Volume 22, Issue 1 (7-2003)                   jame 2003, 22(1): 189-202 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

M. Kalantar and G. Fantozzi. Thermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock. jame. 2003; 22 (1) :189-202
URL: http://jame.iut.ac.ir/article-1-282-en.html
Abstract:   (6076 Views)
Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming process and sintering condition. Maximum crack growth and thermal shock resistance of dense Si3N4 are achieved after complete conversion of the aàB transformation, and after the change in grain morphology towards elongated grain and the relative crystallization of the second phases have been obtained. The characteristics are obtained by a high a phase content of the starting powder, high Y2O3, and sintering condition of higher temperature (2000ْC), longer soaking times (1h) and load application at the beginning of the thermal cycle. Keywords: Silicon nitride, Thermo- mechanical properties, Thermal shock resistance, Crack propagation resistance
Full-Text [PDF 772 kb]   (877 Downloads)    
Type of Study: Research | Subject: General
Received: 2014/10/25 | Published: 2003/07/15

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Journal of Advanced Materials in Engineering (Esteghlal)

Designed & Developed by : Yektaweb