Volume 39, Issue 4 (Journal of Advanced Materials-Winter 2021)                   jame 2021, 39(4): 77-94 | Back to browse issues page


XML Persian Abstract Print


Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran. , hrezaie@iust.ac.ir
Abstract:   (314 Views)
In recent years, nanoceramics have been used in scaffolds to emulate the nanocomposite with a three-dimensional structure of natural bone tissue. In this regard, polycaprolactone biopolymer is widely used as a scaffold in bone tissue engineering. The goal of this research is to produce porous scaffolds of polycaprolactone - zeolite biocomposite with suitable mechanical, bioactive and biological properties  for bone tissue engineering applications. The nanocomposite scaffolds were synthesized by solvent casting/particulate leaching and freeze-drying approaches. Microscopic investigations showed generation of pores with an average size of 200-400μm after addition of ceramic phase. Energy dispersive X-ray analysis confirmed uniform distribution of ceramic phase in polycaprolactone matrix. FTIR results determined the binding type of zeolite nanoparticles to the polycaprolactone matrix as physical bonding. The results of mechanical tests showed the increase in young’s modulus after addition of ceramic phase (from 0.04 to 0.3 and 3 to 7 MPa, respectively). The hydrophilicity of polycaprolactone increased after adding nanozeolite and more weight loss was observed for scaffold containing 20% zeolite (53.52 6 1.6%) with an increase in the rate of hydroxyapatite formation. The results showed that the prepared scaffolds have potential for cancellous bone tissue engineering application.
Full-Text [PDF 1684 kb]   (103 Downloads)    
Type of Study: Research | Subject: Biomaterials
Received: 2020/08/18 | Accepted: 2021/02/27 | Published: 2021/02/28