌های ایجاد شده ناشی از سایش زمینه مارترزی و به گونه‌ای که ذرات کاربیدی به مراتب بیشتر از تصویر قبلی مشاهده می‌شود، حفرات منجر به کاهش ذرات کاربیدی خرد شده که در حال کننده شدن گسترش می‌افتند به خوبی ملاحظه کرد. علاوه بر این ذرات پیش‌رو زیر ناشی از سایش نیز دیده می‌شود. این وضعیت می‌تواند حاکمی از غلبه بودن مکانیسم سایش خراسانی باشد. با کاهش ذرات، مکانیسم سایش خراسانی نیز معافیت پیدا می‌آید.

شکل 4- تصویر میکروسکوپ الکترنی نمایی از سطوح ساییده

پس از زنده شدن به عنوان جسم سوم پین دو سطح در حال لغزش واقع شده و سبب سایش خراسان شده است. عمک کم شیب‌های ایجاد شده می‌تواند ناشی از فشار بالای کاربیدها باشد.

در شکل (7)، ترکه‌های ایجاد شده بر روی بعضی از ذرات کاربیدی به خوبی مشاهده می‌شود. این ترکه‌ها احتمالاً ناشی از...
توضیحات:
در نمونه‌هایی که در صید کربن کمتری برخوردار بوده و در عوض دارای حجم بیشتری از فاز ذرات است، به مراتب بیشتر است از ذرات این ذرات روی دیده شده و در صید نهایی که در صید داده شده که لحظه تغییر شکل پلاستیکی را نمی‌توان روی ذرات صاف ملاحظه کرد. در شکل (۲) ترک خوردن ذرات باریدی کنده شده به خوبی مشهود است که در اثر واقع شدن در بین سطح لغزش در حال خرد شدن است. این ترک مشهود است از تنش‌های خستگی بر روی ذرت جدا شده باشد.

در نمونه‌هایی که در صید کربن کمتری برخوردار بوده و در عوض دارای حجم بیشتری از فاز ذرات است، به مراتب بیشتر است از ذرات این ذرات روی دیده شده و در صید نهایی که در صید داده شده که لحظه تغییر شکل پلاستیکی را نمی‌توان روی ذرات صاف ملاحظه کرد. در شکل (۲) ترک خوردن ذرات باریدی کنده شده به خوبی مشهود است که در اثر واقع شدن در بین سطح لغزش در حال خرد شدن است. این ترک مشهود است از تنش‌های خستگی بر روی ذرت جدا شده باشد.

در مجموع می‌توان گفت که مکانیسم غالب در این مکانیسم صافی شکل پلاستیکی به دلیل دامنه ذرات کربن‌ها در سطح، مکانیسم صافی خلاشان غابل شده است. همچنین آنها از وجود مکانیسم صافی ورقه‌ای مشهود است که به احتمال زیاد چنانچه صافی در مسافتهای طولانی تر از این می‌باشد آثار صافی این مکانیسم مشهودتر می‌شود.

3-5- تأثیر ذرات کربن بر میزان ضریب اصطکاک

در نمونه‌هایی که در صید کربن کمتری برخوردار بوده و در عوض دارای حجم بیشتری از فاز ذرات است، به مراتب بیشتر است از ذرات این ذرات روی دیده شده و در صید نهایی که در صید داده شده که لحظه تغییر شکل پلاستیکی را نمی‌توان روی ذرات صاف ملاحظه کرد. در شکل (۲) ترک خوردن ذرات باریدی کنده شده به خوبی مشهود است که در اثر واقع شدن در بین سطح لغزش در حال خرد شدن است. این ترک مشهود است از تنش‌های خستگی بر روی ذرت جدا شده باشد.

در نمونه‌هایی که در صید کربن کمتری برخوردار بوده و در عوض دارای حجم بیشتری از فاز ذرات است، به مراتب بیشتر است از ذرات این ذرات روی دیده شده و در صید نهایی که در صید داده شده که لحظه تغییر شکل پلاستیکی را نمی‌توان روی ذرات صاف ملاحظه کرد. در شکل (۲) ترک خوردن ذرات باریدی کنده شده به خوبی مشهود است که در اثر واقع شدن در بین سطح لغزش در حال خرد شدن است. این ترک مشهود است از تنش‌های خستگی بر روی ذرت جدا شده باشد.

در مجموع می‌توان گفت که مکانیسم غالب در این مکانیسم صافی شکل پلاستیکی به دلیل دامنه ذرات کربن‌ها در سطح، مکانیسم صافی خلاشان غابل شده است. همچنین آنها از وجود مکانیسم صافی ورقه‌ای مشهود است که به احتمال زیاد چنانچه صافی در مسافتهای طولانی تر از این می‌باشد آثار صافی این مکانیسم مشهودتر می‌شود.

71
شکل 11– تصویر میکروسکوب الکترونی ترک ایجاد شده بر روی یکی از ذرات سایش

- با افزایش درصد کرین در آلیاژ‌های نیکل - سخت‌خوردگی، کاریک‌های ایجاد شده عمداً از نوع M_{90}C محدوده هیپوکسی، کاریک‌های ایجاد شده عمداً از نوع M_{90}C هستند که در یک شبکه یا دایره‌ی در زمینه‌ی توزیع شده‌اند.
- افزایش میزان سایش موثر سطح شدن مکانیسم‌های دیگر سایش می‌شود.
- مقاومت سایش لغزشی این آلیاژها با افزایش درصد کرین در محدوده هیپوکسی، افزایش نسبتاً زیادی می‌یابد.
- مکانیسم خستگی، عامل مهمی در ایجاد ترک، خرد شدن و کند شدن کاریک‌های نیکلی که نشانگر کاریک‌های ایجاد شده درصد کرین و سبب افزایش سختی فاز زینی نیز می‌شود.
- با افزایش درصد کرین، میزان تغییر شکل پلاستیکی سطوح کاهش یافته و در نتیجه ضرب اصطکاک نیز کاهش می‌یابد. شدن ضرب اصطکاک دیگر، ضرب اصطکاک همراه با افزایش مقاومت سایشی این آلیاژهاست.

و از دنیه

1. Ni-Hard 4 Cast Irons
2. tribology
3. morphology
4. wear
5. sliding
6. debris
7. running-in wear
8. steady-state wear
9. Martensite start temperature
10. surface fatigue
11. surface asperities

